
Erik Piñeiro
The Aesthetics of Code
On excellence in instrumental
action

Fields of Flow

E
rik Piñeiro T

he A
esthetics of C

ode
O

n excellence in instrum
ental action

Fields of Flow series

This series presents some of the results of the
research project Fields of Flow (Art & Business),
which is finansed by the Bank of Sweden Terce-
nary Foundation. The goal of the project is to
promote meeting places and discussions bet-
ween actors – scholars as well as professionals
– in the aesthetic, economic and technical fields.
The program rests on a research colaboration
between The Royal Institute of Technology
(Prof. Claes Gustafsson), Stockholm School
of Economics (Prof. Sven-Erik Sjöstrand) and
Stockholm University (Prof. Pierre Guillet de
Monthoux)

Software systems form an essential part of Western
society, serving as tools to uphold institutions, pro-
cesses and services. It is understandable, therefore,
that the most fundamental aspects of programs are
their function and utility. But they are not, howe-
ver, the only things programmers are concerne with
when writing them.On the contrary, programmers
also discuss about many other aspects of software,
including the beauty of code. They distinguish
between different programming styles and express
their personal preferences, for instance, by admiring
and vilifying other people’s code. Programmers’
identification with aesthetic preferences may give
rise to vanity, to disagreements so entrenched that
they deserve the name of ‘holy wars’ and to other
similar phenomena. This thesis describes and analy-
ses these phenomena, which ultimately originate in
the human faculty to create and appreciate nuances,
to become attached to them and to engage in dis-
putes because of them – even in fields as standardi-
sed as computer programming. Its aim is to expose
the aesthetics of code, and in doing so, to discuss
the symbolic aspects of instrumental action at large.

Erik Piñeiro works at the Royal Institute of Tech-
nology, Stockholm, where he teaches Theory of
Organization and Management of Software
Development Projects.

for Elvira

Erik Piñeiro
The Aesthetics of Code

On excellence in instrumental
action

The fisherman who intends to fish for salmon needs to
consider many different factors that will influence his
multiple decisions. He needs to cast the fly before the
salmon in such a way that the fish cannot resist the temp-
tation and takes it, preferably taking the whole lure into
its mouth. It is here that the fisherman’s technique makes
all the difference and needs to be varied according to pre-
vailing conditions. Sometimes it should be enticing, some-
times brusque, perhaps hesitant and possibly provoca-
tive. The range for personal expression is vast. The angler
has the choice of different lines, floating or sinking. He
can skim the water’s surface with the traditional feather,
hair wing or tube flies. The fisherman can cast across the
run or with the current, and he can retrieve quickly
or slowly. He can have the fly land directly in front of the
salmon, have it sink down to the fish or pull it up to
it. Many other options are open to the angler, and the
range of choice in fishing techniques is truly unbelievable.

Hitch Craft, 1994
North Atlantic Salmon Fund Reykjavik, Iceland

5

acknowledgements

Finding yourself at the point where you are allowed to
defend your thesis is all very well, but I must admit that
the more I think about it, the less important it feels.
Holding a ready-to-publish manuscript in your hands is
nice, but it is hardly comparable to recalling all the
things that have happened on the way there. The five and
a half years of doctoral studies have been a wonderful
experience, and I am happy there is a place where I can
express my gratitude to those who have made them so.
If it were up to me, I would bore you with a chapter on
each person, but I’ll be brief.

Five and a half years ago, Professor Claes Gustafsson
was explaining to me, as he has done before to numerous
other students, how one’s research idea changes through-
out the PhD studies. How one enters the process with
one question and exits it, a few years later, with a rather
different one. This, of course, has happened to my
research question, but more importantly, it has also hap-
pened to me, as a person. Thank you Claes, for offering
me a place at indek, for making doctoral life so very
enjoyable, for all the advice – academic and otherwise –,
and for the car (even if, strictly speaking, it wasn’t yours).

Just over thirty-three years ago, Bertil Guve and I
were both floating upside-down inside our respective
mothers while they went out together in Madrid. Then
we were born and were friends, but a few years later
he moved to Stockholm. Many years later, I moved to
Stockholm and he was here to welcome me. Thank you
Bertil. For your help when I arrived here, and for con-
vincing me and Claes that this was a good idea. We have
made many journeys together, both to the inside and
to the outside, every one of them has been moving
and enlightening.

The first time I saw Marcus Lindahl he was wearing

7

snake skin cowboy boots. I can’t quite recall what I
thought right then, but it was definitely not that you
would become such a great friend. There is a chance
we would both have defended our thesis earlier had
we not been room mates, but then I would have missed
all the ideas, both the sharp and outlandish ones, you
have offered through the years. Besides, I never felt I was
in a hurry.

To engage in an academic argument with Alf Rehn is
always a stimulating enterprise, at times even a daring
one, but it is not quite as exciting as discussing life, the
world and everything else. Thank you for your advice,
for the books I’ve borrowed and for reading the succes-
sive manuscripts.

Around Claes there has been a group of PhD students,
of which I have formed part. We have discussed articles,
books and each other’s work. These inspiring seminars
have played an important role in the writing of this
thesis. Claes, Alf, Bertil and Marcus were there, but they
were by no means the only ones. Thank you Tina
Karrbom, Anna Jerbrant, Fredrik Markgren and all
those who have taken part in them. During the last year
or so, the seminars have become even better. The new
wave of PhD students has brought new friends, more
opportunities for motivating discussions, and more fun.
Thank you Helena Csarmann for the talisman, Sven
Bergvall for your thousand helping hands, Charlotta
Manckert for a few well-timed hand grenades, David
Sköld for the vynil, Mikolaj Dymeck for the gaming, and
Thomas Lennerfors for reminding me of the good things
about Madrid. The best of luck to you all.

Now, old and new PhD students might well make
indek interesting and fun, but were it not for Christina
Carlsson, Caroline Pettersson, Jan-Erik Tibblin, Jessica
Matz, Christer Lindholm and the rest of the administra-
tion team, there would be no department to speak of.

8

Thank you all, these years would not have been possible
without your solid proficiency.

I have gained many insights from both reading and
discussing with professors Sven-Erik Sjöstrand and Pierre
Guillet de Monthoux, and with all the members of the
research project fields of flow. My gratitude to them
and to the The Bank of Sweden Tercentenary Foundation,
whose generous financial support has made the whole
project possible.

In the final stages of the thesis, Daniel Pargman read
the manuscript very closely and held a very helpful
seminar. Ali Qassim made the final adjustments to my
English. Thank you both.

Without my parents, Sonja Högberg and Guillermo
Piñeiro, none of this – nada de nada – would have ever
happened. I can think of a thousand reasons to show you
my gratitude but, for this time, I’ll settle with thanking you
for supporting me in all my projects, including this one.

Thank you Daniel and David Piñeiro, for all kinds of
things, but mostly for those more than eighteen years of
living together. Aunts, uncles and cousins, thank you for
all the good times. Erik Olof Albert, morfar, thank you
for the memories.

There are other fine individuals that have made life
great during these years. Thank you: Gemma, Björn and
Nina, for unplanned and chaotic dinners in warm com-
pany; Krim, for loooong walks and heated discussions;
Maja, for taking us to the forests; Omar, Rebecca and
Ruben Rashid, for the music, the insights, the hospitality,
and for London; Ulla, for all kinds of help with the
apartment; Javier, por el jamón y el acento; Lena, for
welcoming us to your place; Johan, Teddy and Alex, for
the kayaks; Isabella, Guillaume and Selène, for the food,
the sea and the arguments; Alejandro, por el flamenco;
Juan Diego and Rosi, for Nova Notio and the continued

9

friendship; Lidia, for keeping the contact; Rosa, for your
lessons, Monik, for so many things… one’s life is made
of other people.

It’s true, life was fine before Ester. But being with you is
a bliss, a great and undeserved gift. Ester, light of my life,
you give me sunshine in a cloudy day, and the month of
May when it’s cold outside. Thank you for everything.

This book is dedicated to Elvira, who is not yet born,
but who will, hopefully, be born before this book leaves
the print shop. During the last weeks I have been much
more concerned about you and your mother than about
writing and, well, I think that the thesis has benefited
from that.

Elvira was also the name of both my grandmothers,
mormor y la abuelita. To them a remembrance.

Erik,
Stockholm, 23.09.03

10

i
Contents

i introduction 21

Software is one of the essential elements of Western soci-
ety, which has made it the subject of studies of many
different kinds. A large number of scholars dedicate time
to both the technological and the human aspects of
software, including studies of the process of software
creation. However, most of these studies seem to assume
that programming is an objective endeavour, a sort of
deductive process almost, and that code is a ‘neutral’
artefact (whose usefulness is its only significant charac-
teristic), rather than a creation to admire and to be proud
of. Accordingly, they overlook the consequences that
influences of the personal aspects of software have on
programming, and, hence, in the management of
programming projects. This study concentrates on the
programmers’ personal relation to their own creations,
and although its immediate purpose is to offer an
account of the private aspects of programming, it con-
tributes to the library of management of software devel-
opment projects, and perhaps also to our attempts at
understanding the nature of instrumental action at large.

ii method and empirical
material 47

A short presentation of the author’s motivations and of
the origins of the study. An argument about its similari-
ties and differences to Science and Technology Studies
and about its ethnographical ambitions and shortcom-

13

ings. Finally an introduction to the nature of the empiri-
cal material.

iii programming 81

I was myself a programmer and in this chapter I propose
a simplified version of one of the projects in which I was
involved, with the purpose of introducing the subject of
this thesis, the private aspects of programming.

iv. instrumental, semi-instrumental
and intrinsic goodness 93

Messages in the examined discussions among program-
mers often feature the adjective ‘good’. The first analytical
task is to sort out the different kinds of goodness that
programmers refer to. This chapter is dedicated to this
task, and to the introduction of other concepts that will
be used later on.

v coding styles 113

Private aspects of programming are not limited to what
could be called ‘aesthetic’ aspects, but these provide a
good concrete ground from which to approach them.
They give us something to get hold of, so to speak.
However, as programming consists in the manipulation
of abstract structures, attempts at giving examples of
beautiful software to non-programmers usually end up
in long technical explanations. In order to avoid this,
but still present a concrete example of the aesthetic pos-
sibilities available to programmers, I propose to examine
one of the most straightforward parts of programming:

14

coding. Coding is considered by some programmers as
a peripheral concern but, on the other hand, it results
in something tangible (code), allowing thus for good
illustrations. Besides, however secondary it may consid-
ered by some programmers, we shall see that coding
aspects are important enough to spark off heated disputes
among them.

vi aesthetic ideals 159

Through an examination of coding and its results, this
thesis has introduced the technically complex subject of
beauty in programming but it is not my intention to go
into a detailed explanation of the aesthetic ideals of pro-
gramming since this would require too much technical
overhead. However, this study would be incomplete
without an overview of the most popular aesthetic attrib-
utes of software. I will present here the following ideals:
cleanness, simplicity, tightness, consistency, structure and
robustness. Programmers use these words (the adjec-
tives) to describe the beauty of their preferred programs,
or, perhaps more often, the qualities they pursue when
writing software. As in the previous chapter, the purpose
here is not to provide a comprehensive classification but
to delve more deeply into the phenomenon by offering
more evidence of the existence and significance of the pri-
vate aspects of programming.

vii the relationship between instrumental
and intrinsic goodness in programming 201

The previous chapter about instrumental, semi-instru-
mental and intrinsic goodness provided a description of
these three concepts with the aim of introducing the

15

notion of instrumental beliefs. This conceptual toolkit
was hopefully useful when reading the two empirically
intensive chapters that followed. In this chapter we return
to the concepts of instrumental and intrinsic goodness
(of code), this time using them to explore how program-
mers approach the relationship between the public and
the private aspects of software.

viii instrumental beliefs 237

As advanced in the chapter about instrumental goodness,
and as described in those that followed, programmers
find themselves making decisions based on a mixture of
aesthetic preferences, instrumental beliefs about ‘what
is best’ (for the user, for the company and for their
colleagues), and technical knowledge. This may result
in behaviour that is difficult to explain unless we accept
that programming is not an objective activity but one in
which personal factors play an important role. This chap-
ter considers the concept of instrumental beliefs through
the study of one such behaviour: careful previous design.
Is there a point in calling this rather widespread proce-
dure a ritual?

iv community 259

The concept of ‘programming community’ can be found
a little bit everywhere, including scientific articles in the
IEEE Software Journal, where it is used to explain why
some programmers hold strong opinions on technical
subjects that have not been empirically solved. In this
chapter we shall explore the relationship between what
we have called ‘private aspects’, our gathering term
for that kind of phenomena, and the existence of a

16

programming community. Bataille’s concept of sacrifice
as expenditure will be our link, the argument being that
some of private phenomena of programming (e.g. writing
beautiful software) can be interpreted as the manifesta-
tion of a constant and individual sacrifice that brings
about a sense of community. The sacrifice may take
different forms, but in all cases expresses the same:
a concern for software itself (its intrinsic qualities), more
specifically, an economically oblivious concern for soft-
ware. Obliviousness, however, is not the same as opposi-
tion, sacrifices are not generally carried out in order
to waste but in order to express something. In fact, they
may make good economic investments, as some pro-
grammers insist.

x programming as symbolic action 287

It is time to draw some conclusions, and in this chapter
the argument is reviewed as an attempt at presenting
programming as symbolic action. Writing a program is
not only solving a computational problem (constructing
a virtual machine that carries the intended function), it is
also a process by which programmers create, reaffirm
and communicate their world view and their place in it
(through aesthetic preferences and instrumental beliefs,
for instance); it is a way of expressing oneself. In this
sense, choosing emacs instead of vi (see chapter 5) is not
(only) the result of rational considerations but (also)
a symbol of one’s identity as a programmer. Writing soft-
ware looks, from this perspective, more like practising a
religion than like calculating.

17

xi closing reflections 315

Research in the management of software development,
and research in programming in general, should not
ignore the personal aspects of programming. Program-
ming managers, in turn, should not deal with them as
simply something to be suppressed. I hope this much is
clear after reading the thesis; but, given the picture of
programming we have witnessed, is there anything we
can say about other instrumental activities? Notably,
about management? And is there anything to be said
about technology at large?

18

21

i
Introduction

Software is one of the essential elements of Western soci-
ety, which has made it the subject of studies of many dif-
ferent kinds. A large number of scholars dedicate time
to both the technological and the human aspects of soft-
ware, including studies of the process of software cre-
ation. However, most of these studies seem to assume
that programming is an objective endeavour, a sort of
deductive process almost, and that code is a ‘neutral’
artefact (whose usefulness is its only significant charac-
teristic), rather than a creation to admire and to be proud
of. Accordingly, they overlook the consequences that
influences of the personal aspects of software have on
programming, and, hence, in the management of
programming projects. This study concentrates on the
programmers’ personal relation to their own creations,
and although its immediate purpose is to offer an account
of the private aspects of programming, it contributes to
the library of management of software development pro-
jects, and perhaps also to our attempts at understanding
the nature of instrumental action at large.

The Economist opened its June 21st 2003 Technology
Quarterly Report with an article on software develop-
ment, more specifically on bug-detecting systems.
According to this article, a researcher at the America’s
National Institute of Standards and Technology has esti-
mated that “software bugs are so common that their cost
to the American economy alone is $60 billion a year or
about 0.6% of gross domestic product.” The same
Institute has also calculated that “80% of the software-
development costs of a typical project are spent on iden-
tifying and fixing defects.” Further, the article explained
that programming bugs are better found and fixed as
early in the development process as possible, since the
costs of fixing them escalate as the project progresses.
“Djenana Campara, chief technology officer of Kloc-
work, a young firm based in Ottawa, Canada,” proposes
the following rule of thumb: “a bug which costs $10 to
fix on the programmer’s desktop costs $100 to fix once
it is incorporated into a complete program, and many
thousands of dollars if it is identified only after the soft-
ware has been deployed on the field. In some cases, the
cost can be far higher: a bug in a piece of telecoms-rout-
ing equipment or an aircraft control system can cost mil-
lions to fix if equipment has to be taken out of service.”
(cited from the same article)

Needless to say, a number of people are working on
techniques and systems that minimise the amount of
bugs generated by programmers. The article in The Econ-
omist centres around the idea of using applications (pro-
grams

1
) that detect bugs as the code is written. These

applications scan the code being written and apply
known algorithms to detect errors. Not all kinds of bugs
are detectable in this way, of course, but the proponents
claim that these kind of applications can make a differ-
ence. “Opinions”, The Economist continues, “are divided
as to whether programmers will welcome or reject such

23

tools” (ibid). And this leads to the subject of this thesis.
This study is not going to examine bug-detection methods,
neither is it going to propose models to minimise the
number of bugs per line. It does, however, intend to
examine how programming is experienced by program-
mers. In other words, this thesis does not deal with bugs
but with the activity of programming, more specifically
with the ways in which programmers relate to the code
they write. The insights gained should help managers
decide on the question of “whether programmers will
welcome or reject such tools.”

There is no possible way to know a priori how each
individual programmer will react towards a monitoring
system that tells her (and her boss, and her colleagues)
how well she is doing. In fact, I don’t think anyone is
really interested about this… on the other hand, what
everyone wants to know is, on the other hand, whether
the implementation of these automatic systems will actu-
ally result in better (less buggy) software. My impression,
and this will form the basis of my argument in the next
hundred or so pages, is that those who firmly believe in
the utility of those systems base their conviction on a too
narrow vision of programming. They assume that pro-
gramming is something strictly instrumental (i.e. done
only in order to achieve a goal and with no value in
itself), that the only important aspect of the whole pro-
gramming effort is whether the application runs or not
(and has as few bugs as possible). From this perspective,
programmers should clearly welcome any tool that helps
them reach more swiftly the final bug-free application. A
commonsensical argument, really, but one which is based
on the wrong assumption: programming is not solely,
perhaps not even mostly, about creating programs that
run; it is also about personal expression and belonging.

Programmers have a creator-creation relationship to
their code, and whether that code fulfils someone else’s

24

expectations (users, managers, for instance) is only an
aspect of that relationship. Their code reveals a number
of things about them, such as their skills, their technical
preferences, their beliefs about what can be done with
software, in a word, about the kind of programmers they
are. The implementation of a monitoring system that
reports the number of bugs contained in their code
is likely to change their programming routines but, in
my opinion, it is impossible to know what the results of
that change will be. Will they actually use it as a bug-
detecting tool? And in that case, will they become over-
secure and lazy and write programs with even worse
bugs that the system does not detect? Or will they instead
make a game of the whole thing, trying to beat the sys-
tem, introducing bugs that it cannot detect (and exchange
bravados about their superiority over the machine)?

On the other hand, this is the way technological
innovation often moves: through the creation of artefacts
of uncertain use and whose consequences cannot be
specified a priori. So I would never suggest that it is
wrong to develop bug monitoring systems, only that we
must be careful with the assumptions we make when
assessing their utility.

As the reader has probably perceived, the issue of bug-
detection is, despite the magnitude of its economical con-
sequences, only secondary here. The aim of this thesis
is to explore how programmers relate to the programs
they work with, and to show that this relationship
includes a concern for both the instrumental and the
intrinsic qualities of code. They do not only want their
code to work, they also want it to speak well about its
creators (themselves).

There are more ways to explain what this thesis is
about. At a most immediate level, it is about human
aspects in software development. At a deeper level, it

25

could also be about something (apparently) completely
different: the fertility of fantasy and its role in the
processes of technological innovation. Or about how
anarchic human invention can flourish in as arid envi-
ronments as that of computing logic. Or, in Feyerabend’s
terms, it could be about the impossibility of curbing the
abundance of life.

This is, hence, a thesis about programmers and their
relationship to software. And when I say software, I do
not mean ‘the uses of programs’, or ‘the business of soft-
ware’, or ‘the appearance of applications on the screen’,
but to the code itself. This is, as we shall see, a colourful
relationship, rich in nuances, that gives raise to heated
disputes, “holy wars”, vanity and other passionate man-
ifestations. The image or programming projected by all
these phenomena should dissipate the notion that it is
only about solving complex logical puzzles and that pro-
grams are flat creations. The reader will hopefully see
that software is not the only result of objective calcula-
tions, but also of the very human desire to create and to
express oneself.

In a way, this a thesis not only about but also for pro-
grammers, who might find it interesting to read, for a
change, about the experience of writing code, instead of
about how to complete your programming projects in
time and within budget, or how to write truly useful
applications, or how to sell software, or how software is
going to change business models all over the world.
However, the purpose of this book is not to teach pro-
grammers anything about programming. My work has
been to analyse the experience of programming, not
with the aim of suggesting methods to make it more
efficient but with the aim of bringing to light its person-
al aspects. Hence, the lessons that this book may offer
will not make anyone a better programmer, but they
will help widen the picture of what programming is.

26

This is also a thesis with something to say to program-
ming managers, and other people whose profession puts
them in contact with (some might say ‘at the mercy of’)
programmers. Not that they will find here any recom-
mendations as to how to carry out their jobs, no last-
page bullet-summary with ten advices for their negotia-
tions with programmers; instead they will find a descrip-
tion and an analysis of the experience of programming.
Programmers sometimes complain about managers ‘not
getting it’. What they mean is that ‘managers’ (in a very
general sense) are failing to understand the private aspects
of programming. If managing is the art of understanding
the relationship between the goals, the resources, and the
circumstances that surround them (and not the applica-
tion of rules and formulae) then this thesis is the place
where to look for insights about the management of
programmers: a book where the programming experi-
ence is explained by those who do it.

From the scholarly perspective, this thesis carries the
programmers’ voice, something that, surprisingly, has
not yet been carried out with the care and attention it
deserves, even if there has been some interest in ethno-
graphic studies – see, for instance, (Cook, et al. 1993),
or the more recent (Association for Computing
Machinery 1997). Furthermore it suggests a conceptual
toolkit with which to analyse the programming experi-
ence. This toolkit is essentially based on the notions of
religion and beliefs (the central reference being Geertz),
and on Bataille’s work on sacrifice and community. You
could say that what I do is propose a metaphor: that
of programming as a religious practice. I shall elaborate
on this later.

As for the programmers’ voice, it should not only be
interesting to those scholars in the field of technology
management but also to those interested in technology at
large. I am thinking more specifically about philosophers

27

of technology, or anyone that reflects on what technology
is and on what it both does and says about human
nature. Is technology something intrinsically reductive
(human nature is being slowly cornered)? Is it a sure sign
of the supremacy of rational (see objective and dispas-
sionate) thought? This thesis does not answer these ques-
tions, but it does deal with their most elementary subject
(technology), and from a (strangely so) unusual perspec-
tive: that of the passionate engineer who loves to create,
not for the good her creations may do to the world but
for the sheer pleasure of creating.

But let me first entertain you with a few remarks
about software and its role in our society. Is the voice of
programmers, and their personal experience of program-
ming, really so important?

software is everywhere

Software is everywhere. It may be more or less obvious-
ly present, but it is practically everywhere. Wherever
there is a microprocessor, there is software. And believe
me, there are microprocessors all around you, not only in
computers but also in cars, mobile phones, cameras,
microwave ovens, minidisk players and all other kinds
of objects. Some important actors of our society rely
nowadays almost totally on the correct functioning of
software systems: hospitals, air-traffic centres, trains,
telephone switches, tax-collecting institutions… few
manufacturing processes exist today in which software
does not play an essential role, running anything from
small robot-arms to comprehensive systems for produc-
tion control and planning. Paying with your credit card,
or withdrawing money from a cash dispenser requires
the existence of a vast software system; although perhaps
not quite as vast as the one that makes it possible to call

28

your family in Stockholm from the taxi driving you to
the Bangkok International Airport.

All those systems have to be programmed and main-
tained, which is the task, so to speak, of the software
industry. The enormity of this task is hard to over esti-
mate, at any given moment there are hundreds of thou-
sands of engineers, technicians, managers, clerks, stu-
dents and directors of boards working to make sure that
the software systems upon which our society depends on,
run. In fact, the real significance of programming, and of
this thesis, does not stem from the economic magnitude
of the software industry but from the ubiquity of pro-
grams. This omnipresence makes of software one of the
fundamental elements of our society, in fact, society as
we know it at the beginning of the 21st century could not
exist without software. The pervasiveness of micro-
processors and software has modified a great number of
routines and processes, and when people say that we
now live in a ‘post-industrial’ era, or that we now must
follow the rules of a ‘network economy’, I tend to think
that we could also say, even if it sounds more awkward,
that we live in a software-enabled-era. Not all progress
has been for the good, weapons of massive destruction
are impossible to create and deploy without some sort
of computing power, but I am not really interested in
a moral analysis of computers but on the fact that
advances in software have made this world possible.

Against this background it might prove difficult
to argue against the need of studying the software indus-
try. ‘The software industry’ is, however, a rather large
concept, containing enough material to fill a whole
library. This thesis is only one book in that imaginary
library, but, on the other hand, it is dedicated to one of
the basic moments of the software industry: the experi-
ence of writing a program is, at the end of the day, the
one in which the whole thing originates.

29

public and private programming

At the heart of the programming process, surrounded by
deadlines, marketing campaigns, investment assessments,
political struggles, organisation charts, beta releases, test-
ing teams and numerous other things lies the phenome-
non that we are going to focus on here: the program-
mers’ experience of writing software.

All the systems described above, and so many more
that I have not mentioned, have once been designed and
coded by programmers. And are right now, as you read
this, being maintained: a new functionality must be
added, or someone has found yet another bug that must
be fixed, or the application must be ported to different
hardware, or the system needs to be restarted, or some-
one managed to delete something that should not have
been touched… constructing and keeping this software
world running is a huge enterprise which consists, at its
most elemental level, of the meeting between program-
mers and code.

This meeting takes many forms: a programmer cre-
ating new code, or reading, modifying, discarding,
admiring, despising and/or damaging already existing
code, or a programmer discussing programming issues
with other colleagues, trying to solve a problem, com-
menting on new tools, criticising someone else’s work…
All this is part of the programming experience, the nucle-
us of this thesis, and will go here under several names:
personal relationship to one’s code, the programming
experience or, simply, programming. At any rate, and
whatever we choose to call it, this ‘programming’, can be
approached from two different perspectives, which we
may label ‘public’ and ‘private’.

From the public perspective, programming consists of
measuring and calculating, or, more generally, of apply-

30

ing one’s knowledge to finding the correct solution to a
problem. From this perspective, the meeting between
programmers and software is governed by some sort of
objective methodology according to which programmers
simply carry out calculations and write in the correct
commands. These calculations may be quite complex but
they are calculations nevertheless: according to the public
approach programming does not allow personal expres-
sion, it is simply a matter of solving mechanic puzzles.

Hence, programming is regarded as an exclusively
instrumental activity, something done just in order to
achieve a result: the actual doing is meaningless. Conse-
quently, programming becomes a dry, soulless activity,
something better optimised, minimised, made efficient…
something that should disappear. If machines could do it,
so much the better: programming in itself is not interest-
ing, only the results are. Well, actually, only the utility
of the results has significance. The result itself, i.e. the
code, is also perfectly uninteresting. The public, utilitari-
an perspective reduces the meeting between program-
mers and software to a mere functional step in the
machinery of the software industry. The inputs are time,
money and technical specifications; the process is called
programming (and should – and can – be optimised), the
output applications.

Marshall Sahlins suggests further that this utilitarian
perspective is not only public but also legitimate, since
we live under the assumption of scarcity (Sahlins 1972).
This assumption is Sahlins’ way to describe the Western
economic attitude:

That sentence of “life at hard labor” was passed uniquely upon us.
Scarcity is the judgement decreed by our economy – so also the axiom
of our Economics: the application of scarce means against alternative
ends to derive the most satisfaction possible under the circumstances. (:4)

31

With such an economic attitude at the base of our soci-
ety, it is understandable that the natural way to relate to
software production is through the concept of efficiency.
Programming, in itself, does not ease our impression of
lack, only programs (products) do. Hence, the activity of
programming is devoid of public value and the more
efficiently software is produced, the better. Consequently,
much of the literature dedicated to programming, both
on the popular management and on the academic side, is
concerned with the problem of making the personal
aspects of programming disappear: the ultimate goal
seems to be to devise models to make of it an activity as
mechanical and optimised as possible.

I am aware that this description has a certain moral-
istic tone to it, and that I seem to be saying that an exclu-
sively instrumental perspective on programming is
immoral. My opinions on this matter are, however, per-
fectly uninteresting. I have no intention of undertaking
a moral analysis of software development, and the goal
of this thesis is absolutely not to prove that such a
perspective is morally abusing. When I say that it is
reductive, I only mean that such a perspective does not
account for a number of evidently existing phenomena
(which I shall present as we go along), not that it would
be dehumanising.

This perspective is based on the assumption that pro-
gramming is an objective activity. And even though it is
a commonly held assumption, it is incorrect (as this the-
sis will argue). Engineering journals (IEEE Software,
ACM Transactions on Office Information Systems, Com-
munications of the ACM, Science of Computer Pro-
gramming, etc.) are dedicated to the publication of arti-
cles about how to make programming more efficient,
studying (and measuring), among other things, the
effects of different programming alternatives, the way in
which knowledge is transmitted from experts to novices,

32

the functionalities made possible by new programming
languages, etc. There are also a number of books about
the management of software projects, some of them sug-
gesting ways to assure that deadlines are met (McConnell
1996) (Yourdon 1997), others lay out methodologies to
obtain software of higher quality (Hunt and Thomas
2000) (Cooper 1999) (Gabriel 1996) (Gancarz 1995),
and others explain how to apply the lessons learnt in
other fields (Winograd 1996). In all these cases, pro-
gramming is considered a purely instrumental activity,
a process that should be optimised. Such a view deprives
code of any intrinsic value, reducing it to a tool, and
making the phenomena presented in this paper at best
a illegitimate and at worst invisible.

Naturally, it is perfectly reasonable to elaborate sug-
gestions for making the programming effort more
efficient, more ‘plannable’ and more controllable. The
question is not whether such a approach is legitimate but
whether one can expect it to be fruitful.

This approach is legitimate because it is clear that
software development projects, the innermost engines of
the software industry, have an erratic nature. Legend has
it that no programming project has ever been finished in
time, or within budget, but we needn’t go to such extremes
to admit that many applications cost more than planned
and arrive late.

The effectiveness of the approach will depend on
whether it manages to address the reasons behind that
erratic nature. Judging by the assumptions it makes
about the activity of programming, this approach locates
the origin of the erratic nature in a lack of proper project
management and planning techniques. Or in an insuf-
ficient amount of measurements (in a behavioural / Tay-
lorist spirit). For all the critique it has so far received
here, it must be said that these problems are ingenuous-
ly tackled by the above listed literature, and that it con-

33

tains a number of interesting insights about the nature of
software development projects. And a number of useful
recommendations too.

It is also possible to account for the erratic nature of
programming projects in the peculiar nature of software.
Frederick Brooks does this in his seminal The Mythical
Man-Month (Brooks 1995) where he discusses “why
programming is so difficult”, arguing that software has
a special nature, being both perfectly logical and perfect-
ly immaterial. This, Brooks says, makes programming an
activity like no-one else, an activity that we still have not
learnt to master. Brooks’ book is meant to help pro-
gramming managers to understand the effects that the
special nature of software has on the progress of soft-
ware development projects.

The Mythical Man-Month, despite mentioning some
of the phenomena that will be presented here, does not
really examine the possibility that the erratic nature of
software projects may originate in the personal relation-
ship programmers establish with their code. In other
words, it does not consider the alternative that the prob-
lems to meet deadlines may derive from programmers
working too hard, rather than from (the more obvious
argument) them not working hard enough. Programming
for them is an act of creation, and their code a mirror of
their identity: something that speaks about them and that
cannot be put together in haste. In the following chapters
we shall study how programmers relate to their work,
and we shall see that this relationship gives raise to phe-
nomena that cannot be explained from the public per-
spective. In other words, we shall study the private
aspects of programming.

From the private perspective, programming is not the
unimportant activity that must take place in order to
obtain useful applications, it is something with intrinsic

34

value. While from the public perspective, the meeting
between the programmer and the software is simply a
functional one, the private view regards it as a funda-
mental part of the entire process of software develop-
ment. Marketing, distribution, corporate policies, invest-
ments, salaries, expected returns and other details obvi-
ously exist, but they are secondary.

The programmers’ understanding of programming is
partly

2
based on this perspective, even if, judging from

some of their discussions, understanding programming
from this perspective is essential to being a ‘true’ pro-
grammer. Programmers are seldom fanatically focused
on their code, there is a whole spectrum of attitudes to
the private aspects. Some programmers are almost obliv-
ious to public concerns such as usefulness (not function)
and costs, focusing on the intrinsic qualities of code,
whereas some are almost oblivious to the intrinsic quali-
ties of their software, focusing on its cost and usefulness.
Only very extreme hackers are blind to the public aspects
of software (profitability, usefulness, etc.), but for most
programmers, code is something important (with varying
intensity) in itself, regardless of its role in a wider context.

For them, programming is a meaningful activity in
itself and code should be elegant. What uses the code
might be put to, or what role it fills in the corporate strat-
egy, or how much it will cost are also meaningful aspects,
but not the only measures of its worth. Programmers
are also concerned with creating code that speaks well
about its author. Code is, unlike in the public case, not
merely what makes the processor run, creating an appli-
cation that can be used to offer services (a word proces-
sor, for instance); code is also a sign of its creator’s skills
and preferences.

From close up, as we shall see, programming does
not consist of calculating the right commands. In fact,
there cannot be ‘right’ commands since there are a num-

35

ber a different alternatives which all provide the same
functionality. This has allowed for the appearance of dif-
ferent programming styles, indeed of different fashions.
What from the distance of the public perspective, always
at arms length from the meeting between the program-
mer and the code, are objective technical decisions turn
out to be, when observed more carefully, subjective choic-
es based on a mixture of aesthetic preferences and beliefs.
Programming is something personal, and we may under-
stand some of its aspects better by comparing it to a
religious ceremony instead of thinking about it as a mat-
ter of calculations.

These aspects are here called ‘the private aspects of
programming’, and they are a third origin of the erratic
nature of programming projects. This thesis is dedicated
to the study of those aspects, with, among others, the
aim of offering programming managers one more per-
spective from which to understand the dynamics of soft-
ware development projects. So, software managers not
only have to face the complicated mechanisms character-
istic of projects, or the difficulties inherent to software,
they also need to take into account the programmers’
relationship to code. In other words, they need to under-
stand the difference between solving computing prob-
lems and programming.

This difference lies at the heart of the concept of pri-
vate aspects of programming and can be explained as fol-
lows. Imagine that a programmer is told to write an
application (a program) that allows a company to store
all the data related to their sales, their customers and
their providers. The client simply wants a database with
all the data and a program that can show them how
much they have sold to any particular customer, or of
any particular kind of product, or a given month, or any
combination of the above. The programmer has go to the
client’s office, be taught the information relevant to the

36

project (how the client classifies the products, how often
new data arrives, who is to feed it into the database, and
how much this person should know, who accesses the
database and what they need to know) Let’s imagine
that, after a while, she knows exactly what she is sup-
posed to do. In other words, that she has defined the
computational problem, which is to write the set of
instructions that will make the computer store and pre-
sent the desired information. The difference between
solving this computational problem and programming
the application (and between “set of instructions” and
“program”) lies in the programmers’ personal involve-
ment. It lies, in fact, in the private aspects of program-
ming. When I say ‘to solve a computational problem’
I mean ‘to program’, but in the sense presented by the
public perspective. In this sense the programming hap-
pens without the programmer thinking about whether
the program is beautiful, or something to be proud of,
or something that reflects her preferences. Solving com-
putational problems is a detached activity, a sort of cal-
culation carried out without engagement, a process of
perfectly objective reasoning. Programming, on the other
hand, is a form of expression.

From the public perspective, programmers solve compu-
tational problems. They sit down with a set of technical
specifications and then try to meet them, in a rather
straightforward and unproblematic manner. This notion,
it is my impression, does not originate in careful obser-
vations of the programmers at work, but perhaps in the,
economically and morally respectable idea that, regard-
less of how programming is actually carried out, this
is how it should be done. From this perspective, let me
insist, the process of software creation has no intrinsic
worth, and hence should be mastered, mechanised and
optimised in order to produce more with less (remember

37

Sahlins’s assumption of scarcity). Hence, scholars and
consultants are dedicated to bringing programming pro-
jects under control, to make them predictable.

This is understandable, even if perhaps not as
rewarding as they might expect. From the private per-
spective, programming is above all a creative activity and
mixes badly with order and predictability. Not because
‘creative activities’ would require bohemian conditions,
even if some programmers claim that the nine to five
kind of job severely hinders their creativity, but because
they involve people in more complex ways than just cal-
culating activities do. One’s programs are personal, and
discussions about them are personal, and the technical
decisions are personal, and the managers’ or the col-
leagues’ intrusions and commentaries are taken person-
ally. Writing software is a way of self-expression, which
in turn means that the management of programming pro-
jects is also the management of individual personalities.

management of
programming projects

This work has been written at the Department of Indus-
trial Economy and Management of the Royal Institute of
Technology (Stockholm), and it is from the point of view
of the Industrial Economy field that it must be under-
stood. The traditional ‘industrial economic’ approach
originates in the work of F.W. Taylor and his ‘Scientific
Management’ methodology (Taylor 1967). Even nowa-
days, much of what is written about programming (as a
manageable activity) can be directly connected to those
ideas from the beginning of the last century.

Taylor’s work is, however, not part of a Management
Science, it is a description of a management methodolo-
gy, and not a study of what organisations, or manage-

38

ment, or work are about. Still, his ideas continue to have
a major influence on academics’ approach to the subject
even today. Mainstream researchers in the field focus on
the definition and measurement of the phases of a soft-
ware project (for instance by clocking the time spent in
different activities), with the hope (I assume) of finding
the key to the regularities that will allow them to write
the formulas that describe the programming effort. This
approach is based on the assumption that programming
is not a personal process but a mechanical one (or at any
rate, more substantially mechanical than personal), like
the falling of a stone, and that it will show the same uni-
formity and stability as this latter.

By showing the importance of the personal aspects of
programming, this thesis exposes the limits to what can
result from such a Taylorist approach, and in doing so I
present here a distant relative of the Hawthorne experi-
ments. As I said, there are interesting insights to gain
from the mainstream literature and research publica-
tions. It is indeed possible to increase the programmers’
productivity as the result of a careful statistical study of
their work, or as a result of a stricter project manage-
ment. But one should be aware that programming,
perhaps even less so than assembling relays, is not an
automatic process, if by ‘automatic’ we mean devoid
of human aspects

3
. Each program is different, and

constructing a useful model of the programming process
may well be as impossible as developing a theoretical
account of the painters’ efforts. In other words,
programming is a personal, creative activity, and the
gains that can be achieved through measurement and
optimisation are limited. Exactly how limited, it is
impossible to state categorically but I am convinced that
the Taylorist approach is not as rewarding as many aca-
demic texts seem to assume. The programming effort is,
in many important senses, more creative than mechani-

39

cal, and there are few significant regularities to be found,
and few gains to make from those.

The approach here is hence not to find statistical regu-
larities with which to construct a Science of Management
but to explain what programming is. The Science, at this
stage, consists of the careful observation and description
of not only actions (which can be clocked, in a behav-
ioural manner) but also of experiences. The goal is not to
develop formulas to apply but to offer explanations, a
goal that assumes of course that managing is not (and
cannot be) the application of formulas but the art of
manoeuvring beliefs, intuitions, guesses, wills, expecta-
tions, skills, time, money and other resources (see –
regrettably, only Swedish readers – Gustafsson’s Känsla
för Zap (Gustafsson 2000)).

I am, naturally, not the only one who holds such an
opinion. One of my most notable predecessors is the
above introduced Frederick P. Brooks Jr., himself a soft-
ware manager (later Kenan Professor of Computer
Science at the University of North Carolina at Chapel
Hill), who wrote one of the most influential books on
the subject of software development management: The
Mythical Man-Month (Brooks 1995). In it, he reflects
on his “very educational, albeit [] very frustrating” (:x)
experience of managing the development of the leg-
endary IBM Operating System/360, in direct response to
“Tom Watson’s [IBM’s general manager at the time of the
project (1964-65)] probing question as to why program-
ming is hard to manage” (:xi). Although he does include
some statistical reports, the book is actually an essay, in
which he tries to explain “why programming is hard to
manage”, i.e., why programming projects run so late and
so over-budget.

The software was written, and hard to manage,
around 1965, and judging by the date of first publication

40

(1975), one can only assume that programming had not
become much easier to manage ten years later. A decade
on – 1985 – he presented the article No Silver Bullet -
Essence and Accidents of Software Engineering (includ-
ed in the referred edition of The Mythical Man-Month)
where he states that “there is no single software engi-
neering development, in either technology or manage-
ment technique, which by itself promises even one order-
of-magnitude improvement within a decade in produc-
tivity, in reliability, in simplicity” (Brooks 1995) (:179).
In other words, Brooks was suggesting that program-
ming was still hard to manage. In the 1995 edition of
The Mythical Man-Month, he included an extra chapter
to answer the criticism set forth by that bold statement
(Chapter 17). Programming was still hard to manage,
and I see nothing that would have changed that in the
last eight years.

Brooks explanation as to why this is the case has to
do, as I mentioned earlier, with the inherent properties of
software: complexity, conformity, changeability and invis-
ibility. We need not comment them further here. Suffice
to say that Brooks believes that the complexity of soft-
ware systems (aggravated by their need to conform to
arbitrary human institutions, the changing environments
in which they must be written, installed and used and the
impossibility to visualise them) makes programming and
its management especially hard. What he proposes is an
explanation of the peculiar difficulties of programming,
and not the finding of regularities. Managers who read
his book are supposed to gain insights, not to learn
applicable formulas.

My explanation of why software development man-
agement is difficult has to do with another important
characteristic of the programming effort: the fundamen-
tal role that creativity plays in it. Its most important con-
sequence is that it makes of programming a personal

41

adventure, and a matter of self-expression. We shall see
how personal styles appear at all levels of the program-
ming effort: from those held in less esteem (coding) to
those considered truly creative (software design).

We are used to consider software as a tool, and we usu-
ally come in contact with it under the form of an appli-
cation. For instance, we see the user-interface and
through it we interact with an invisible system. With a
machine indeed, if a virtual such: pushing a button
moves some mechanisms inside that produce the result
we expect. For instance, we dial our friend’s number on
the phone, finish it with a “yes” and a huge system of vir-
tual cogs and shafts and pistons allows us to speak to her.

Programmers, on the other hand, work with these
cogs, and the system is not at all invisible (even if it can-
not be visualised). It is coded in programming languages,
since not even programmers are able to see the electrons
being shuffled around in the microchips, but it is absolute-
ly real, and it provokes many different kinds of feelings.
For programmers, with a private perspective on soft-
ware, programs are not only tools but creations, artefacts
with many more characteristics than just their price, their
function and their user-friendliness. They can see whether
a piece of code is “clean”, or if it is “a horrible mound of
spaghetti”, or if it shows “elegant and masterful design”,
and, most importantly, this makes a difference to them
(more to some than to others). It should also make a dif-
ference to us because the way in which programmers
relate to software has important consequences in the way
they create (and maintain) software. It should, at any
rate, make a difference to those in charge of managing,
financing or buying programming projects.

Code, despite its invisibility (if the application runs
well, no-one should ever need to see it; in the case of
commercial software, you are not allowed to see it

42

regardless), carries lots of connotations. It speaks about
the overall structure of the application, the conception of
the problem, the assumptions about the final user, the
large and small technical decisions that have been made,
etc.; in other words, it speaks of the comprehension, the
aesthetic preferences, the skills and the ingenuity of the
author. Given all this, it is perfectly natural to assume
that programming can be experienced as much more
than just solving the user’s needs. It can be easily inter-
preted as a symbolic activity through which to express
one’s view of the world.

The idea, as the reader will see, is to present a descrip-
tion as thick as possible of the private aspects of pro-
gramming (or, in other words, of the visible conse-
quences of programming being creative and personal).
I have chosen, in view of the empirical material that
I gained access to, to focus the description on the aes-
thetic aspects of programming. We shall see what a beau-
tiful program is, and how important the concept of soft-
ware aesthetics is for programmers. From this focus, we
shall move to the surrounding subjects (vanity, heated
clashes, admiration, despise…) and slowly, a picture will
emerge of programming as a personal form of expression
that can be described as a religion. The programming
effort turns out to contain phenomena that can be suc-
cessfully interpreted as rituals, beliefs and sacrifices (if a
bit idiosyncratic). Clearly, software development man-
agement involves much more than just setting deadlines
and calculating the resources needed.

The Mythical Man-Month is an answer to the ques-
tion ‘Why is programming so difficult?’, but only a par-
tial one. Brooks focuses on the aspects inherent to soft-
ware (to the essential tasks of programming) that make
it difficult to develop (and to manage its development).
By concentrating on the characteristics of software, he
does not take on board the fact that it is humans that

43

write it (a fact that also makes programming difficult),
perhaps because this issue would have led to a book
twice as long, perhaps because the issue did was not
quite ‘scientific’, or perhaps because he thought that this
is an issue better dealt with on a personal level. It is
therefore surprising that The Mythical Man-Month starts
with an enumeration of the joys of programming:

The craft of programming “gratifies creative longings built deep within
us and delights sensibilities we have in common with all men,” providing
five kinds of joys:
• The joy of making things
• The joy of making things that are useful to other people
• The fascination of fashioning puzzle-like objects of interlocking
moving parts
• The joy of always learning, of a nonrepeating task
• The delight of working in a medium so tractable – pure thought stuff
– which nevertheless exists, moves, and works in ways that word-
objects do not.4

Brooks, for unknown reasons, does not grant this joy
and its consequences, any greater role in the subject of
programming management. This thesis fills in that gap,
answering the question ‘Why is the management of soft-
ware development projects so difficult?’ from another
perspective.

44

45

1 The words ‘program’ and ‘application’ are not exactly synonyms but
will be used interchangeably throughout the book. The main difference
between them is that an application generally has rather well defined
function, whereas programs may have more vague uses. For instance,
an operative system can be called a program, but not really an applica-
tion. Simply put, all applications are programs, but not all programs
are applications. These two words will be accompanied by two other,
used as synonymous: ‘software’ and ‘code’. Strictly speaking, the code
of a program is its set of instructions, whereas the program is the
virtual machine created by the code running on a computer, but
programmers, and to a certain measure I too, use both interchangeably.
Software is generally used to refer to the body of programs ‘out there’,
but will be used here very much like ‘program’ or ‘code’
2 I cannot emphasise this enough: most programmers are very
concerned indeed about the usefulness of their code. This thesis will
take this for granted, and focus instead on their concern for code itself,
but it is not my intention at all to suggest that this concern is the
essence of programming. It is only a part of it, even if it is the only one
dealt with here
3 I cannot here but recommend, to the Swedish speaking reader, Johan
Asplund’s revisiting of the experiments (see chapter 17 in Asplund 1987)
4 This neat summary is his own. In the anniversary edition of The
Mythical Man-Month he includes a new chapter at the end with a sum-
mary of the statements it contains. This statement (1.2) can be found
on page 230

ii
Method and Empirical Material

A short presentation of the author’s motivations and of
the origins of the study. An argument about its similarities
and differences to Science and Technology Studies and
about its ethnographical ambitions and shortcomings.
Finally an introduction to the nature of the empirical
material.

47

This thesis is about programming. I enjoy programming,
I have done ever since my parents bought me a C64, and
I have even been a professional programmer for a short
period of time (although I never worked on particularly
advanced projects). Lately I have not programmed much,
instead I have been reflecting on the many aspects of the
activity of programming, and this book is the result
of that interest. Inspired by Johan Asplund’s Om undran
inför samhället (Asplund 1970), my approach to the sub-
ject of this thesis has therefore been led more by curiosi-
ty than by theoretical considerations. I simply wanted to
examine programming as an act of creation.

In this sense, this thesis has things in common with
the academic effort called ‘Science and Technology Stud-
ies’ (STS), a research field interested in bringing to light
human, as opposed to purely deductive, processes that
take place when science and technology are created. The
STS researches take us to laboratories, departments and
ateliers to show us, in all their richness, the multifaceted
processes that go on simultaneously in those factories
of science and technology. They relate the underlying
assumptions, the political struggles between team mem-
bers, the changing economic conditions, the legal and
administrative settings; in short, all manner of activities,
public and private, that finally result in scientific propo-
sitions or in technological artefacts.

Bruno Latour, one of the leading voices in this field,
wrote a book with a fitting title: Science in Action (Latour
1987). As much as Science in Action is about the private
aspects of the production of science (the bits which do
not quite fit with the idealised methodological descrip-
tions), this thesis could have been titled Programming in
Action. However, Latour is more interested in the process
by which politicians, scientists and engineers enlist actors
(artefacts and people) to make their claims become accept-
ed, and in a sense, true. Even if he also discusses, in

49

Feyerabend’s spirit, the anarchic procedures of scientific
progress, he does not write about its personal compo-
nents (for instance the aesthetic aspects), and I have
therefore decided not to use that title.

There is another meaningful difference between this
thesis and the ‘normal’ STS approach: I do not take you,
the reader, to the places where programming is done.
I have been to a few such places, even if I have never con-
ducted any ethnographical study worth the name, but
I have decided that the most interesting action, for the
purposes of my argument, takes place not where pro-
gramming happens but where programming is discussed.
After all, this is where programmers relate their experi-
ences, and I am much more interested in that than in a
study of their (external) acts. Hence, this thesis is not
exactly about the activity of programming itself, but
about what programming means to those who do it. Also
formulated, throughout the text, as “about the relation-
ship they establish with their creations”.

These discussions about programming are held a lit-
tle bit everywhere, including, naturally, the same places
where programming happens. While working, program-
mers discuss what they are doing, both under formal sets
(update meetings and so on) and at informal venues
(while eating lunch, for instance). There is, no doubt,
a lot of interesting insights to be gained by studying this
sort of exchanges but, for reasons that will be explained
later, I chose something else.

To speak about one’s work at work is not something
exclusive to programmers, I would imagine most people
do. But there is another place where programming
(among other things) is constantly discussed, a place in
fact created by programmers: the internet. Most of the
empirical material that will be presented here has been
gathered from internet fora, mostly from the program-
ming forum Slashdot (www.slashdot.org). But the phe-

50

nomena that support the argument are not exclusive to
internet, they can be found on basically every program-
ming environment: programming books, schools, confer-
ences, etc. However, as we shall see, the internet, and in
particular Slashdot, offer the researcher considerable
advantages over other forms of communication.

what kind of study?

I have studied discussions on the internet, and the
findings from there have been corroborated by other
observations, including literature, interviews and, well,
personal experience. It would not be incorrect to say that
it happened the other way round: that observations from
the literature, interviews and personal experience trig-
gered a detailed study of internet discussions. Now, what
kind of methodology is this, studying discussions on the
internet? It is definitely not an ethnography, since I have
not been dwelling among my study subjects. Neither is
it a virtual ethnography, where the researcher takes part
in a virtual (internet based) world. Slashdot is a virtual
culture, but I have not studied it as such. In fact, I have
not studied the cultural patterns of Slashdot at all, I have
only studied what was said in two of its discussions.

The basic methodology used here is text analysis,
more specifically, grounded text analysis, since the fun-
damental conclusion (the existence of private aspects of
programming) does not only rest on the study of Slash-
dot comments but also on, as I just mentioned, inter-
views and personal experience. The analysis of the Slash-
dot comments did not contain any oddities: I printed out
the messages, and read them several times, comparing
what was said there with what is said elsewhere (litera-
ture, interviews). Driven by curiosity, and not by a hypoth-
esis, I engaged in a classic hermeneutical circle, interpret-

51

ing my material, gaining new insights, interpreting it
again, and so forth. Slowly I started to see ways of order-
ing the data, possible classifications, really; the most
important of them dealt with programming aesthetic
ideals and with attitudes towards the issue of software
aesthetics (they are presented in coming chapters). What
took me most time, however, was to see that all these dif-
ferent opinions were manifestations of the same phe-
nomenon, namely the private aspects of programming.
So the primary conclusion came last, and the argument
was not clear to me until then.

So there is little to tell about formal methodologies,
due to my lack of original hypothesis, I have found
myself gathering material somewhat anarchically (read-
ing books, visiting programming fora, interviewing/chat-
ting to programmers). I only knew what I was looking
for in a vague sense, but found it clearly exposed in
my data once I stopped to analyse it carefully. The main
source is are two Slashdot discussions, but I think it
is better to start with a short outline of the secondary
sources: my personal experience, the literature and the
interviews.

The role of my personal experience in this thesis is
unclear but quite decisive, and hence, worth bringing up.
Now, considering the skills of the programmers that will
appear in this thesis (both those that took part in the
Slashdot discussions and those legends that will be
presented), I would like to insist that my programming
knowledge was never remarkable, I was never a hacker.
Some of the technical details that came up in the discus-
sions or in the literature (consider, for instance, (Bentley
1986)) I only have an vague understanding of, and some
others I do not understand at all. But I do know enough
to be able to understand what they are speaking about,
even if I could not program at that level. This knowledge

52

has been essential in the writing of this thesis, but
my goal has been that the argument should be under-
standable with the help of just some programming
basics. Therefore, I often stop the technical descriptions
with a “we do not need to know this”, or something
of the kind.

Back when I was a programmer, I never stopped to
think about private and public aspects, at least not in a
distinctive way. We all understand that some explana-
tions are legitimate and some are not (for instance, we
could not quite defend using Delphi with the argument
that we liked it better), but what I liked to do was to
program, not to analyse my programming. So the bag-
gage that I bring with me from those days is mostly com-
posed of blurred memories of discussions and a strong
feeling that the code was important to us in other ways
than just its final function. This feeling, of course, forms
part of the fundaments of this thesis, even if, by itself,
it would never have amounted to much.

At the origin, this working name of my PhD project
was Technique and Aesthetics (Teknik och Estetik), and
for some unfathomable reason I did not quite associate
technique with programming. Only after a couple of years
did I eventually see the connection, see the way I should
(could) go, and focus on programming and program-
mers. Had I been a structural engineer instead, I would
probably have written about that instead, so, in this
sense, the fact that I was a programmer has had a definite
influence on this thesis.

There is a huge body of literature that deals with pro-
gramming, but little of it is dedicated to its private aspects.
The mainstream approach is, as I outlined previously, to
treat it as an activity that must be controlled and made
efficient. This does not prevent some manifestations of
private aspects to appear (see, most notably (Weinberg

53

1971), (Gelernter 1998) and (Dahlbom and Mathiassen
1993)) but they do not allow a proper study of the
phenomenon.

There are some texts, really not many, that recount
programming experiences. The most interesting one I have
found written by a programmer, about her own profes-
sional experiences, is Close to the Machine (Ullman
1997), in which Ellen Ullman tells us about life as a
professional programmer (and other assorted issues). She
does this in a descriptive style, without the normative
ambitions otherwise so common (it would seem that
almost everyone who writes about software wants to
convince us that s/he knows how it should be done).
Moreover, the book is written in a personal style, for
which I am naturally very thankful. She has written some
other articles which are also highly recommendable for
anyone with an interest in a programmer’s perspective on
computers and software (Ullman 1995; Ullman 1998).

Apart from that first-person account, there are also a
few books that tell other people’s stories. Tracy Kidder’s
The Soul of a New Machine (Kidder 1981) tells the story
of the creation of Data General Corporation’s ‘Eagle’, or
Eclipse MV/8000, a revolutionary computer, including
sections about its software. His detailed descriptions
include interesting quotes by programmers (and hard-
ware designers) about their personal relationship with
their creations. Levy’s Hackers (Levy 1984) is the classic
account of both famous and obscure – both kinds total-
ly dedicated – programmers; his interviews let us in on
their experiences of software writing. In fact, any book
that covers the relatively short history of software is
bound to include comments about what programming
means for programmers, even if, most of the times, it is
only dealt with tangentially.

Last but not least, I was very impressed with John
Bentley’s Programming Pearls (Bentley 1986), a techni-

54

cally advanced book in which he presents small pro-
grams, “programming pearls whose origins lie beyond
solid engineering, in the realm of insight and creativity”
(from the preface).

The texts listed here are naturally not the only ones,
but they are the most influential. All were part of the
hermeneutical process, even if the thesis contains few
direct references to them.

Regarding interviews, I have to admit that I failed.
Not miserably, but nevertheless failed. The immediate
alternative when dealing with subjects such as ‘private
aspects of programming’ appeared to me to be inter-
views. Ques-tionnaires and other formalised devices
were definitely out of the question, in fact I am afraid
that, I must admit again, I did not even try. My intention
was to describe and analyse an aspect of programming
based on what programmers say to each other, in a ‘nat-
ural setting’, not on their answers to surveys of any kind.
The first approach was based on open interviews carried
out with programmers. I hoped to collect material rich
enough to allow some in-depth analysis (a proper thick
description (Geertz 1973)), but after a few interviews
I realised that would not happen. The interviews were
nevertheless very valuable, both as a reaffirmation of my
original feeling (that programming is more than just solv-
ing computing problems) and as a more grounded intro-
duction to the subject. Looking back on them, I see that
they contained more information than I could see.

From a methodological perspective, however, I have
come to believe that interviews – although sometimes the
only available alternative – are not the best way to learn
about what goes on among programmers. I am not the
only one to see the problematic nature of interviews, see
(Bryman and Nilsson 2002); and I am not totally opposed
to them, they can offer valuable complementary infor-
mation. But could they have been enough in my case?

55

The idea was to learn how the word ‘beautiful’ – or ‘ele-
gant’ – was used among programmers, and possibly one
of the least fruitful ways of doing this is by asking them.
It is always better to ask them under the form of an open
interview than by sending them questionnaires but, no
matter how open the interview is, it does not quite work.
The main problem, as I see it, is that programmers do not
necessarily pay much attention to their use of the word
‘beautiful’, they just use it. It is unrealistic to expect that
they will later on remember how they have been using it.
You could say that I was trying to approach a, in Heinz
Kohut’s terminology

5
, experience-near concept (see

(Geertz 1993) chapter 3) from an experience-distant
perspective. A programmer uses ‘beautiful’ “effortlessly
[…] to define what he or his fellows see, feel, think, imag-
ine, and so on, and readily understands [it] when simi-
larly applied by others” (:57). But my approach towards
it was that of a researcher seeking to “forward [my]
scientific […] aims” (ibid). It was unfortunate that both
were the same words, but, being my first interviews, it is
not so surprising.

I also tried the idea of asking them about other
things, hoping that they would start using the b-word on
their own, unconsciously, so to speak. Having been a
programmer myself, I could discuss some technical
details with them. And yes, the word did appear here and
there, but I did not manage to make these discussions
rich enough. I was definitely to blame, but I also think
that the awkwardness of interviews, and the lack of a
proper working context had something to do with it.
Whatever the reason, I was just not getting enough mate-
rial for me to get a foothold in it. Or perhaps the mater-
ial was too subtle for a novice like me; at any rate,
I decided to stop quite early in the process (I only inter-
viewed 11 programmers in total, in 5 open interviews of
about 1-2 hours each).

56

What I was missing, I have come to realise, is the rich-
ness of real situations. I did entertain the idea of working
for a programming company for a while, with the inten-
tion of writing ethnographical notes all the while: a prop-
er ethnographical study. This is an idea that I still think
would be worth carrying out, perhaps as the continua-
tion of this study, but at the moment I postponed it for
something else: attending virtual meetings.

All these three sources of empirical data were used, and,
to a certain extent, analysed, before I found the two
Slashdot discussions. They lacked the richness of real life
situations: some because I was a poor interviewer, some
because their purpose (literature) was a different one,
and some because my memory failed me. But all of them
became much more informative once the Slashdot dis-
cussions entered the hermeneutical process. But I did not
find them at once, it took me some time to get there.

As mentioned in the introduction, the material need-
ed to study the private aspects of programming can be
found (at least) in two places. The first one, and most
obvious, is where the programming happens. Program-
mers, while programming, say things about what they
have done, about the code they must modify, about their
own and other people’s ideas… they exchange opinions
of all kinds: irreverent, important, silly, insightful, etc.
This conversation goes on, so to speak, in the back-
ground, while the foreground is occupied by technical
documents, official meetings, budget decisions and other
legitimate forms of information exchange. Gustafsson
calls this “små pratet” (small talk), and urges anyone
who wants to understand human enterprising to pay
attention to it (Gustafsson 1994).

Now, I did not have access to this exchanges, but
I did have my internet connection. Apart from at their
working places, programmers’ also exchange opinions

57

on the internet. Perhaps it is because programmers work
on computers and know them well, or perhaps because
they have become accustomed to the limitations that they
put on human interaction, or perhaps it is for some other
reason, but the fact is that there is no shortage of active
public programming fora on the internet. There is at least
one for each programming language, and some even
about some specific programming feature, with varying
levels of bustle. On these sites programmers discuss tech-
nical details, they ask for, receive and give assistance,
they publish their opinions about new software tools
and about how one should program, they take part in
programming contests… They converse, not only about
programming, but a good deal about it too.

slashdot

One of the most famous fora is Slashdot (www.slash-
dot.org), a popular gathering place for programmers of
all kinds (55 million page views per month, according to
OSDN

6
). Slashdot forms part of the legend of the dotcom

era: it was started by a enthusiast hacker (Rob Malda,
CmdrTaco), who thought that a site where to discuss
“news for nerds, things that matter” (Slashdot’s slogan)
would be a neat idea. The site was programmed mainly
by him and, launched from his dorm room in 1997. The
site was then bought by OSDN (which sells advertise-
ment locations), making a few programmers ridiculously
rich, at least for a while.

Things at Slashdot work as follows: editors receive a
lot of suggestions from participants about news they con-
sidered interesting. From these they choose a few ones
(about a dozen per day) and publish them for discussion
(presenting them with a short introduction and, more
often than not, a link to more comprehensive informa-

58

tion). These short presentations appear in the home page
of Slashdot, and from here anyone, it is not necessary to
be a registered slashdotter (from now on, slashdotter),
can comment it. This is done by writing a message (called
comment in Slashdot) on the subject and sending it for
publication (i.e. clicking the ‘submit’ button). The mes-
sages have all the same structure:

software manager managing bridge architects... (Score:1, Insightful)
by Anonymous Coward on Tuesday September 04, @04:20PM
(#2253011)
manager -> we need to ship this bridge in 3 months.
engineer -> yes, but it's really big and really important
manager -> yes, but it has to ship in 3 months.
engineer -> so how much weight does it need to support?
manager -> i dunno, I'll let you known in 2.9 months.
engineer -> what is it bridging?
manager -> why all these stupid questions, start building.
engineer -> I should do an architectural drawing first.
manager -> why bother, here's some metal, start slapping it together.
Remember it ships in 2 months.
engineer -> I thought you said 3 months?
manager-> oh didn't I tell you, we heard a rumour that a competitor
will be shipping their bridge in 2.5 months, so we have to beat them.

continue forever.

the reason there is no internal beauty is we (engineers) aren't given any
time to build quality (although the argument could be made that the
only way to build on schedule is by building quality). The other prob-
lem is, bugs actually translate into lucrative support contracts for most
enterprise software vendors. Why improve quality? there is no revenue
stream there. If users would SUE software development firms (the
same way people would sue if a bridge fell when you drove on it) then
vendors would suddenly find time in schedules for testing and quality.
we do the best we can, given the pressures. My advice, try to learn to
say "no" to your manager once in a while, and hire a QA manager with
balls who won't let shitty software ship.

The first line contains the title (subject) of the comment,
written by the author, and the score, set by the modera-
tors. This figure is an interesting feature of Slashdot dis-
cussions. Their function is simply to read the messages

59

that are published and to assign them a score (moderate
them). At the origin there were no moderators, only edi-
tors, who moderated the messages themselves. As the site
grew, the function editor/moderator was separated, but
the moderators were still a known group of people (about
400). The site continued to grow and it became impossi-
ble to expect these 400 to read all messages and moder-
ate them. CmdrTaco then decided to install a complex
system of automatic and time-limited selection of moder-
ators (the computer decides, based on different grounds,
who should be given moderator status)

7
. The system seems

to work satisfactorily, and one could argue that modera-
tion is carried out by the average regular participant.

The scores go from -1 to 5, and signal what the mod-
erator thinks of the comment. These scores are used for
filtering: slashdotters can set their preferences so that
their computers leave out comments that score less than
a certain number. They are also used to decide who can
become a moderator and who has right to a higher intial
score. This has given rise to a hierarchical structure, since
Slashdot keeps a public track of the comments sent in by
its registered users, along with their average scoring.
Some slashdotters therefore react when their comments
are moderated down.

At any rate, I have not attached much importance to
the scores, since I, as a researcher, approach the discus-
sion with a different goal than the participant. Hence,
I have found interesting opinions on 0-scored messages
(and even in -1, but these are rather infrequent).

Another interesting part of the header in the example
above is the comment “insightful”. This is set by the
moderators, who actually moderate a message up by
assigning it ‘good’ characteristics and down with ‘bad’
characteristics. This is the current list of possibilities
offered to a moderator, together with an explanation of
how to use them (for new moderators); there is little

60

doubt about which ones are good and which ones bad:

Normal -- This is the default setting attached to every comment when
you have moderation privileges. Normally, you should not need to
actually select this option, but if your mouse slips and you accidental-
ly moderate up or down a comment you didn't mean to, you can undo
that mistake by choosing Normal before you hit the "Moderate" button.
Offtopic -- A comment which has nothing to do with the story it's
linked to (song lyrics, obscene ascii art, comments about another topic
entirely) is Offtopic.
Flamebait -- Flamebait refers to comments whose sole purpose is to
insult and enrage. If someone is not-so-subtly picking a fight (racial
insults are a dead giveaway), it's Flamebait.
Troll -- A Troll is similar to Flamebait, but slightly more refined. This
is a prank comment intended to provoke indignant (or just confused)
responses. A Troll might mix up vital facts or otherwise distort reality,
to make other readers react with helpful "corrections." Trolling is the
online equivalent of intentionally dialing wrong numbers just to waste
other people's time.
Redundant -- Redundant posts are ones which add no new informa-
tion, but instead take up space with repeating information either in the
Slashdot post, the attached links, or lots of previous comments. For
instance, some posters cut and paste otherwise legitimate comments in
multiple places in the same discussion; the pasted versions are
Redundant.
Insightful -- An Insightful statement makes you think, puts a new spin
on a given story (or aspect of a story). An analogy you hadn't thought
of, or a telling counterexample, are examples of Insightful comments.
Interesting -- If you believe a comment to be Interesting (and it's not
mostly Redundant, Offtopic, or otherwise lame), it is.
Informative -- Often comments add new information to explain the cir-
cumstances hinted at by a particular story, fill in "The Other Side" of
an argument, provide specifications to a product described too vaguely
elsewhere, etc. Such comments are Informative.
Funny -- Think of Funny as being a good moderation choice if you
actually think the comment is funny, not just because it seems intended
to be. Not every knock-knock joke is Funny.
Overrated -- Sometimes you'll run into a comment which for whatever
reason has been moderated out of proportion -- this probably means
several moderators saw it at nearly the same time, thought it was
Funny, Insightful etc, and their scores added together exaggerate its rel-
ative merit. (A knock-knock joke at +5, Funny) Such a comment is
Overrated. It's not knocking the original poster to say so, but it's prob-
ably better to spend your mod points on comments which are deserv-
ing of being moderated up.
Underrated -- Likewise, some comments get smashed lower than they

61

perhaps deserve by overzealous moderators. If you moderate a com-
ment as Underrated, you're saying that it deserves to be read by more
people than will see it at its current score. As with Overrated, if you can
think of a more specific moderation reason, do so -- if a comment has
already been moderated with an appropriate label though, and you just
want to indicate that it deserves greater visibility, that's what
Underrated is for. However, if a comment is labeled with a fitting (neg-
ative) label, choosing Underrated isn't such a great idea, because you
could end up with contradictions like "+5, Flamebait."8

There is certainly an interesting study here to be carried
out about the moderation process, but for the purposes
of this thesis, I see no reason to confuse the reader with
comments and scores. Therefore, I have decided to include
neither of them when I present a message as a quote.
However, I have avoided messages moderated as “Troll”
or as “Flamebait”, of which anyway, there are only a few.

The second line in the header of the message includes
the alias of the author (his/her registration name), the
hour and date of publication and an identification num-
ber, unique for each comment in the archive. In the
example above, the alias of the author is Anonymous
Coward (all aliases will be in italics in the text), this is the
alias that Slashdot automatically applies to all messages
sent by a non-registered user. If the sender is a registered
user (and has logged in), the message will contain one
more line:

Did anyone notice... (Score:1)
by The Slashdolt on Tuesday September 04, @04:22PM (#2253023)
(User #518657 Info |http://slashdolt.org/)
That in the revision history that this is the 3rd version of this paper in
almost 3 years?
So it takes him almost 3 years to write a 10 paragraph essay with some
VB code mixed in, and he is telling us we need to do better? Nice exam-
ple Mr. Author.

The third line of the header (User #518657 Info
|http://slashdot.org/) is a link to a page with information
about this user: her last messages, her average score, and

62

some other trivia. Sometimes, this link is written with
different words (“user journal”) but the contents of the
personal page are very similar. There is, hence, quite
some information in a header that we are not so inter-
ested about, and that I have decided to exclude. The pre-
vious message would be quoted:

Did anyone notice... by The Slashdolt (#2253023)
That in the revision history that this is the 3rd version of this paper in
almost 3 years?
So it takes him almost 3 years to write a 10 paragraph essay with some
VB code mixed in, and he is telling us we need to do better? Nice exam-
ple Mr. Author.

No score, no comments on it, no dates and no links to
the personal information. Just the title, the author and
the identification number, to make it easier to search it in
Slashdot’s archive.

Now to the dynamics of Slashdot discussions. The first
step is, as mentioned above, to post a piece of interesting
news. The editors do this. Then, any participant (regis-
tered or not) may write the first comment, this is the
“first post”. The second participant has the choice of
either replying the first post, thereby creating a thread, or
else writing a comment to the original piece of news. And
the rest of participants can do the same: either reply to
an existing message or write their own comment to the
original piece of news.

One of the most interesting bits of Slashdot discus-
sions are the threads: conversations formed by several
‘replying’ messages. For instance, someone could reply to
the first post, and in her turn receive a reply from anoth-
er participant and so on. In the example below (taken
from another discussion

9
) we see how this is exactly what

happened: the first post, written by jimmyCarter is
replied by an Anonymous Coward, who is in turn replied

63

by another… The mechanics are very simple: you simply
have to click on the [Reply to this] link and your message
will be published as a reply. The following is an example
from another discussion:

The subsequent replies have the “Re:” attached at the
beginning of the original title (even if it is possible to
change that) and are presented in a cascading layout, as
shown in the figure. A discussion may contain any num-
ber of threads, which can be from two messages up to as

64

figure, Example of a thread (from a different discussion)

Haha, nice save! (Score:4, Funny)
by 2nd Post! (213333) <louis_wang@NOspAm.hp.com> on Friday
October 10, @12:45PM (#7184186)
(http://nekobox.org/~sillyoldbear)
By coincidence he also didn't figure out he didn't have much chance of
winning *anything*, financial or otherwise, did he?

[Reply to This]

Re:Haha, nice save! (Score:1)
by zamokzam (218601) on Friday October 10, @12:49PM
(#7184226)
What he's figured out is that it is defamatory to accuse someone of
a felony if he hasn't committed one.
Even with his half-hearted retraction, the damage is done. The
student should sue him for his net worth.
Z

[Reply to This | Parent]

Re:Haha, nice save! (Score:0)
by Anonymous Coward on Friday October 10, @12:59PM
(#7184347)
Oh yeah, and that's tons better than what SunnComm did to
him.
geez, really, give an inch, take a mile.

[Reply to This | Parent]

�

�

many as the participants feel like (in some cases all the
discussion is only one thread). But often messages are not
replied to at all, being left on their own (which does not
mean that they cannot be mentioned in other messages).

It is difficult to know whether authors read all the
messages posted previous to their contribution, but most
likely they do not, particularly since they can filter away
all those who have less than a certain score or those mod-
erated as “flamebait”, for instance. Discussions are, at any
rate, somewhat discontinuous, with threads being some-
times left at the middle of an ongoing dispute and new,
unrelated, comments to the original piece of news pop-
ping up. A Slashdot discussion can therefore be described
as a bouncing combination of conversations (threads)
and more or less stand-alone opinions on a given subject.

One of the good things about Slashdot, from a researcher’s
perspective, is that they keep an archive with discussions
that have been closed. This archive is freely accessible to
anyone, but it is impossible to send in any new com-
ments, so the data is simply crystalline. So there I was,
carrying rather unsystematic google searchs on the inter-
net, looking for programmers discussing software beau-
ty, when I stumbled across the following two discussions:

Where Can I Find Beautiful Code?
Posted by michael on Wednesday January 24, @09:45PM
from the not-in-anything-I-write-that's-for-sure dept.
eGabriel writes "One of the benefits of free software that I haven't seen
explored here is that of the opportunity to study elegant, masterful
code. Besides the fact that we can all share and enjoy applications, and
reuse their source code, we can also simply download the code and
view it for pleasure, to learn from masters of the art. Certainly there are
different criteria for determining what makes a piece of code excellent
or beautiful, and I am not as interested in discussing that. If however,
anyone has found a piece of free software that serves as an excellent
example for study because of qualities they as programmers hold dear,
I would love to read that code also and be educated thereby. Equally
interesting would be code that really is bad, as long as it didn't turn

65

into direct attacks upon the programmers involved (they can't all be
gems!) Any code that shows elegant and masterful design would make
for excellent reading; the language in which it is written isn't as much
a concern. 'Literate' code is a bonus."

Software Aesthetics
Posted by michael on Tuesday September 04, @03:48PM
from the when-tidy-is-not-sufficient dept.
cconnell writes: "Most software design is lousy. Most software is so
bad, in fact, that if it were a bridge, no one in his or her right mind
would walk across it. If it were a house, we would be afraid to enter.
The only reason we (software engineers) get away with this scam is the
general public cannot see inside of software systems. If software design
were as visible as a bridge or house, we would be hiding our heads in
shame. This article is a challenge to engineers, managers, executives
and software users (which is everyone) to raise our standards about
software. We should expect the same level of quality and performance
in software we demand in physical construction. Instead of trying to
create software that works in a minimal sense, we should be creating
software that has internal beauty." We had a good discussion on a
related topic half a year ago.

Imagine my joy. Besides, even if some of Slashdot’s dis-
cussions do not create much attention – gathering a few
participants and resulting in 60-70 comments – these two
were quite popular: Where Can I Find Beautiful Code
added up to 371 comments, and Software Aesthetics to
748

10
. So there were lots of opinions, praise and insults,

offered to anyone who wanted to read. I hurried to save
both discussions on my computer and to print them out
just in case, but well into the summer of 2003, they are
still there.

The kind of data available in Slashdot is, from a
researcher perspective, of very high quality. It is, clearly,
naturally occurring data: the programmers were not
answering a researcher’s questions, they were not even
speaking to each other in the presence of a researcher;
they were simply exchanging opinions. Nevertheless,
there are at least two issues that I must consider: one
deals with research-ethics, the other with the possibility
of slashdotters being untruthful.

66

Much has been said about the ethics of on-line research,
most of it of interest. The fact is that the anonymity that
applies to the participants applies also to the researchers:
they do not need to present themselves and can carry out
their research undercover. Furthermore, the participants’
anonymity is only relative. Not only is it, in some cases,
possible to trace the real person behind an alias but also,
and perhaps more importantly, on-line persona are some-
times as private as real-life persona. Hence, participants
may experience a close observation of their on-line con-
versations as intruding as that of their real life. There are,
however, two different kinds of on-line conversations:
one is based on real-time chat, the other on publication.

The first one is very similar to real-life conversation:
participants interact in real-time, writing one line (or the
equivalent) at the time, waiting for the others to reply
and replying in their turn. Furthermore, the material car-
rier of the replies is also ephemeral, although not quite as
ephemeral as sound-waves: as the conversation moves
on, the letters that formed the reply disappear from the
screen (see (Turkle 1997) for a more detailed analysis).
All this makes of on-line chatting (including role-playing
and other similar forms (Pargman 2000)) an activity that
must be treated as carefully as real-life conversation.
Hence, in general, one should not ‘tape’ them (the correct
terminology is “save the logs”) without consent, neither
should one use the names of the participants without
asking for permission. There are, naturally, different
approaches to this question (Paccagnella 1997) but there
is a strong case for treating on-line logs as taped materi-
al. This thesis, however, does not contain any material
obtained from on-line chatting.

The second kind of on-line conversations is, in one
essential aspect, very different to chatting. In fact, it
shares more with the newspapers sections of ‘letters to
the editor’ than with real-life conversations. Due to the

67

speed with which messages and articles can be published
on the internet, these exchanges are quite immediate,
even if they are never as direct as on-line chatting. let
alone real-life conversations. But it is not the lack of
immediacy that makes them essentially different to chat-
ting, it is the fact that to submit a message to the con-
versation is to publish it for the general public to read.
Slashdot, for instance, is a site where news and articles
are commented, and it is these commentaries that make
it so popular. Most of the readers of our discussions did
not submit anything

11
, they were only interested in read-

ing the published opinions. In fact, one needs neither to
be a registered slashdotter, nor to be there when the dis-
cussion takes place to access the messages. This is prob-
ably one of the reasons that Slashdot offers the possibil-
ity of expressing your opinion without signing it and
choosing instead to appear as ‘Anonymous Coward.’

12

There is, hence, no need of taping (or the equivalent)
anything at all: a Slashdot discussion is a publication,
accessible by anyone (with an internet connection) at any
time, and it should be treated as such. With this in mind,
I have decided to maintain the participants’ real alias
(and the message id-number); after all, I am presenting
their published opinions and it would be wrong not to
acknowledge their authorship. Paccagnella (Paccagnella
1997) reports of similar policies, quoting Rafaeli from
(Sudweeks and Rafaeli 1996):

We view public discourse on CMC as just that: public. Analysis of such
content, where individuals', institutions' and lists' identities are shield-
ed, is not subject to 'Human Subject' restraints. Such study is more akin
to the study of tombstone epigraphs, graffiti, or letter to the editor.
Personal? - yes. Private? - no

Are these opinions always earnest? Or do participants,
hiding behind the anonymity of the internet, make things
up? In other words, can we trust what they are saying?

68

This question is not limited to opinions gathered through
the internet, you can never be sure that your interviewee
is not saying things simply to impress on you, or to
go along with you. Neither is it certain that the author
of a book has not misunderstood everything, or is not,
simply, lying.

The anonymity of the internet brings matters to a
head, but the essential method for approaching these
questions remains the same. Yes, slashdotters may feel
confident to exaggerate, invent, even lie; but what kind
of things could we expect them to exaggerate or lie
about? And how are those related to the conclusions that
I have drawn?

The fundamental message of this thesis is that there
exist private aspects of programming, and that these play
a role in software development projects. This message is
put across with the help of examples of how program-
mers discuss programming. The argument includes also
some classifications, which are perhaps not fundamental
but offer a richer description of the phenomenon of pri-
vate aspects of programming. Finally, at the end of the
thesis I sketch a viable analytical toolkit for gaining
a broader understanding of the phenomenon.

This fundamental message does not rest only on
what I have read on Slashdot, it is a conclusion that
draws from a number of sources, including interviews,
literature and personal experience. On the other hand,
the evidence presented here is mainly based on Slashdot
material, and it should be considered with a critical
eye. Apparently, the worst-case scenario would be that
everyone “trolled”, presenting opinions they do not hold
just to annoy other participants. Actually, this is only the
second-worst case. More calamitous would be that
someone found out that programmers responded to
michael’s both callings just to be polite, not because they
actually cared; in fact, that they all acted for him.

69

But such an idea is simply too baroque to be considered.
The second-worst case is also quite unlikely because

not only would they need to fool your researcher (this
possibility must be considered), they would also need to
fool the moderators. And I think it is acceptably safe to
assume that a majority of messages (of those not com-
mented as ‘trolls’) must be earnest, at least in the sense
that they show concern for the topic discussed (pro-
gramming). At any rate, they sound earnest, which, for
our purposes, is just as good. That the message is not
moderated as “troll” proves that a number of program-
mers find that opinion plausible, and this is more than
enough for us, since we are not interested in what each
individual slashdotter believes but in the relevance of pri-
vate aspects for the programming community at large.

Actually, the simple fact that programmers took part
in those two discussions proves that there is interest for
the subject of software aesthetics. Besides, not one of all
the comments denied the existence of software aesthetics
(or the fact that some code is more beautiful than other),
even if not all of them were fully positive to the idea of
writing elegant code, as we shall see.

Some programmers, on the other hand, probably
exaggerate when describing the narrow-mindedness of
managers, or the incredibly short deadlines they have to
work against. Perhaps they even lie about the program-
ming stunts they have managed to pull, but if any of those
exaggerations could be proved, the fundamental message
of this thesis would only be reinforced: these would be
manifestations of the private aspects of programming.
To lie about the beauty of one’s programs (as opposed
to about, for instance, their economic success) must be
considered evidence that this aspect is important.

The classifications created in order to analyse the dif-
ferent phenomena presented as evidence (mainly soft-
ware aesthetics, but also holy wars, vanity, etc.) are more

70

vulnerable to lies. For instance, a classification boundary
may be inspired on a message on which a programmer
expresses her/his dislike of one-letter variables (“I
PUKE!”

13
). If it turned out that this programmer actually

likes one-letter variables, and that no-one actually dis-
likes them, I would have created a useless taxonomy.
Hence, on the classifications, I have tried to err on to the
safe side, partly not to make claims that I could not
defend and partly because the goal is not to produce
exhaustive and detailed classifications but to describe
how private aspects are manifested. Still, naturally, I firmly
believe that the classifications offered make sense, even if
I cannot present impeccable evidence for all the details.

In conclusion, there might be some messages quoted
here that were not written in earnest (I am almost posi-
tive that some of them were exaggerations, and I am sure
the reader will recognise them), but the main argument
does not hinge on the veracity of each and every message.
It relies much more on the fact that the messages were
written at all, and that they were not written for the
benefit of a researcher.

varieties of programmers

We must address one more point concerning the validity
of my empirical material, namely the question whether
the programmers whose voice is brought forward here
are representative of the whole. Particularly when taking
into account that most of the examples and quotes
are taken from a rather idiosyncratic forum, Slashdot.
In fact, it is rather unproblematic to assume that, in
many senses, slashdotters are not typical programmers.
Not only due to their unusual interest for online fora but
also because there might not exist such a thing as a typi-
cal programmer.

71

There are programmers who write short programs that
go into small chips, and those that take part in the creation
of huge systems, with tens of millions of lines. There are
programmers dedicated only to the latest technologies,
and others that work with older software, which may
have been written as much as thirty years ago. There are
those who would never do anything illegal, and those
with a knack for pirating and cracking. There are those
who only program from 9 to 5 and others who basically
do nothing else but write software. There are young pro-
grammers and old programmers, rich and poor, cultivat-
ed and ignorant, graduated and self-taught, skilled and
inexperienced, polite and bad-mannered, popular and
ostracised, extrovert and shy…

This variety also applies to slashdotters, with one
exception: they all share an interest for taking part in (or
at least reading) online fora

14
. In our particular case they

share, more specifically, an interest for taking part in a
discussion that deals with software aesthetics. This does
not mean that they all agree programmers should follow
aesthetic ideals when writing software, but it means they
find it worth their while to discuss what programming is
and how it should be done. This, in turn, should imply
a certain disposition for the private aspects of program-
ming; in other words, it is arguably so that those who
took part in these two Slashdot discussions are likely
to have an interest in code itself. The problem is that only
an insignificant part of the world’s programmers took
part in those conversations.

This thesis presents no proper scientific evidence that
all programmers would all have something in common,
such as, for instance, a concern for software itself. Now,
is this a problem?

On the one hand, it is not. This thesis is a study of a
particular human phenomenon, and the existence of this
phenomenon (concern for software itself, or private

72

aspects of programming) is proved beyond doubt. There
are definitely programmers that relate to code in ways
that are not included by the public perspective of soft-
ware. Not only among those who took part in the Slash-
dot discussions but also among my interviewees and
among those who are depicted in the literature. So the
main conclusion is, as I see it, amply verified.

On the other hand, it is a bit of a problem. The prob-
lem has to do with the extension of the phenomenon, or,
in other words, with the relevance of the main conclu-
sion. The fact is that I can neither present evidence that
the phenomenon is widely spread nor that it plays a
significant role in programming projects in general. I nev-
ertheless would like to suggest, based on my personal
experience and on how programmers speak about the
issue, that a concern for code itself is widely spread and
it does play an important role.

This said, I imagine there are programmers who do
not care much about what their code says about them,
being only interested in whether it does what it is sup-
posed to. Just for the sake of completeness, we may clas-
sify programmers according to the following table, in
which I have included some hasty but hopefully clarify-
ing comments:

73

programmers …care about …not care about
that… code itself code itself

…care about good programmers… efficient programmers,
functionality, but sometimes these who perhaps work near
price, etc. two concerns are not the customer and/or the

compatible. managers and far from
other programmers.

…not care vain programmers, who bad programmers, aka
about func- might be of the opinion ‘newbies’ or ‘coders’.
tionality that users and managers

should learn to appreciate
the beauty of code.

The curious thing with this seemingly self-evident clas-
sification is that it does not hold in general. We shall see
that code that for some programmers is beautiful for oth-
ers is ugly, and hence, programmers considered good (or
at least vain) by some, are for others simply efficient (or
newbies). Anyway, this is a light-hearted classification
and it has no other goal than to show that there are, in
this aspect as well, all kinds of programmers.

Summarising, the phenomenon ‘private aspects of
programming’ (concern for the code itself) definitely
exists but its consequences are unclear, in a double sense:
it is unclear how many programmers are concerned
about their code; and it is also unclear how this concern
affects their programming

15
. So what is in question here

is not the validity of the main conclusion but its practical
relevance. On this point, I can only found my suggestions
on the impression I have gathered throughout the study:
that the private aspects of programming are by no means
a marginal phenomenon

16
.

This phenomenon is, on the other hand, not so well
documented. Partly because it does not concur with the
public view of what programming should be, partly
because it takes place in the background (these two cir-
cumstances are, naturally, interrelated). Hence, the two
discussions I have found, in which the personal relation-
ship between programmers and code occupies the centre-
stage, are an infrequent occurrence. At the same time,
they are, in their uncommon concentration, an invalu-
able occasion for those interested in the private aspects of
programming. Nevertheless, even if those two Slashdot
discussions are the primary source of examples, they are
not the only ones. Some of the other voices (from the lit-
erature, the interviews and other online fora than Slash-
dot) have also found their way to the text.

One more detail: the term ‘programmer’. Given the
wide variety of software kinds

17
, and given the centrality

74

of the term ‘programmer’ in this thesis, it may appear
strange that I have not yet defined more in detail what is
meant by it. And, in fact, I shall not go further than say-
ing that ‘programmer’ is, for the purposes of this thesis,
someone who designs and/or writes code (the lower limit
going somewhere at the level of programming macros
for a spreadsheet), regardless of university degrees, job
descriptions, free-time interests or social skills. Trying to
refine this definition is not only a hopeless endeavour (as
it is with most concepts) but also not particularly inter-
esting. However blurry the boundaries of the concept
may be, we all know what is meant by a programmer.
Besides, the goal here is not to discuss who deserve that
title but what the private aspects of programming are.
More tersely expressed: we are not interested in what to
call people but in what those who call themselves pro-
grammers (or the equivalent) say about programming.

Nevertheless, there are other terms to call the people
who write software and we may as well throw in a short
overview. Probably the most famous alternative to ‘pro-
grammer’ is ‘hacker’, introduced to the general public in
the eighties by Levy’s Hackers (Levy 1984). Nowadays,
it can be used in different senses. Among programmers it
is still used to denote the skilled, or at least the very ded-
icated (see (Himanen 2001)), even if in the media it is
more and more used to denote those with an inclination
to do illegal stuff

18
: breaking into software systems, writ-

ing viruses, breaking the copy-security locks, etc (Taylor
1999) (Rehn 2001). What programmers call ‘hackers’
are called ‘experts’ in the public discourse (programmers
that can be up to ten times more productive than the
average); and what for the public would be ‘poor’, or
‘unskilled’ programmers, are ‘coders’

19
or, in the poorest

examples, ‘lusers’.
Some of those who write software, however, reserve

the very word ‘programmer’ for the less competent; and

75

use instead ‘software engineer’ for the good ones. I do
not make any distinction, using ‘programmer’ in a
skilled-neutral sense, apart from in the chapter beauty
and functionality, where I differentiate between true-
hackers and software-engineers. However, I do not use
these terms exactly as they do, but all this will be
explained in due course. The important point to remem-
ber is that I shall use ‘programmer’ in a straightforward
sense, without any wish to be controversial.

In fact, when analysing the Slashdot discussions,
I use indistinctly the terms ‘programmer’, ‘participant’
and ‘slashdotter’; even if not all slashdotters (people who
read Slashdot discussions) are programmers, and not all
programmers are slashdotters. However, concerning the
first point, the opinions that count for this thesis could
only be written by programmers (hence, all slashdotters
that matter are programmers); concerning the second,
I have been careful to use the expression ‘some program-
mers’ (and slashdotters are ‘some programmers). The aim,
at any rate, has been to make the text more easily read-
able, not to make unsupported claims.

76

77

5 In John Van Maanen’s terminology (Van Maanen 1979: 539 - 550),
I was confusing first-order and second-order concepts.
6 http://advertising.osdn.com/advertising/technology/sites
7 This overview of the moderating process is somewhat simplistic.
You can read about it in more detail at
http://slashdot.org/faq/com-mod.shtml
8 http://slashdot.org/faq/com-mod.shtml#cm2500
9 For the curious: Discussions that have been archived – and the two
dealt with in this thesis were – do not offer the possibility of replying,
they have been closed. The [Reply to This] link is therefore deleted,
making these discussions useless as examples of the Slashdot dynamics.
10 It is difficult to know exactly how many slashdotters actually pub-
lished their opinions, since a number of them used the anonymous
option (and it is possible to use different aliases), but I estimate that
they may have been around 300
11 This statement is based on simple mathematics: if there are more
than 55 million page-views per month, as the owners of Slashdot claim
(http://advertising.osdn.com/advertising/technology/sites/), and there
are about 12 discussions per day then there should be, in average,
about 152.000 hits per discussion. This is not really the number of peo-
ple reading each discussion, since many of the visitors that reach the
initial page do not go on to a discussion (because they do not see any
interesting one, for instance), and because people may also reload, but
it is still a good deal over the 300 or so that published their opinions
non-anonymously.
12 There is one more option: instead of replying in public, you can send
an e-mail message to the author. But then the whole point of sharing
your views with the community is lost.
13 #2254080, an anonymous participant reacts strongly to the idea of
using one-letter variables. We shall study this message in more detail in
the chapter about coding styles, which shall include an explanation of
what one-letter variables are. Suffice to know here that they are a small
technical programming detail.
14 There is another thing that most slashdotters have in common,
namely a keen interest for open-source projects. This does not mean
that all slashdotters contribute to the open-source efforts but it does
mean that most of them sympathise with that movement. Hence, in
Slashdot, Windows is bad and Linux is good; in general, anything that
comes from Microsoft is bad: operative systems, applications and pro-
gramming tools.
15 It is unclear, for instance, whether such a concern will result in
cheaper, more useful, better selling or, in a general sense, more success-
ful (in a public sense) programs. In fact, it is not sure that such a con-
cern will result in more beautiful software.
16 It is important to clarify that what I know about programmers deals
mostly (if not exclusively) with those from Western societies. I know
precious little about programmers in other cultures, and not because

78

they would be less important (for instance Japan, China and India have
extremely powerful software industries). I have the feeling that one might
find among them similar phenomena as the ones I present here, but this
is really just a hunch. Better informed studies are certainly welcome.
17 There are huge systems and small applications; there are programs
for chips (in cars, robots, airplanes, microwave ovens, etc.) and pro-
grams for proper computers (and there are many kinds of computers,
from programmable calculators to “big blues”), programs that are
wired to the hardware and programs that can be maintained, and so on
and so forth.
18 Programmers usually use more specific labels: phreakers, warez
d00dz, virus writer, sneakers, samurais and dark-side hackers.
19 The coding part of programming is often considered secondary to
design, but more about this in the first paragraphs of the chapter on
coding styles.

iii
Programming

I was myself a programmer and in this chapter I propose
a simplified version of one of the projects in which I was
involved, with the purpose of introducing the subject of
this thesis, the private aspects of programming.

81

I cannot just suppose that everyone knows what pro-
gramming involves, but on the other hand, neither can I
explain all its technical details. So I thought the best
thing would be to give an idealised example, which does
not really transmit all the details but that is near enough
to reality to give a context to the expression ‘private
aspects of programming.’

What about an example from my own brief career as
a programmer? A potential customer came to our door
and wanted an application to be done for him. He need-
ed a program that could manage the data about his past,
present and future sales (including lists over customers,
kind of products, suppliers and so on). At that time (mid-
dle of the nineties) we, my associate and I, were very
much into Delphi, a programming environment devel-
oped and sold by Borland. It included database and gui
(graphic user interface, pronounced ‘gooee’) tools and a
programming language that was an object oriented vari-
ation of Pascal. We liked the environment and had
already written a few programs in it. We proposed to our
customer that we use Delphi but he was not so interest-
ed since his company had already bought licenses for
Microsoft’s Access, another database programming envi-
ronment, about which we also had some knowledge. So,
against our wishes, we had to program the application in
Access. Now the interesting thing here is why we pre-
ferred Delphi to Access.

Access was not as versatile as Delphi (I have not fol-
lowed the development so I do not know what a com-
parison may yield nowadays), but it also served the pur-
pose well. So we did not prefer Delphi because the prob-
lem could be better solved with it, in fact, it may have
taken more time, since Access had more ready-made ele-
ments in it. It was a rather down-to-earth application
and it did not require advanced programming tools. The
application written in Delphi would neither be noticeable

83

faster nor more efficient than in Access, the database was
too small to allow any real difference. The network
across which the application had to work was a simple
and straightforward Windows LAN, five computers and
a few cables. So there was nothing to be gained by
an intelligent use of the network, something better tried
on Delphi than on Access. Neither did we prefer Delphi
for economic reasons, since the customer offered us one
of his Access licenses. So, why did we prefer Delphi?

Simply because it is a finer tool than Access. The
computational problem might be more efficiently solved
(cost less and require less time) using Access but we were
not just solving a computational problem, we were pro-
gramming. And to program includes other things, such
as writing code that you are proud of. And we did not
feel Access was subtle enough to let us write what we
wanted. Not that we were going to show the program to
the whole world, but still. A matter of private pride, one
could say.

We finally accepted Access, but some of the pro-
grammers that will appear later may have totally refused
to work with it, regardless of the alternative, for a single
simple reason: it’s Microsoft. On the other hand, others
may have refused to work with Delphi: it’s Pascal. Work-
ing with Pascal, or with Microsoft, is considered by some
programmers as shameful, a proof of lack of taste. It’s
just not done, and if unhappy circumstances force one to,
it is a sign of good manners to clarify one’s opinions:

Java is inefficient by Procrasti (#2253348)
Even Java works squarely against the goal of "efficient". Give me C++
any day.
I've done projects in C, VB (im not proud), C++ (yep MFC et al,
5 years) and Java (1.5 years now), and I question the statement that
java isn't efficient. [...]

84

The emphasis is mine, and VB stands for Visual Basic,
another of Microsoft’s programming tools. This message
is part of a Slashdot thread that dealt with the difficult
subject of comparing Java to C++. Some programmers
favoured Java and some others C++, and the discussion
did not seem to change anyone’s preferences. Refusing to
work with Microsoft products, or being ashamed of
doing it, is however not only a question of aesthetic pref-
erences. It may also be a political statement, and it is not
always easy to know where to draw the line. Some pro-
grammers consider Microsoft evil and rude

20
, and the

aesthetic dislike of their products may very well be
influenced by its monopoly. The purpose of this thesis is
not to delineate the causal relationships between the
political and the aesthetic, but to discuss the effects that
private aspects of the relationship between the program-
mer and the program, so I shall leave that discussion
here. There will be an opportunity to return to
Microsoft’s poor reputation in certain programming cir-
cles, and more specifically what using Visual Basic may
do to one’s image as a programmer.

All right, so we would have preferred to work with
Delphi but had to use Access. The aesthetic aspects of
programming are of course not limited to liking and dis-
liking programming environments, or preferring one
programming language to another. Let me continue with
the idealised example.

Once it was clear that we were going to program in
Access we started to design the application. This was not
a very complex program. In fact, it was something quite
elementary with a time frame (including all the usual
misunderstandings with the customers, the operative sys-
tem breakdowns and sorting out the network bugs) of
about two to three months and with a cost of less than
€4000. Designing such an application requires familiari-

85

ty with databases and programming languages, i.e. some
technical knowledge. But the process of design should
not be understood mainly as the application of this
knowledge, as if designing a program was a matter of
deduction. Instead, it requires the programmer to create
something. And I do not mean to imply anything glam-
orous in this ‘create’, it only represents the unspectacular
notion that where there was nothing there has to be a
program

21
, and that there are decisions that cannot be

deduced but that must nevertheless be made. Things like
“what sort of objects do we need, how are the connect-
ed, how does one access them, what operations do we
need to carry out on the data, etc.” These decisions are
interconnected, of course, and choosing the properties of
an object, for instance, will influence the mode of access
to it. In such a small application the relationships are
more or less easy to sort out but they still have to be
designed. Needless to say, there are no formulas to apply
and one has to choose among the different alternatives
without the help of a scientific model that calculates the
best solution. The following figure explains the situation:

To program involves therefore not only applying one’s
technical knowledge but also to making decisions that
cannot be based on scientific laws: one loop or two

86

figure, All solutions work (represented by all figures having the same
connections), all are feasible, all cost more or less the same, the cus-
tomer won’t see the difference. Which one do we choose?

loops? one or two objects? these properties or those? and
so on. There is nothing in the way of a science of pro-
gramming with a formula to tell which solution is most
appropriate. The Computing Science has no answers to
these kind of questions.

The grounds upon which programmers make these
technical decisions are varied, and it is not easy to dis-
tinguish between them. Programmers may base their
decisions on economic rationality, or on aesthetic prefer-
ences, or on tradition, or even on beliefs (about the users’
needs, about the economical, functional or political con-
sequences of certain technical strategies, about the
longevity of the application, etc) and it may prove impos-
sible to distinguish one ground from another in real life
situations. Real life is much messier than what the result
of sharp analysis leads us to believe. This thesis deals in
fact with the pre-analytical mess that one encounters
when reading what programmers say about program-
ming and when trying to explain some programming
behaviour. My analysis tries to avoid the reductive mis-
take made when considering the programming project
(and programming in general) as a series of objective
choices, and hence, an activity that progresses according
to a coherent course.

Programmers are perhaps partly to blame for this
mistake since they sometimes recount their experiences
following just one such coherent course. For instance,
they may explain (legitimise?) their decisions with argu-
ments of economical rationality: trying to minimise
costs. However, this is not as straightforward an
approach as it may seem at first. The concept of ‘min-
imising costs’ is, on the contrary, a rather thorny one,
since it is not clear what makes a program cheaper. Is it
cheaper if it is written faster? or if it can be used for a
long time? or if it contains fewer bugs (and requires less
maintenance)? or if one does not need to buy licenses to

87

develop it? It is seldom possible to find final answers to
these questions, for reasons that could well be explained
as bounded rationality (Simon 1997): programmers do
not have access to all the information needed. In fact,
according to Wittgenstein, it may be impossible to gath-
er all the information needed, not due to errors in the
search but to the intrinsic properties of the world, more
specifically of language. In other words, it is not our lazi-
ness, it is not that we do a deficient job of finding all the
information needed to calculate the cheapest option; no,
in fact, it is impossible to obtain all that information

22
.

But leaving Wittgenstein aside for the moment, and
going back to the various aspects of programming, we
shall see that when programmers make decisions with
the intention of minimising costs, their reasoning is not
based on comprehensive calculations but on assumptions
that originate in experience, hear-say, beliefs and other
things that cannot be labelled Computing Science. Hence,
even when programmers argue in economic terms, the
private aspects of programming (their beliefs and experi-
ence) have effects on their applications.

In some cases the economic discourse is not even
raised, perhaps due to a clear insight of its flaws, perhaps
due to lack of interest. Another usual way to reason
about the technical decisions (about programming,
indeed) is along the lines of functionality. The functional
discourse centres on the usefulness of software: pro-
grammers will explain that they program with the pur-
pose of creating useful applications. Functional rational-
ity is however also flawed, and in a similar way to eco-
nomic rationality: programmers cannot possibly know
exactly how their technical decisions will effect the use-
fulness of the program. This does, naturally, not prevent
them from making decisions according to what they
think will be more useful to the customer. Another
difficulty with this line of argument about technical deci-

88

sions is that often the alternatives present to the pro-
grammer make no difference at all to the customer, since
their problem can be solved satisfactorily in a number of
ways. How can then a programmer decide based upon
the needs of the user? Yet another difficulty is that pro-
grammers may, for a number of reasons, misunderstand
the customers’ needs totally: they may be uninterested, or
tired, they may lack the capacity to place themselves in
the position of the users, or the users the capacity to
explain their needs, etc.

In some cases the discourse does not include any
advanced legitimising manoeuvres, programmers will
simply decide they want to use Delphi because that is
what they always have done, or because the company
requires them to do so. In other cases, there will be direct
reference to personal preferences (“I do not like to work
with Visual Basic”), to political convictions (“never
Microsoft”) or even to aesthetic opinions (“Perl is ugly”).

This thesis is interested in the mentioned analytical mess
that appears when studying what programmers say
about that creative activity that is to program. They
explain how they program, and what they think about
programming and programs, with the help of all kinds of
notions: economics, functionality, aesthetics, convictions,
all of them relying upon each other (“application X is
more beautiful because it is more efficient” kind of state-
ments)… it’s turtles all the way round. But the mess does
not appear clearly unless one reads the programmers
closely, or unless one is lucky enough to hear them dis-
cussing about programming itself, as opposed to the uses
of a given application or some technical details in an oper-
ative system. I was lucky, I found two discussions, pre-
sented in the chapter on method, in which programmers
exchanged opinions about the aesthetics of software, giv-
ing me an inroad into the private aspects of programming.

89

So I suggest that we prepare our visit to the disordered
world of the private aspects of programming by present-
ing an analysis of the concept of instrumental goodness,
i.e. the notion by which we designate a good program.

90

91

20 Evil and rude according to the Jargon File (also known as The New
Hacker’s Dictionary): “Both evil and rude, but with the additional con-
notation that the rudeness was due to malice rather than incompetence.
Thus, for example: Microsoft's Windows NT is evil because it's a com-
petent implementation of a bad design; it's rude because it's gratu-
itously incompatible with Unix in places where compatibility would
have been as easy and effective to do; but it's evil and rude because the
incompatibilities are apparently there not to fix design bugs in Unix but
rather to lock hapless customers and developers into the Microsoft
way. Hackish evil and rude is close to the mainstream sense of ‘evil’”
(Raymond 2003)
21 I say unglamorous because one is likely to associate ‘creative’ (par-
ticularly in the proximity of ‘design’) with exciting themes, such as hip
interior architecture firms, Italian cars, expensive and innovative gad-
gets or ground-breaking art. Programming can be as exciting as any of
these but that is not the point. The point is that one creates even when
writing the most boring application, that indeed, every artefact has
been created by someone, it has gone from being a fantasy to becom-
ing reality. An observation that I owe to Gustafsson’s reading of
Vigotskij’s Fantasi och Kreation i Barndomen (Gustafsson 1994)
(Vigotskij 1995)
22 Ludvig Wittgenstein – perhaps the most influential philosopher of
the 20th century, and definitely the most influential philosopher for this
thesis – dedicated a large part of his work to the investigation of lan-
guage. Trying a summary of his work in a footnote is almost stupid but
I may get away with it if I concentrate on just one of his points, using
one of his analogies: words are not like bricks, perfectly delimited
blocks that form a wall (language) by being placed one by the side of
the other in an orderly manner; language is more like a rope: its
strength is the result of threads going into one another in a vague and
rather chaotic way. Hence, information based on language, as opposed
to information based on mathematics, is obtained from a certain num-
ber of words whose meaning go into each other and whose boundaries
are vague. Expressions like ‘find all the information needed to decide
which alternative is cheaper’ sound grammatically correct, but they are,
in fact, confusing: the very idea of there ever being enough information
to be able to decide which alternative is cheaper is based on an incor-
rect assumption about how language is constituted and what can be
done with words. “All the information needed to calculate which alter-
native is cheaper” is simply an absurd statement, the information we
may obtain about the world cannot be organised in such a way as
to allow us to carry out such a calculation (Wittgenstein 1969, 1997)

iv
Instrumental, Semi-Instrumental and

Intrinsic Goodness

Messages in the examined discussions among program-
mers often feature the adjective ‘good’. The first analyti-
cal task is to sort out the different kinds of goodness that
programmers refer to. This chapter is dedicated to this
task, and to the introduction of other concepts that will
be used later on.

93

In the previous chapter I proposed a simple example of
a programming project, with the aim of introducing
the notion of ‘private aspects.’ This chapter has also an
introductory function; it presents a number of secondary
concepts that will be used later on. These concepts are
the result of my analysis (hence “secondary”) and are
not used, or not in the same way, by the programmers.

As you can notice, I present them before the empiri-
cal descriptions, a decision that was not made lightly.
Doing it so implies, on the negative side, that the readers
must approach them without the help of the descriptions;
however, on the positive side, they will be prepared for
them. My intention is to create some basis from which to
interpret what comes next. There are not final solutions
to this situation, but I hope that the argument is brought
forward more clearly this way.

The main contribution of this chapter is the intro-
duction of three different kinds of goodness: instrumen-
tal, semi-instrumental and intrinsic. Since we are going to
study the private aspects of programming, and these
aspects are manifested – partly – in the existence and
importance of intrinsic goodness, we really must give this
concept some attention. This is best done, I believe, by
comparing it with its opposite: instrumental goodness,
which is one of the public qualities of software. These
two are related to each other in complex ways, which
can be clearly seen in the ambiguity of some of the pro-
grammers’ commentaries.

If this had been a world properly ordered according
to analytical principles, we should have only needed
these two kinds of goodness: the instrumental and the
intrinsic, or perhaps only the latter one. It is indeed pos-
sible to imagine that programmers speak either about the
beauty of code or about its utility, that is about its pri-
vate or its public aspects. The problem is that, as men-
tioned earlier, the programmers’ comments are some-

95

times ambiguous and it is difficult to know exactly
whether they refer to beauty or to utility. Furthermore,
sometimes the programmers are not in a position from
which to evaluate the utility of a program, since they are
not the final users. What happens then, from an analyti-
cal perspective, when they say that a program is useful,
even if they cannot know if it is or not?

This class of affirmations give rise to what will be
called semi-instrumental goodness (it could also have
been called semi-intrinsic), and the mechanisms behind
it play an important role in the creation and maintenance
of the private aspects of programming. But let us start,
as usual, from the beginning.

intrinsic goodness

MacIntyre (MacIntyre 1985) tells the story of the young
girl who was tricked to play chess by an older relative.
He promised her candies for every match she won, and
made sure he lost regularly. At this stage, it is assumable
that the girl played chess because of what victory report-
ed her, not because she enjoyed it particularly. With time
and practice, however, MacIntyre tells us how she start-
ed to enjoy playing, and even ceased cheating (to cheat
was fine as long as winning was the essential). She had
reached a position where she was capable of appreciating
the intrinsic qualities of chess, she played chess for the
pleasure of it, as opposed to for the promise of prizes.

A similar case can be made for programmers, but it
is not based on the idea that they would program just for
the pleasure of it. Some of them clearly do (consider the
magnitude of the open source movement, or read Linus
Thorvalds own version of the making of Linux (Torvalds
and Diamond 2001)), but their efforts are only the most
radical manifestation of the private aspects of program-

96

ming. The basic element of those private aspects is
instead the appreciation of the intrinsic qualities of code,
and the relationship that such an appreciation creates
between the programmer and her code.

How can you know that someone feels an affinity
towards something? Only by looking at what they do
and what they say (… and by assuming that they do not
lie, of course). Programmers, for instance (and this is the
phenomena presented in the following chapters), speak
about their code, they engage in disputes about what
is the best programming language, they write their pro-
grams according to programming styles, they defend
their personal preferences, etc. Their code, and this is
what the empirical material will hopefully show, speaks
of them: of their preferences, their skills and their assump-
tions. This is the substance of their relationship towards
code, but, strictly speaking, it does not imply that there
exists (or that they care for) an intrinsic goodness of code.

A concern for the intrinsic goodness of an object is a
concern for the value that this object has in itself, regard-
less of its use. Now, programmers could very well identi-
fy with their creations and nevertheless not worry about
anything else but their utility. It could be that their only
concern was for what the utility of code said about them.
Is it useful? and cheap? and easy to use? Such a concern
would only have to do with the instrumental (public)
aspects of programs, leaving little possibility for private
aspects. Programmers and the general public (users, man-
agers, investors, etc.) would have exactly the same per-
spective on code, and this thesis would not exist.

This thesis does, however, exist, and the reason is
that programmers do care for other details in their pro-
gram apart from their utility, cost and ease of use (to
ease the reading, from now on I shall only say useful-
ness). This does not mean that they do not care about its
usefulness, only that they care about some other aspects

97

as well, and that these aspects are not necessarily related
to it. These aspects are, in themselves, of no interest for
others than the programmers themselves; in fact, they are
often totally invisible to non-programmers. This is why
I speak about private aspects of programming, and this is
why it is fruitful to think in terms of intrinsic goodness:
we are interested in the fact that programmers care (also)
about code itself, regardless of its utility.

Perhaps a pertinent question here is: “how much do
they care?” Well, they do not all care as much, they do
not all care in the same way, and they do not all formu-
late their care in the same way. Some care a lot, and some
care very little, but drawing this landscape is what this
thesis is about, so I suggest we wait with all this. Let us
simply state that intrinsic goodness is a measure of the
quality of code in itself, regardless of its usefulness, and
that this is the basis of this thesis.

instrumental goodness

Instrumental goodness is a concept that I have borrowed
from Georg Henrik Von Wright’s The Varieties of Good-
ness (Wright 1972). This work of his is a study of the
meanings – uses – of ‘good’, its purpose being to serve as
a partial “prolegomena to ethics” (:2), not aesthetics. This
does not mean that instrumental goodness has a moral
sense, only that Von Wright considers that the “so-called
moral sense of ‘good’ is a derivative or secondary sense,
which must be explained in the terms of non-moral uses
of the word” (:1, italics in original).

Von Wright says that “instrumental goodness is
mainly attributed to implements, instruments, and tools
– such as knives, watches, cars, etc.” (:19) and that “[t]o
attribute instrumental goodness to some thing is primar-
ily to say of this thing that it serves some purpose well.

98

An attribution of instrumental goodness of its kind to
some thing presupposes that there exists some purpose
which is, as I shall say, essentially associated with the
kind and which this thing is thought to serve well”
(:20, italics in original). We say that a hammer is good as
a hammer, meaning that it serves well the purpose essen-
tially associated with hammers (to drive in nails).

Now, since programs are tools, i.e. they are used to
achieve some ends, it is perfectly sensible to speak in
terms of a ‘good’ (in the instrumental sense) program.
This goodness, from some different perspectives, is what
the public discourse about software deals with. For some,
a program is good if it really helps them carry out their
jobs, for others if it creates succulent revenues, for others
if it helps them open new markets, and so on.

But we are not interested in the views that non-pro-
grammers hold of programs, this is a thesis about the pri-
vate relationship between programmers and their cre-
ations, and we shall only deal with other interests mar-
ginally. Now programmers also care about the instru-
mental qualities of programs (including those they
write), they are well aware that they play different roles
(tools, products, services). Only in very rare occasions
will we find programmers totally ignoring the instru-
mental sides of a given program: a program is practical-
ly never written without a goal, just for the pleasure of
putting commands together. Programs, so to speak, always
have a mission, however small it may be.

So it would seem that we are drifting away in our analy-
sis of the instrumental and intrinsic goodness of software.
These two are apparently easy to distinguish, and the
reader might be wondering why this issue was brought
up at all. Ok, you could say, a program has instrumental
qualities, but this thesis is about the private aspects of
programming and they both seem unrelated to each other.

99

Obviously, there is more to say. The world seldom com-
plies with the analysis, there are always problems. In this
case, one of the main problems emerges with the notion
of the ‘essential purpose associated with a tool’. What is
the essential purpose associated with a program? And is
it possible at all to assess how well the program serves
this purpose?

semi-instrumental goodness

The purpose essentially associated with a program may
be a difficult thing to pin down. In some cases, it is cer-
tainly very easy (consider for instance the small applica-
tion that shows the current time on a corner on your
desktop), but what about somewhat more complex
applications, such as word-processors? What is the pur-
pose essentially associated with them? To write letters, or
to write books? or scientific articles, or notes, or faxes, or
bulletins…? And how do we decide that one processor is
a better tool than another? The only way to do that is to
simultaneously describe in what sense (for what purpose)
it is better, for instance by saying the word processor X
is better if you need it to be compatible with the Internet.

Furthermore, programs are a particular kind of
instruments, since they run on computers (and must
therefore follow hardware innovations). Hence, someone
may think that a good word processor, that serves its
purpose well, is one that will continue to exist when
Operating Systems change. Or this same person may
instead reason that, since there are always things to
improve in a program, a good word-processor is an
application that is constantly – and easily – maintained
(bugs are fixed, new functionalities included, old func-
tionalities discarded, etc.).

Now, word-processors are by no means the most

100

complex of programs, consider for instance the difficulty
of deciding whether an Operative System is (instrumen-
tally) good or, even worse, whether systems for airline
ticket booking or mobile telephone roaming serve well
the purpose essentially associated with them.

For instance, specifying the essential purpose of a
roaming system may sound like an easy task, perhaps it
is simply to keep track of the location of all the mobile
telephones in the network. But the expression “to keep
track” is deceivingly simple, something that becomes
clear when you compare two systems in order to decide
what it is that makes one better than the other: shorter
delays? Fewer lost mobiles? Freedom of choice? Cost of
initial investment? Cost of maintenance? Upgradeability?
Customer satisfaction?… Which of all these things is more
essentially related to keeping track of mobile phones?
Or, more to the point, which one of all these is the most
important to the user? After all, it is the user who defines
the essential purpose associated with a tool.

So, defining the essential purpose of a program is difficult,
but what does it have to do with the private aspects
of programming?

It has one very important thing to do with it, because
it happens that programmers hide private aspects of pro-
gramming behind a seemingly instrumental discourse, and
this phenomenon is most visible in the cases where the
essential purpose of a program is difficult to pin down.
In order to give a good example, I need to explain a pro-
gramming concept.

The concept of readability will be treated in detail in
the next chapter, for our present purposes it suffices to
know that the code of a program can be more or less
difficult to read. With this, programmers mean that the
code can be more or less difficult to interpret, in other
words, that it is more or less difficult to see the structure

101

102

of the program, what each component is used for, why,
in what order, and so on. Readable code is easy to under-
stand (and to fix and modify, if need be); unreadable
code is a pain:

Re:nice, but welcome back to the real world by Myopic (#2253074)
[…] I have NEVER turned in to my boss anything but well-document-
ed, well-commented, readable code. I don't do this out of respect for
my users; frankly, I know how to use the software and if they don't they
can read my docs and try to figure it out. No, I do it for the other
schmucks like me. At some point, my boss will probably tell his next
lackey to add some little feature to one of my modules, as he's asked
me to do with some older programmer's works. And it's DAMNED
IMPOSSIBLE to wrap my head around code which is all mixed up.
I comment for other programmers. People who might need to sink their
hands into my code.

Myopic is answering to other participants who said that
the idea of writing beautiful code sounds fine but that
real world conditions do not allow for such niceties.
Some others, like Myopic, reacted by explaining why it is
important to write readable code (in this thread, beauti-
ful and readable were interchanged freely, we shall see
more about this issue in the following chapter). Myopic,
and some others, claimed that you should write readable
code out of kindness. His/her motto is the classic ‘you
should do to others as you would like others to do to you.’
This kind ethical consideration appears here and there in
discussions about readable code, and it forms part of the
private aspects of programming: this is one way of relat-
ing to your code, this is one thing you want your code
to say (that you care for other schmucks like yourself).

But right now we are more interested in another kind
of reasoning around the idea of readable code. Myopic’s
comment continues:

Paying me now to write comments and format things well is worth it
for the added speed with which the software will be maintained in the
future. So for me, and I'm sure most of the code jockeys on Slashdot,

the "real world" is one where software is written, THEN MAIN-
TAINED. Beauty is part of maintanence.

Here s/he suggests that it makes economic sense to take
the time required to write readable code, and this is
definitely a reason that pertains to the public discourse.
It is fitting that we find both kinds of reasoning (the eth-
ical and the economical, the private and the public) in the
same comment: this is what opinions usually look like, a
bit of one reasoning and a bit of another reasoning. This
is not due to any analytical shortcoming in programmers
but rather to the nature of everyday language.

At any rate, the interesting point in Myopic’s latter
excerpt is that s/he makes an economic statement that is
based on an internal quality of software. What do I mean
by this? That Myopic connects the internal (private) qual-
ity of readability with the external (public) quality of cost.

Now, is this connection necessary? No, it is not. There is
no casual law, not even a statistic law that would connect
these two. To start with, it is difficult to assign the cost
of a software development project to particular posts: is
it really more expensive to write readable code? or
cheaper to maintain readable code? The development
and maintenance of software (at least of projects of some
size) are hugely complex enterprises, and my immediate
impression is that it is impossible to answer those two
questions in a general sense. In fact, we still do not know

103

internal implies� external
characteristics characteristic
of the code

readability implies� less cost, easier
maintenance

figure, External qualities are implied from internal form

whether it is more or less expensive to have larger teams
of programmers, or a particular kind of documentation,
or a particular kind of organisation… all these are char-
acteristics of a project that, very much like the readabili-
ty of the code, are only very loosely connected to the costs.

Now, in the case of readability, there is an added
difficulty when trying to connect it with the cost of the
project, namely the vagueness of the concept. As I said,
this concept will be studied closely in the next chapter,
but I can advance one of the results: readability is not a
homogeneous concept, i.e., programmers do not agree
on what it is that makes code more readable. Some say,
for instance, that a lot of comments (we shall see what
those are) make it so, others that a lot of comments clut-
ter the code and make it more difficult to read. Readabil-
ity is, in other words, a subjective quality of code.

It may also be argued that by ‘readable’ we mean
that a program is understood by a majority of program-
mers, that the concept has a statistical meaning. What we
face here are two different uses of the same word.
A number of scientists, with a particular approach to
software development, use it in the statistical sense,
putting aside their own, or any other individual, opinion.
‘Readability’ is, for them, a characteristic of software
that can be measured statistically, code A is x% readable,
so to speak. This can be measured by having a number of
programmers read the code and answer questions about
it. The validity of these measures is an unresolved ques-
tion, but that is a problem of the structure of the experi-
ments, not of their concept of readability.

On the other hand, programmers, without laborato-
ry data to draw from, can only rely on their own judge-
ment. When fishbowl, discussing a rather obscure piece
of Perl code offered by quartz, tells the latter that the

104

presumption that your code is somehow ‘unreadable’ bothers me...
there’s nothing in this example that should be a problem for even a
beginning perl coder, in my opinion. You’ve used a common perl idiom
in a very efficient, clear, understandable way23

s/he is not using readability in the statistical sense. This
is his/her own subjective opinion of the readability of
quartz’ example. In fact, other participants found it
difficult to understand (an anonymous participant replied:
“I'm a moderate level perl coder (one step above begin-
ning), and I have no idea what map or ucfirst means...”

24
).

The version of readability that I am interested in is
the one used by programmers – I am, after all, studying
their experience of programming –, so I must consider
it as a subjective trait of software. For our purposes, hence,
reading code is not a statistical phenomenon but an indi-
vidual one.

These considerations make questions like “is it really
more expensive to write readable code? or cheaper to
maintain readable code?” quite impossible to answer in
general terms. Myopic’s statement must hence be treated
carefully.

At the same time, I do not think Myopic is thoughtlessly
stating things, s/he really believes this connection (read-
able - less costly) holds. This is his/her belief. We shall
not go into the motives you may have for holding such a
belief but it probably has to do with your experience,
what you have learnt at school, what you hear from
other (admired) colleagues, etc. Myopic is not making
things up. Furthermore, I am by no means saying that the
opposite holds (readable - more costly), only that there
are no general rules that apply.

Someone might think that I am somehow belittling
Myopic’s programming skills, when I suggest that his/
her statements are not universally valid. This would be
a mistaken judgement, based on the following train of

105

assumptions and conclusions: that programming can
either be done correctly or incorrectly, that it is a matter of
calculation, and that Myopic is not calculating but feeling
his/her way forward. Now, this whole thesis is an argu-
ment against this idea, programming is not only about cal-
culating optimal solutions, it is also, in a deep sense,
a matter of personal decisions. This does not mean that
some programmers are not better than others, simply that
none of them limit themselves to calculations. To follow
personal beliefs when programming, as Myopic does, is
not a shortcoming but the only possible way to program.

Well, this last statement is not quite correct. There is
another option: to program, according to your personal
preferences, and not make any connections between
them and the public qualities of software. Myopic could
just have said that one should write readable code out of
kindness to other programmers, or that s/he writes read-
able code because s/he likes to. Now, presenting one’s
preferences exclusively from the private perspective is
not easy. Mainly because it is not legitimate but also
because this is not the way programming is generally
taught and it is not the way programming is discussed.

At any rate, there are beliefs that connect the internal
qualities of software with the external ones. I have called
them ‘instrumental beliefs’, because they are used to
make statements about the instrumental properties of
software, when such statements cannot, from a strict per-
spective, be made. The role of instrumental beliefs can be
illustrated with the following figure:

external quality of program
�

instrumental belief
�

internal characteristic of code

106

figure, Instrumental beliefs connect internal form with external qual-
ities

They are often used unconsciously, so to speak, and in
rather vague forms. For instance, few programmers will
go as far as saying, explicitly, that readable code yields
better tools. Instead, they will say that readable code
yields better software, without defining what kind of
goodness they are referring to. In fact, they will more
often speak in personal terms, explaining how they think
one should program and loosely claiming that program-
ming so yields better software. Myopic’s is, once again, a
good example: “Paying me now to write comments and
format things well is worth it for the added speed with
which the software will be maintained in the future.”
S/he invites the reader to presume that software that is
more speedily maintained is better software, but does not
say so explicitly.

I have therefore decided to include a third kind of
goodness, the vague one that programmers refer to when
they express instrumental beliefs. This is the semi-instru-
mental goodness, which could also have been called
semi-intrinsic because it is unclear which one Myopic
means. The analytical value, and elegance, of such a con-
cept is questionable, but I think it points to an important
aspect of the personal relationship between programmers
and their creations, namely the unclear border between
the public and the private discourse. When programmers
discuss programming, both kinds of reasoning appear
often close to each other: beauty, for instance, is mixed
with maintenance, which is directly connected to costs and
utility. The private aspects of programming are manifest-
ed very clearly in particular phenomena (such as aesthet-
ic discussions, harsh disputes and other details that we
shall be studying soon) but also, albeit less clearly, in their
comments about what it is that makes software better.

In this chapter I have showed how programmers use the
concept of readability and how this use points to the

107

existence of a hybrid kind of goodness, not strictly
instrumental but neither properly intrinsic. Perhaps you
could say that it is a mixture of private preferences with
instrumental legitimacy… but, as I said, the concept of
legitimacy will be dealt with later on.

Now, are there other concepts, apart from readabili-
ty, that can be used in a similar way? Structure and
robustness are both of the same category as readability,
they refer to the properties of code, but can be used to
indicate a kind of goodness that is vaguely related to the
instrumental qualities of the program. These two prop-
erties will later on be briefly presented in the chapter on
aesthetic ideals, readability could have accompanied
them, but is instead treated more in detail in the chapter
on coding styles.

Efficiency is a bit special since it may refer to differ-
ent things: at the programming level, it has to do with
optimum use of memory, or lines of code, or disk-space
or something like that. This is a quality of the code itself.
But it also points to an external quality, namely that of
solving the users’ problems in an efficient manner.
However, there is no necessary connection between an
efficient use of the memory and solving the users’ needs.
Naturally, these two conditions are not opposed, and in
some cases they may actually be directly related.

Functionality is a characteristic of software rather
difficult to define, but paradoxically, it is also one of the
most important. It is indeed so important, and its vague-
ness so representative of the private aspects of program-
ming, that I have dedicated a whole chapter to it. The
chapter beauty and functionality is a study of the rela-
tionship between the most obvious private aspect of code
and the most obvious public aspect of applications.

I believe it was important to present these concepts to
provide analytical support before plunging into the rich-

108

ness of the empirical material. The two following chap-
ters are much closer to programming, both presenting
different programming alternatives and at the root of
the private aspects of programming. Without the possi-
bility of choosing between different alternatives (and still
obtaining the same result), there would have been no per-
sonal relationship to code, only calculating and optimis-
ing. Let us turn now to the most concrete of options:
coding styles.

109

110

23 Slashdot message #2253306, a more detailed explanation of
this exchange can be seen in the chapter on coding styles.
24 Slashdot message #2253979

v
Coding Styles

Private aspects of programming are not limited to what
could be called ‘aesthetic’ aspects, but these provide a
good concrete ground from which to approach them.
They give us something to get hold of, so to speak. How-
ever, as programming consists in the manipulation of
abstract structures, attempts at giving examples of beauti-
ful software to non-programmers usually end up in long
technical explanations. In order to avoid this, but still
present a concrete example of the aesthetic possibilities
available to programmers, I propose to examine one of
the most straightforward parts of programming: coding.
Coding is considered by some programmers as a periph-
eral concern but, on the other hand, it results in some-
thing tangible (code), allowing thus for good illustrations.
Besides, however secondary it may considered by some
programmers, we shall see that coding aspects are impor-
tant enough to spark off heated disputes among them.

113

For some readers, this may be the first contact with the
field of software aesthetics, well, perhaps with code at
all, and there are a few clarifications that need to be
made. I shall start by explaining what ‘coding’ is and
why this chapter is called coding styles instead of pro-
gramming styles.

‘Coding’ is a part of the activity of programming,
perhaps I should say, a phase of it. The general idea is
that, once the users have explained what they need, the
whole thing starts with the creation of a guiding docu-
ment, called ‘technical specifications’, which is a descrip-
tion of the technical characteristics of the program.
Directed by this document, a programmer will produce a
design: a more or less detailed description of the struc-
ture and the elements that will be needed to construct the
program. Exactly what this structure must include and
what kind of elements (building blocks) are available to
programmers would take too long to explain, suffice to
say that the design functions similarly to the blueprint of
an engine, in which the different elements and the rela-
tion between them are drawn. Once the design has been
– hopefully – revised (so that it ‘holds’, so that it mirrors
the technical specifications), the programmer starts to
code, which is nothing else than typing the necessary
commands so as to construct the design in a form that
a computer (or microprocessor) understands.

Programmers sometimes give designing a higher sta-
tus than coding, reasoning that it requires more knowl-
edge to be able to solve the problem (design) than to
translate the solution into commands (coding). In fact,
occasionally, project organisations differentiate between
designers and coders, the former ones generally being
better paid. Also, the word ‘coders’ can be used pejora-
tively, meaning poor programmers. However, it is not
always easy to distinguish between the three phases I
have mentioned so far: specifications requirement, design

115

and coding, particularly when they are all carried out by
the same programmer. They blend into each other, often
quite deeply, making it impossible to draw any clear
lines. Hence, often ‘to code’ means ‘to program’, and
‘good code’ means ‘good software’. But as much as it is
impossible to draw clear lines, the results of the three
phases are three different documents: technical specifica-
tions, design and code; and these are almost impossible to
confuse. Of all the three, the coding is the one best suited
for illustrating the aesthetic possibilities offered to pro-
grammers, apart from being the one that is easier for them
to exchange (and for the researcher to find examples of).

Now, why have I decided to start with a presentation of
coding styles, instead of a presentation of programming
styles in general? This has to do with the mentioned
availability of documents. Since some, perhaps many, of
my readers have never seen neither code nor design, it is
important to thicken the description as much as possible
and show examples. And when it comes to this, code is a
much better alternative than design documents, not to
speak of technical specifications: code snippets are freely
available all over the internet, they are much easier to
reproduce than design and they are often used by pro-
grammers to illustrate what they mean. Also, it is easier
to point out the fineness of coding details than the
elegance of a design without going into much technical
overhead. Code is simply much more immediate. In
the next chapter, we shall have occasion to discuss aes-
thetic ideals in programming at large, but I think it is
better to introduce the subject with code examples.
I hope that in the course of the presentation of coding
styles the reader will get an insight into the possibilities
of aesthetic expression available to programmers. After
that, it should be easier to understand the more general
aesthetic ideals.

116

Before we start for real, there is something to be said
about the comprehensiveness of this presentation of cod-
ing styles. In programming, as in the majority of disci-
plines of human activity, there are different, sometimes
opposed, notions of what it is that makes something
beautiful. A complete classification of all these ideals for
the case of programming coding styles would be a nice
thing to present, but I cannot do that. The main problem
is not that there are so many programmers scattered all
over the world, not even that they lack a formal organis-
ing body; the real problem is that beauty, in program-
ming, is a private affair, something kept among pro-
grammers and absent from the official discourse: pro-
grammers are not supposed to spend their time creating
beauty, they are supposed to create programs that work.
Nowhere in a technical specification, the formal descrip-
tion of the program to the customer, will one find the
word ‘beautiful’; strictly put, no-one is ready to pay for
beautiful software and there is nothing like a body of
code-critics, as there is in the realm of art. As a result, the
idea of software aesthetics is mainly discussed in small
groups, and generally at the local level. Given the
amount of programmers, and the subsequent amount of
local levels to which I have no access, it would be unwise
to claim that the classification presented here is anywhere
near comprehensive. However, the task at hand here is
not to achieve final classifications (neither of coding
styles nor of aesthetic ideals in programming) but to give
an ordered presentation of some manifestations of aes-
thetic judgements among programmers. I do not seek
complete classifications but a discussion of the program-
mers’ personal experience of programming.

117

many codes, one action

As I mentioned before, the distinction between
coding and the rest of the programming activity
is not always possible. The name ‘coding’ is
sometimes used to denote the translation of
ready software designs into commands, but
there is much more going on than just transla-
tion when a programmer writes code. At any
rate, coding is not a mechanical activity by
which a complete design is translated into lines
of code; regardless of the detail with which the
designer has specified the program, the are
numerous alternatives available to the ‘coder’.
The same design can be translated into different
codes that are identical from the perspective of
the processor, as the figure illustrates.

The good thing about studying coding more in
detail is that, as I said, the result of coding is
very concrete: lines of code. This concreteness
makes it easy to give examples that explain the
alternatives and the styles. For instance, the fol-
lowing two codes make the processor carry out
exactly the same actions:

118

code 1
code 2design processor actions

code n
{ }

figure, One design, one function, many codes

119

var
numberOfElements, i : Integer;
list array [1..4] of String;
aux: String;
listIsOrdered : Boolean;

begin
// we initialise the variables
numberOfElements := 4;
list[1]:=”G”; list[2]:=”Dn”;
list[3]:=”S”; list[4]:=”Dv”;
// here starts the ordering
repeat

for i:=1 to numberOfElements-1 do
begin

istIsOrdered:=true;
if list[i]>list[i+1] then

begin
// theyre not ordered, we change them
aux:=list[i];
list[i]:=list[i+1];
list[i+1]:=list[i];
listIsOrdered:=false;

// we have changed something
// in the list, we are not sure
// the list is ordered

end;
end;

until listIsOrdered;
end.

code, Alternative 1: Typical layout

120

var
wwfgthe, kjlu : Integer;

lksswer array [1..4] of String;
klfft: String;

oggtlei: Boolean;

begin
// well she’s walking through the clouds
// with a circus mind
// that’s running wild
// butterflies and zebras

wwfgthe:= 4;
lksswer [1]:=”G”;

lksswer [2]:=”Dn”;
lksswer [3]:=”S”;

lksswer [4]:=”Dv”;
// and moonbeams and fairy tales
// that’s all she ever thinks about
// running with the wind

repeat
for kjlu:=1 to wwfgthe -1 do

oggtlei:=true;
begin
if lksswer [kjlu]> lksswer [kjlu +1] then

begin
// look, when I’m sad, she comes to me
// with a thousend smiles
// she gives to me free
klfft:= lksswer [kjlu];
lksswer [kjlu]:= lksswer [kjlu +1];
lksswer [kjlu +1]:= lksswer [kjlu];

oggtlei:=false;
end;

end;
until oggtlei;

end.
// it’s alright, she says, it’s alright..

code, Alternative 2: Despite the unlikeliness of its layout, it
results in the same machine code as alternative 1

Short explanation: in the majority of cases, the processor
cannot read code directly. Hence, the code must be, in its
turn, translated into something that the processor can
read, namely machine code. This consists of the
renowned ones and zeroes, but it is best not to go into
much more detail. For all we need to know, the code is
the last part of the programmer’s actions and the first of
the computer’s, which makes it an interface between the
worlds of human thinking and computer logic.

reading code

This interface-nature makes of code, and coding, an
object of study rich in nuances, and it has been dealt with
from different perspectives. For the purpose at hand, a
description of some aesthetic aspects of programming,
we are particularly interested in the human perspective:
code is something that must be read by programmers.
Such a perspective is by no means original, but both
practitioners and scientists have mostly been interest in
developing methods to write code that is easier to under-
stand. I would like to insist that this is not our concern
here, instead, we want to develop an understanding of
the meaning of coding styles for the programmers.

The practitioners’ starting point, on the contrary, is
something like “code out there, more specifically the

121

� �

CodeCodeC
odeCodeCo
deCodeCod
eCodeCode
CodeCodeC
odeCodeCo
deCodeCod
eCodeCode
CodeCodeCo
deCodeCode
CodeCodeCo
deCodeCode
CodeCodeCo

programmer eye compiler processor

human thinking computer logic

figure, The intermediary role of code

☺�1 {�~

code I have to face, is illegible” and someone should do
something about it. As a result, some of them have pro-
duced their own personal sets of recommendations, also
called ‘coding guidelines’, which generally only have
local influence (within the classroom or the project at
hand, for instance). In some occasions, languages come
with ‘official coding guidelines’, which are normally
modified by every programmer, or at least at every pro-
ject. D. E. Knuth’s coding methodology, Literate Pro-
gramming (Knuth 1992), deserves special mention, and
will be brought up as we move along.

The scientists’ starting point is often the same, even
if they perhaps do not have to face as much unreadable
code. They apply however strict methodologies to their
laboratory studies, trying to reach answers to questions
like: how many of the programmers were able to read the
code and modify it correctly? How long time did it take?
What are the differences in their efficiency when one
changes the coding style? One example, of many, is Paul
W. Oman’s and Curtis R. Cook’s paper Typographic
Style is More than Cosmetic (Oman and Cook 1990).
The title of the paper is quite telling and the introduction
starts like this:

There is disagreement about the role and importance of typographic
style (source code formatting and commenting) in program compre-
hension. Results from experiments and opinions in programming style
books are mixed. This article presents principles of typographic style
consistent and compatible with the results of program comprehension
studies. Four experiments demonstrate that the typographic style prin-
ciples embodied in the book format significantly aid program compre-
hension and reduce maintenance effort.

Experiments were conducted in which programmers
were presented with code written according to a tradi-
tional listing and according to Oman & Cooks suggest-
ed ‘book listing’. The tables show clearly that code writ-
ten in the form of book listing gave better results.

122

One could wonder whether what the results show is that
code written with particular care, in order to make it as
easy to understand as possible, is actually easier to
understand. Which may not be a perfect tautology but is
rather close. In any case, I am not interested in what style
does better in laboratory settings. I am interesting in
understanding what coding styles mean for program-
mers, how they relate to them. Oman & Curtis seem to
assume that the style in which code has been written is
something devoid of personal attachment, only a matter
of more or less efficiency. I, on the other hand, think this
is a crucial mistake: code, to programmers, is not only
what the compiler translates into machine code, neither
is it only what they need to read in order to understand
a program: it is also something very personal, a way of
expression. Programmers are not, despite some of them
suggesting something along those lines, poets, but the

123

table 1
experiment 1: code writing ability

Exactly Functionally Wrong Gave up or
correct correct not finished

Traditional 14% 11% 36% 39%
listing (n=28) (n=4) (n=3) (n=11) (n=11)

Book listing 36% 16% 32% 16%
(n=25) (n=9) (n=4) (n=8) (n=4)

table 2
experiment 2: ability to idendify procedure calls

Traditional Book
Dependent measure listing listing
Number writing correct procedure 7 13
Total correct identifications 12 31
Average identifications per person 1,71 2,38
Percentage accuracy for the group 34,2% 47,6%

style in which they choose to write their code says a lot
about them, even if one has to be a programmer – or read
this thesis – to see it.

I would like to suggest that while coding, a pro-
grammer is not exclusively concerned with making it eas-
ier for other programmers, and herself to understand
what the program does. Such a view regards program-
ming as a perfectly instrumental activity, whose only
meaning is to produce something that works; and evalu-
ates software only from the functional and economic
(public) perspective. This view assumes that program-
mers are intelligent machines capable of solving comput-
ing problems but incapable of experiencing any aesthetic
feelings towards their own creations. This assumption
seems to be the general view, not only of programming
but also of engineering in general. And this assumption
prevails despite the slowly growing body of literature
that illustrates the opposite (see, for instance, (Florman
1994; Petroski 1992; Rice 1996)).

But this focus on the public aspects of programming
may be interpreted differently. Perhaps the mainstream
Computer Science approach is not based on an assump-
tion about what programmers are or do but on a judge-
ment about how they should act: they should limit them-
selves to solving the computational problem at hand and
avoid any personal preferences. Now, this is a normative,
even moralistic, approach to the subject, not a scientific
one. This attitude’s motto could be caricaturised as:
“Regardless of what programmers actually do, this is
how they should do it.” The problem is that what they
actually do may be incompatible with how they are sup-
posed to do it.

A good example of this is the concept of ‘readabili-
ty’. It seems that the majority of programmers agree that
readability is important. The implication, hence, is that
Oman & Cook’s is the proper way to approach the sub-

124

ject: to search the optimal coding style. But if one studies
more closely what programmers actually say, one finds
that consensus on readability involves only a very gener-
al sense of the concept. When it comes to the concrete
cases of coding, it turns out that it is like any other sort
of writing: there are many different styles and as many
different opinions about what makes code readable. The
more one reads programmers speak about readable pro-
grams, the more one gets the sense that readability is a
concept used to express appreciation rather than a uni-
versal measure of the program’s understandability.
Hence, there might be no point in going to the laborato-
ry to search for the optimal coding style, since readabili-
ty is neither solely a matter of understanding the code
quickly nor a concept that can be separated from real
programming environments.

Having said this, I would like to clarify that this chapter
is not primarily about readability but about the alterna-
tives available to programmers. As mentioned earlier,
coding is not the only programming activity that offers
alternatives to programmers, in fact, these alternatives
are sometimes derided. There seems to exist a general
feeling that coding is not as worthy as designing (the
structure of the program), and it is possible that readers
with programming skills would dismiss some of the fol-
lowing examples as meaningless details. But these are not
included here in order to explain what programming is
about but to illustrate the fact that programmers must
choose between different alternatives. This fact is what
gives rise to the private aspects of programming, since
the choice cannot be based on calculations but require
personal engagement.

When asked about it, programmers frequently
explain their coding choices on the grounds of increasing
readability (“I did this so and so because it makes the

125

code more readable”), which makes it sound as if there
is no personal engagement needed. However, as I have
already said, there are different opinions as to what
makes code readable and, hence, what we have is a per-
sonal engagement at the level of what one chooses to
believe (see the discussion on instrumental beliefs in the
previous chapter).

Moreover, some of the coding choices cannot be
explained in any instrumental (or pseudo-instrumental)
terms, making the possibility of private aspects of pro-
gramming even more evident. Which brings up a small
but interesting last reflection before we get into the tech-
nicalities of coding: the mere fact that programmers must
make (non-calculable) decisions does not imply that
there are private aspects of programming. The private
aspects of programming, as has already been mentioned,
require a personal engagement with one’s code. This
engagement is only possible if there are non-calculable
choices to be made, but it is perfectly possible that pro-
grammers simply made a choice without giving it much
thought. I imagine there are programmers who are not
concerned by the choices they make, as long as the code
works. This is particularly true of some of the alterna-
tives presented here, which are simple enough not to
require long technical explanations but that are too sim-
ple to engage all programmers. For instance, I am quite
sure that many programmers do not care much about
how many empty lines they leave between functions.
Enough introduction, let us see what programmers can do.

alternatives when coding

The fact that the code must be compiled to be run, and
that the compilation is a process in which all the typo-
graphical details disappear, makes coding a phenomenon

126

with many stylistic possibilities. One can do all sorts
of things with the code, as we will shortly see, and still
have the same program after compilation. This means
that one can look at coding from the human side instead
of the processor’s. In fact, the general opinion is that
code should be readable. As Knuth, a famous program-
mer to be introduced in a few pages, put it (Knuth 1983):

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do.

There is one very good reason to why code should be
readable, namely that it is often the only document that
a programmer can resort to when faced with the mainte-
nance of old programs.

Even if the process of programming includes many
different activities (writing on pieces of paper, discussing
with the end-user, arguing with the manager, being
inspired by other programmers’ solutions, reading
books, weighing similar alternative solutions, making
decisions, sometimes, perhaps often, based on incomplete
knowledge, defending one’s own ideas, etc.); the code is
often the only trace left of all that process. Hence, the
code is the only information a programmer has access to
when trying to understand someone else’s program – or
one’s own program a few months later. There should be
other documents to accompany every program, but in
many cases, there are not, or they are not very helpful.
This is certainly not a desirable situation, but it never-
theless seems quite common, if one is to trust the litera-
ture on the subject. Why this is so is open to debate, even
if the endemic lack of time in programming projects, and
the fact that accompanying documentation do not make
the application run, may have something to do with it.
Besides, writing code and writing documents are two

127

very different activities and it is not certain that pro-
grammers are particularly excited about the latter.

But I am not interested in finding out why those doc-
uments seem to be missing. What concerns me is the fact
that, since they are missing, or incomplete, programmers
can (essentially) only turn to the code when they need to
figure out a program: what were the alternatives faced by
the original programmer, why were technical decisions
made, why the program contains the functions, vari-
ables, subroutines, objects, etc. it contains. To under-
stand all this, they can only rely in the formulation of all the
ideas in the code. So, naturally, it is important that code
is readable. This, however, has not prevented program-
mers from having all kinds of different opinions about
what makes code readable, and the mixture of its signifi-
cance and its different flavours makes of readability a
useful concept from which to study coding alternatives.

So let us see what programmers can do to make their
code more readable. In order to make this presentation
accessible to non-programmers, I am limiting myself to
coding alternatives that make the code look different but
that do not change the ones and zeroes that will reach the
processor (i.e. the compiled code). Please note that this is
a very restrictive limit; it is like explaining football by
showing the alternative ways to take a corner (short,
long, low, high… but what about the rest of the game?).

comments

All high level languages (basically, languages whose code
requires a compiler to be translated into machine code)
offer the possibility of writing comments. Those are
lines, sometimes words, that the compiler filters away
but that may be invaluable in order to understand the
code. Let us look at the first example:

128

Any text that appears after the command “//” is a com-
ment (this is Delphi PASCAL). As you can see, sometimes
a whole line is a comment, and sometimes the comment
starts after another command. At any rate, on any given
line, anything written after // is a comment and the com-
piler will discard it. In other words, it will never reach the
processor, it is only there for programmers to read. The
following code, the previous without comments, pro-
duces exactly that same machine code. It looks like this:

129

var
numberOfElements, i : Integer;
list array [1..4] of String;
listIsOrdered : Boolean;

begin
// we initialise the variables
numberOfElements := 4;
list[1]:=”G”; list[2]:=”Dn”;
list[3]:=”S”; list[4]:=”Dv”;
// here starts the ordering
repeat

for i:=1 to numberOfElements-1 do
begin

listIsOrdered:=true;
if list[i]>list[i+1] then

begin
// theyre not in order we change them
aux:=list[i];
list[i]:=list[i+1];
list[i+1]:=list[i];
listIsOrdered:=false;

// we have changed something
// in the list, we are not sure
// the list is ordered

end;
end;

until listIsOrdered;
end.

code, Example with comments

This piece of code does not include any comments,
hence, the programmer that has to understand this code
must rely only on what the processor is told to do. Ok,
in this particular simplistic example, it is really very easy
to see what the program is about, but most useful pro-
grams are thousands of lines long. If the code does not
include any comments, the new programmer will have to
approach it without any extra aid from the original one.
Clearly, comments sound like a good idea – even if that
does not mean that programmers actually do comment.

130

var
numberOfElements, i : Integer;
list array [1..4] of String;
listIsOrdered : Boolean;

begin
numberOfElements := 4;
list[1]:=”G”; list[2]:=”Dn”;
list[3]:=”S”; list[4]:=”Dv”;

repeat
for i:=1 to numberOfElements-1 do

begin
listIsOrdered:=true;
if list[i]>list[i+1] then

begin
aux:=list[i];
list[i]:=list[i+1];
list[i+1]:=list[i];
listIsOrdered:=false;

end;
end;

until listIsOrdered;
end.

code, Example without comments

What is beauty? by EJB (#483024)
The Linux kernel source certainly shows some smart, lean code. But it
is so lacking of commentary in the source code that it's unbelievable.
It seems the whole idea is that if you can't figure out what the kernel
does by looking at the C statements, you're not worth working with the
source anyway.
[...] I personally prefer source code that is doesn't hurt the eyes when
you look at it a few weeks after the previous time: many comments,
empty lines and whitespace inserted to identify logically seperate parts
of the code, etc, etc.
Erwin

The first, and most obvious, possibility for programmers
to express themselves, in the sense of stamping their own
style to the program, is through the text of the com-
ments: concise and clear descriptions can change the
whole feeling of a program. Apart from that, it would
seem, at first sight, that there is little more to do here:
comments fill a function, and it is perhaps incorrect to
speak of beauty: the more comments, the better.

However, as usual, things are not so simple in reality
as they seem in theory. How many comments are a rea-
sonable amount and when does it become too much?
And could it be that just inserting in a few comments
lulls programmers into believing that their code is under-
standable? And are comments always updated when the
code is modified, or are they left behind becoming a
source of confusion instead of explanation? Some pro-
grammers think more about the negative than the posi-
tive effects of thorough commenting:

Re: The best code has lots of comments by chris.bitmead (#483063)
I have to strongly disagree too. For the argument against commenting
see Extreme Programming. If you can't understand your code without
comments, REWRITE THE CODE AND ADD UNIT TESTS. I can't
emphasise this enough. If the code is obscure the chances the code is
bad or the variable names not descriptive or the design is poor. I'm not
saying don't use comments. I'm just saying only comment what is nec-
essary, but try fixing the code first instead of applying the band-aid of
comments.

131

Re: The best code has lots of comments by leo.p (#483129)
remember code is CODE, it's meant for a stupid machine, not an intel-
ligent human), maintainability, etc.
This is bullshit. The best code is only very sparsely commented, relying
instead on the clarity of its design, its data structures and it's use of the
language, itself. Your principal form of documentation should be the
CODE itself.
I loathe reading heavily commented source, especially in OSS [open
source] projects which are rife with barely literate morons, endlessly
cutting and pasting each other's code and further obfuscating it with
every turn as they propagate subtle misunderstandings down the line.
You very rarely should have to tell someone what you're doing, mere-
ly showing it should be enough. If you have a clever algorithm, isolate
it in a single source file, document it in words and psuedo code at the
very top, then show me the money.
It is a mistake to comment for rank beginers begin they cant do shit
with the code, anyway. Document for people who are in a position to
actually use and modify your code. Over commenting also makes it
harder to understand what the fsck it is you were trying to do when the
comments fall out of synch with the code and/or contain various prose
and typographical errors.
Again, comment sparsely, code well. A one or two sentence description
of the function, its arguements, and an enumeration of the global vari-
ables it modifies. Most everything else belongs in a man page, in its
specification (something that is almost always an afterthought in
Linux.)
If you cant do this with your functions, your code is badly designed and
no amount of commenting will fix that [...]

These last entries formed part of a longer thread in which
the not only the pros and cons of commenting but also
the difficulties of doing it well were discussed:

Re: The best code has lots of comments by mckyj57 (#483178)
Good commenting style is as difficult to develop as good coding prac-
tices (the two really go hand in hand). Mental discipline (did you ever
say to yourself "I'll go back and comment it later"? Did you?), clear
exposition of an algorithm (no, the code is not a clear exposition --
remember code is CODE, it's meant for a stupid machine, not an intel-
ligent human), maintainability, etc. Comments should be written in
complete sentences wherever possible.

Programmers seem all to share the generally accepted but
vague view that readability is a positive thing, but no

132

clear description of what it is that makes code readable.
That readability is a good thing, in general, is what we
called an instrumental belief. The concept of readability
connects a subjective experience of code with the useful-
ness of the application. The subjectivity of ‘readability’ is
well illustrated by the different opinions held about the
effects of code-commenting.

There follows now a more in depth description with
more examples about the possibilities open to coders,
that will not only reaffirm that programmers do not agree
on how to make code more readable but will also give
more details about how programmers relate to this subject
in particular, and to programming in general. The follow-
ing three coding issues are known to raise disputes among
programmers: indentation, naming and empty lines.

indentation

There is no question about whether there should be
indentation or not: there should be, everyone agrees,
since it does make the code more readable. But how
much one should indent and how the indentation should
be typed (with spaces or with tabs?) is not as clear. I shall
limit myself to the discussion of the second issue, since it
is somewhat different from the question of comments.
The following exchange forms part of a large exchange
that is presented in its entirety in Appendix 3, we focus
here on the disagreement between participants maw and
Tassach:

Re: The most beautiful piece of code... by maw (#483068)
You shouldn't use tabs in code. (The exception that makes the rule is
that Makefiles require tabs.)
It's better, in a cross-platform portability way, to use individual spaces.
If somebody is using an editor which can't automatically change the
number of spaces, too bad for him.
Obviously, indentation is important.

133

Re: The most beautiful piece of code... by Tassach (#483209)
You shouldn't use tabs in code. (The exception that makes the rule is
that Makefiles require tabs.)
Ah, yet another holy war, right up there with vi vs emacs. Personally,
I hate working on code indented with spaces. I'll admit that it's annoy-
ing to edit tabbed code on a broken editor; but the way to solve that
problem is to fix the editor, not the code.

Re: The most beautiful piece of code... by maw (#483069)
Ah, yet another holy war, right up there with vi vs emacs
No, I maintain that it is not a holy war: holy wars always concern per-
sonal preference; the tabs vs spaces debate is one of technical interop-
erability.
...but the way to solve that problem is to fix the editor, not the code.
I disagree, and rather than repeat the arguments myself, I point you
here [http://www.jwz.org/doc/tabs-vs-spaces.html].

An editor is a program that helps the programmer write
code, something not unlike a word processor, and very
much like the case with processors, there are different
types of editors: with or without syntax checking, with
different colour codes and, as the exchange makes clear,
with different behaviour regarding series of empty
spaces. maw clearly thinks that those editors that do not
“automatically change the number of spaces” (so that
the code is always correctly indented) are to be dis-
missed, but Tassach seems to be of the opinion that it
should be the other way round: use tabs and fix the edi-
tors that do not work well with them. I personally do not
know which one is better, I do not even know how to
decide, objectively, which one is the best. But the point is
not to find a final solution to this issue; the point is that
even details as minimal as these have importance. In my
private discussions with programmers, some of them will
declare themselves total fans of, say the editor ‘vi’, and
refuse to do anything on ‘emacs’ (both mentioned by
Tassach): they will explain that it is a lifestyle, and that
the issue of ‘vi’ vs. ‘emacs’ is only a part of it: they learnt
to code on one kind of programming environment – rep-

134

resented by, for instance, vi or emacs – and they identify
themselves with it.

It is not that programs coded on emacs have, or lack,
special functional traits that can (not) be achieved with
vi. All C programs can be written in anyone of them, the
language C (which is what those editors are generally
used for) is absolutely independent of them. So we see
that coding styles include details as trivial – for an out-
sider, and for the processor – as the kind of typing ele-
ments with which to make the indentation.

naming

Another way of improving the readability of one’s code
is through appropriate naming. The spelling of the com-
mands available in a language is decided once and for
all at the moment of designing the language and, in prin-
ciple, the programmer can only accept the existing
words. However, code also contains elements (functions,
packages, variables, types, macros, classes, etc.) that
are created by the programmer for that particular pro-
gram and whose names, contrary to what the case is with
commands, must be given by the programmer. Under-
standing these elements (what a function does, what val-
ues a variable stores, what sort of objects a class con-
tains) is fundamental to interpret the code rightly, and
the most natural way of making them comprehensible
is by choosing a good name. Naturally, opinions vary
as to what is a good name, and quite a number of nam-
ing conventions have sprung up (generally several for
each language). The following example comes from
the Java Programming Style Guidelines (Version 3.0,
January 2002, Geotechnical Software Services Copy-
right © 1998-2002). Its chapter on naming conventions
starts like this:

135

But as I said, there are other naming conventions and it
is commonplace to complain about how each program-
mer has his or her own receipts. There are, naturally, dis-
agreements about which convention to use. The names
used in the example are underlined:

136

figure, Naming conventions according to GSS

3 naming conventions

3.1 General Naming Conventions

2. Names representing packages should be in all lower case.
mypackage, com.company.application.ui

Package naming convention used by Sun for the Java core packages.
The initial package name representing the domain name must be in
lower case.

3. Names representing types must be nouns and written in mixed
case starting with upper case.
Line, FilePrefix

Common practice in the Java development community and also the
type naming convention used by Sun for the Java core packages.

4. Variable names must be in mixed case starting with lower case.
line, filePrefix

Common practice in the Java development community and also the
naming convention for variables used by Sun for the Java core pack-
ages. Makes variables easy to distinguish from types, and effectively
resolves potential naming collision as in the declaration Line line;

I have decided to start always with a low-case letter and
then use high-cases for every new word in the name
(numberOfElements). But I could also have written
NumberOfElements, number_of_elements, number-ele-
ments or any other possibility I could think of (within the
limits set by the language – PASCAL, for instance, does
not allow spaces in names and has a limit on the number
of letters one can use for a name). Which one makes
the code more readable? It does not make any difference
to the processor since variable names disappear in the
compilation.

Also notice that I have used mostly only names that
mean something (list, numberOfElements, etc) but I
could have shortened them: l, nE, NOE, etc.. Or called
them other things: series, nElements, numberE, listing,
catalogue... Notice also how I use the letter ‘i’ as a name

137

var
numberOfElements, i : Integer;
list array [1..4] of String;
listIsSorted: Boolean;

begin
numberOfElements := 4;
list[1]:=”G”; list[2]:=”Dn”;
list[3]:=”S”; list[4]:=”Dv”;

repeat
for i:=1 to numberOfElements-1 do

begin
listIsSorted:=true;
if list[i]>list[i+1] then

begin
aux:=list[i];
list[i]:=list[i+1];
list[i+1]:=list[i];
listIsSorted:=false;

end;
end;

until listIsSorted;
end.

code, Variable names are underlined

for a variable. This variable is a loop-counter, it increas-
es every time the loop is passed through and it is an aux-
iliary variable. Since it only is meaningful in the local
context of the loop, programmers often use just one
letter to name them. However, it is not clear whether one
should use one-letter variables at all. Many guidelines
recommend it, but not everyone agrees. In order to
understand the following exchange it is important to
know that some variables are used throughout the whole
program (global variables) whereas others are only used
temporarily in short parts of it (local variables). An
example of local variables are the counters and indexes
used in loops, such as my ‘i’.

#1 Peeve by Anonymous Coward (#2253422)
I know the man [D. Knuth] is brilliant, but in my opinion his code sam-
ples are CRAP. I know this will get moderated as flame bait, but it
comes from the heart. One letter variable names should be OUT-
LAWED from languages. I don't know how many times I've had to
wipe up the shit that someone left because they didn't take the time to
think up better variable names. Second to this is variable names are
that are sequenced. For example: a1, a2, a3.No doubt this will gener-
ate a lot of heat, but I know there has to be others who feel the same way.

Re:#1 Peeve by Anonymous Coward (#2253785)
One letter variable names should be OUTLAWED from languages
Except for counters or indexes in loops. Anything more than i, j, or k
is overkill and actually distracts from readability

Re:#1 Peeve by Anonymous Coward (#2254080)
Except for counters or indexes in loops. Anything more than i, j, or k
is overkill and actually distracts from readability
ESPECIALLY in counters indexes and loops. Everytime I hear some-
one mention these exceptions, I PUKE!!! Those harmless counters and
loops always find their way into the program somehow, outside the
scope of their original domain. If I had my way, they'd be outlawed
without exception. And since I'm the programming manager, I get my
way. No one in my shop gets to use one letter variables.

As explained in Slashdot’s introduction (method and
empirical material), whenever a user wants to insert a
post without filling in his or her name (or alias), the post

138

appears as written by Anonymous Coward. So the previ-
ous exchange is, most likely, not written by a program-
mer with multiple personalities but by two – or three –
programmers who did not sign their entries. Once again
we can see how technical issues get discussed in aesthet-
ic terms (“I PUKE!!!”), perhaps this particular outburst
is a response to the fact that the general opinion seems to
be that counters and indexes in loops should be given
one-letter names. Not only does D. Knuth use them in his
programs, most guidelines recommend them (this is one
of the recommendations of the above introduced Java
Programming Style Guidelines):

Here, as in the case with comments, the programmers’
inventiveness and skill in finding appropriate names gives
the program a personal flavour. Even if one concrete con-
vention was adopted by all programmers – unlikely –
there would still be room for personal expression in the
choice of names. Needless to say, as the title of a book,
or the choice of chapter numbering, influence the reader’s
aesthetic experience, the names of the variables also have
an influence in the programmers’ opinion of the code.

139

22. Iterator variables should be called i, j, k etc.
while (Iterator i = pointList.iterator(); i.hasNext();) {

:

}

for (int i = 0; i < nTables; i++) {

:

}

The notation is taken from mathematics where it is an established
convention for indicating iterators.

Variables named j, k etc. should be used for nested loops only.

figure, Naming conventions according to GSS

empty lines

Another option available to programmers when writing
code is the introduction of empty lines and spaces, either
to make it more readable or just more elegant. The
example, with two different empty lines - spaces policy
may look as follows:

140

var
numberOfElements, i : Integer;
list array [1..4] of String;
listIsOrdered : Boolean;

begin
numberOfElements := 4;
list[1]:=”G”; list[2]:=”Dn”;
list[3]:=”S”; list[4]:=”Dv”;

repeat
for i:=1 to numberOfElements-1 do

begin
listIsOrdered:=true;
if list[i]>list[i+1] then

begin
aux:=list[i];
list[i]:=list[i+1];
list[i+1]:=list[i];
listIsOrdered:=false;

end;
end;

until listIsOrdered;
end.

code, Alternative 1: without empty spaces

Both result, once again, in exactly the same machine code
after compilation. Which one is more readable? Which
one is more elegant? Which one would you choose?

coding styles

Although I have not quite resolved what it is that enhances
a program’s readability, this is only of secondary interest
to the discussion. What is important to us is that code,
apart from transmitting, more or less satisfactorily, the
ideas behind the design (readability), also serves as a
sign of the author’s personal preferences. Choosing an
approach to readability is, in itself, a part of one’s per-

141

var
numberOfElements, i : Integer;
list array [1..4] of String;
listIsOrdered : Boolean;

begin
numberOfElements := 4;
list[1]:=”G”; list[2]:=”Dn”;
list[3]:=”S”; list[4]:=”Dv”;

repeat
for i:=1 to numberOfElements-1 do

begin
listIsOrdered:=true;
if list[i]>list[i+1] then

begin
aux:=list[i];
list[i]:=list[i+1];
list[i+1]:=list[i];
listIsOrdered:=false;

end;
end;

until listIsOrdered;

end.

code, Alternative 2, with empty spaces

sonal attitude towards programming, of one’s style. In
fact, it could be argued that you do not choose an approach
to readability but that it is the coding style that appeals
to you that you will find readable. At any rate, it seems
clear that readability is a matter of subjective opinions.

Readability and coding styles are hence at the heart
at the personal relationship between programmers and
software (private aspects of programming) so it should
be interesting to classify them, just to put some order and
to clarify some of their aspects. There are, of course, no
official classifications available, but there do not seem to
exist even some private ones, or at least I have not found
any. Hence, I have decided to construct one such clas-
sification that uses the concepts presented above and that
only has to classes:

literate minimalist
comments – no comments

empty spaces – no empty spaces
long naming – hort naming

Now some programmers like to have no comments and
short naming and are inconsistent when it comes to
empty lines; others name inconsistently but put a lot of
care in the comments; there are all sorts. And I have not
discussed other alternatives given by particularities of the
languages – for instance the possibilities offered by the
#define in C. In fact, almost each programmer has her/his
own coding style, making classifications such as the one
above somewhat unreal. But still, they may serve as
examples of what those styles look like and how pro-
grammers relate to them.

I have called the two suggested styles ‘literate coding’
and ‘minimalist coding’. These two names are not used
by programmers, nor do they identify two classes similar
to these ones; they are the result of my attempts at estab-
lishing some order to the discussion. It may, in fact, be so

142

that some programmers recognise some of the character-
istics of their code on the literate side and some others on
the minimalist side. But, once again, the purpose is not to
construct a final classification but to find an inroad to the
private aspects of programming.

literate coding

‘Literate coding’ is a name directly inspired in ‘Literate
Programming,’ a concept introduced by Donald E. Knuth
in (Knuth 1983). In the introduction to that paper he de-
scribed the main goal of that programming methodology:

My purpose in the present paper is to propose another motto that may
be appropriate for the next decade, as we attempt to make further
progress in the state of the art. I believe that the time is ripe for
significantly better documentation of programs, and that we can best
achieve this by considering programs to be works of literature.
Hence, my title: “Literate Programming.”
Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do.
The practitioner of literate programming can be regarded as an essay-
ist, whose main concern is with exposition and excellence of style. Such
an author, with thesaurus in hand, chooses the names of variables care-
fully and explains what each variable means. He or she strives for
a program that is comprehensible because its concepts have been
introduced in an order that is best for human understanding, using
a mixture of formal and informal methods that reinforce each other.

It is perhaps no coincidence that Knuth’s best known
publication is a series of books called The Art of
Programming (Knuth 1997) (see more of these ideas in
(Knuth 1974a)), a very technical, and much admired,
work that starts with the following lines:

The process of preparing programs for a digital computer is especially
attractive because it not only can be economically and scientifically

143

awarding, it can also be an aesthetic experience much like composing
poetry or music.

The literate methodology of programming, and the cod-
ing style that accompany it, goes much further than
the usual guidelines that can be found a little bit every-
where. The main concern of the programmer is with
exposition and excellence of style. Literate programming
is as much a question of readability as of aesthetics, of
personal expression.

Knuth is not just another coder, he received the
Turing Award in 1974 (nowadays Professor Emeritus
of The Art of Computer Programming at Stanford
University), and is quite famous among programmers.
One detail from his work may serve as an amusing illus-
tration of the many nuances of the programmers relation
to software. One of Knuth’s well-known ideas is to offer
money for every bug found in the programs he has pub-
lished. The reward for every bug increases both with time
and with the number of bugs already found and nowa-
days there are checks for $300 in circulation with his sig-
nature on. I do not think that they would put much pres-
sure on his bank account but he may not even have to
worry: those checks are not always cashed in, they are
instead framed and kept as trophies. The whole thing has
come to be called Knuth’s entomology…

But what does a literate program look like? The follow-
ing is an excerpt from a program that Knuth wrote in
order to show the possibilities of his style. It is called
Adventure (Knuth 1998) and it is a remake of a famous
early computer game:

144

As you can see, the code of the program is structured like
a book, with conventional page numbers. More specifi-
cally, it looks like a law book with all the text divided
into sections. This is section §21 (page 16), there are 201
for this program in particular, all of them with their
‘text-introduction’ and their piece of code (I wonder if
Knuth would rather have me saying “everything is
code”). Literate Programming is probably as far as any-
one can go in the direction of explicitness in coding style.
And it has its share of admirers in the Slashdot discus-
sions about beautiful software:

145

20 CAVE CONNECTIONS ADVENTURE §32
32. Welcome to the main caverns and a deeper level of adventures.
〈Build the travel table 23 〉 +≡

make loc(emist ,
"You�are�at�one�end�of�a�vast�hall�stretching�forward�out�of�sight�to\n\

the�west.��There�are�openings�to�either�side.��Nearby,�a�wide�stone\n\
staircase�leads�downward.��The�hall�is�filled�with�wisps�of�white�mist\n\
swaying�to�and�fro�almost�as�if�alive.��A�cold�wind�blows�up�the\n\
staircase.��There�is�a�passage�at�the�top�of�a�dome�behind�you.",

"You’re�in�Hall�of�Mists.", 0);
make inst (L, 0,nugget); ditto(S);
make inst (FORWARD, 0, efiss); ditto(HALL); ditto(W);
make inst (STAIRS, 0, hmk); ditto(D); ditto(N);
make inst (U, holds (GOLD), cant); ditto(PIT); ditto(STEPS);
ditto(DOME); ditto(PASSAGE); ditto(E);
make inst (U, 0, spit);
make inst (Y2, 0, jumble);

33. To the left or south of the misty threshold, you might spot the first treasure.
〈Build the travel table 23 〉 +≡

make loc(nugget ,
"This�is�a�low�room�with�a�crude�note�on�the�wall.��The�note�says,\n\

\"You�won’t�get�it�up�the�steps\".",
"You’re�in�nugget�of�gold�room.", 0);
make inst (HALL, 0, emist); ditto(OUT); ditto(N);

34. Unless you take a circuitous route to the other side of the Hall of Mists, via the Hall of the Mountain
King, you should make the CRYSTAL bridge appear (by getting it into state 1).
〈Build the travel table 23 〉 +≡

make loc(efiss ,
"You�are�on�the�east�bank�of�a�fissure�slicing�clear�across�the�hall.\n\

The�mist�is�quite�thick�here,�and�the�fissure�is�too�wide�to�jump.",
"You’re�on�east�bank�of�fissure.", 0);
make inst (HALL, 0, emist); ditto(E);
remark ("I�respectfully�suggest�you�go�across�the�bridge�instead�of�jumping.");
bridge rmk = sayit ;
make inst (JUMP,not (CRYSTAL, 0), sayit);
make inst (FORWARD,not (CRYSTAL, 1), lose);
remark ("There�is�no�way�across�the�fissure.");
make inst (OVER,not (CRYSTAL, 1), sayit); ditto(ACROSS); ditto(W); ditto(CROSS);
make inst (OVER, 0,wfiss);
make loc(wfiss ,
"You�are�on�the�west�side�of�the�fissure�in�the�Hall�of�Mists.", 0, 0);
make inst (JUMP,not (CRYSTAL, 0), bridge rmk);
make inst (FORWARD,not (CRYSTAL, 1), lose);
make inst (OVER,not (CRYSTAL, 1), sayit); ditto(ACROSS); ditto(E); ditto(CROSS);
make inst (OVER, 0, efiss);
make inst (N, 0, thru);
make inst (W, 0,wmist);

§35 ADVENTURE CAVE CONNECTIONS 21

35. What you see here isn’t exactly what you get; N takes you east and S sucks you in to an amazing maze.
〈Build the travel table 23 〉 +≡

make loc(wmist ,
"You�are�at�the�west�end�of�the�Hall�of�Mists.��A�low�wide�crawl\n\

continues�west�and�another�goes�north.��To�the�south�is�a�little\n\
passage�6�feet�off�the�floor.",

"You’re�at�west�end�of�Hall�of�Mists.", 0);
make inst (S, 0, like1); ditto(U); ditto(PASSAGE); ditto(CLIMB);
make inst (E, 0,wfiss);
make inst (N, 0, duck);
make inst (W, 0, elong); ditto(CRAWL);

16 CAVE CONNECTIONS ADVENTURE §21
21. Cave connections. Now we are ready to build the fundamental table of location and transition
data, by filling in the arrays just declared. We will fill them in strict order of their location codes.

It is convenient to define several macros and constants.
#define make loc(x, l, s, f)

{ long desc [x] = l; short desc [x] = s; flags [x] = f ; start [x] = q; }
#define make inst (m, c, d)

{ q
mot = m; q
cond = c; q
dest = d; q++; }
#define ditto(m)

{ q
mot = m; q
cond = (q − 1)
cond ; q
dest = (q − 1)
dest ; q++; }
#define holds (o) 100 + o /∗ do instruction only if carrying object o ∗/
#define sees (o) 200 + o /∗ do instruction only if object o is present ∗/
#define not (o, k) 300 + o + 100 ∗ k /∗ do instruction only if prop [o] 	= k ∗/
#define remark (m) remarks [++rem count] = m
#define sayit max spec + rem count
〈Global variables 7 〉 +≡

char all alike [] = "You�are�in�a�maze�of�twisty�little�passages,�all�alike.";
char dead end [] = "Dead�end.";
int slit rmk , grate rmk , bridge rmk , loop rmk ; /∗ messages used more than once ∗/

figure, Knuth’s Adventure: .iterate code

some suggested resources by Satai (#2252829)
Personally, I found Donald Knuth's [stanford.edu] Literate Program-
ming [amazon.com] as well as the Practice of Programming
[amazon.com] to be wonderful resources for writing better, more beau-
tiful code.

Personal recommendation by mattbee (#483047)
People seem to be mentioning the obvious targets: Knuth, BSD etc [...]

The best code has lots of comments by Dr. Tom (#483060)
One of the reasons people like Knuth's approach so much is that he
puts the comments first, conceptually. The code is essentially embedded
in a great long comment that describes everything that's happening.
The code is just there to distill the essence of the algorithm into a form
a stupid machine can understand. If the machines were a bit smarter,
they would be able to run the program by reading the comments and
executing them!

TEX by protek (#483152)
If TEX by Donald Knuth doesn't bring tears to eyes nothing will. ;-)
But seriously, there probably isn't a better example of programming at
it's finest, particularly if you are interested in Literate Programming

To the literate coding style belongs the code written with
extensive comments, with generous use of empty lines
and empty spaces, with long descriptive variable names,
and so on. It is a sort of style in which care is taken to
use all the available typographical options to make the
design as explicit as possible.

minimalism

It may seem at first sight that ‘literate coding’ is the cod-
ing style that really tries to make programs readable
while the opposite is writing unreadable code. But this
would be incorrect; we saw earlier in the section that
there are programmers that do not particularly think that
extensive commenting yields, for instance, more readable
code. On the contrary, they seem to say that people that
use comments profusely are programming in a rush and

146

that code should be so carefully written that it is “self-
documenting”: “I think code should be good enough to
stand on it's own without comments.” Furthermore, they
argue, comments can be outdated by modifications to
the code and, instead of help, they might confuse the pro-
grammer:

Re:The best code has lots of comments. by alvi (#483151)
[...] First of all, if someone is supposed to maintain a piece of code, he
or she has to read the code (not the comments!) and understand it.
Period. In most of the cases, its even better to just forget about the com-
ments at all. Comments won't be translated into machine code... but
the source code will, and that's what's going to run in the end. It's
unlikely that a programmer will adjust all the comments (if there are
changes in the code) to be completely consistent all the time. You sim-
ply can't trust comments.

This minimalist style is based on the idea of coding as
an austere translation of the design. They also argue that
comments take up space on the screen, preventing an
overview of the actual code (what the processor will
read):

The best code has comments only when needed by a!b!c! (#483208)
Its interesting that you mention how to format comments but not what
you put in them. Excessive and useless commenting is almost as bad as
having no comments at all. Its frustrating to have the code so chopped
up with crap, that I can't even fit 15 lines of code on the screen. Good
variable names can greatly reduce the need for comments.
[...] I greatly prefer simple code that can be easily read with minimal
comments.

I cannot find a name quite as illustrious as Knuth to sup-
port this side of the argument, but Robert Pike is
sufficiently eminent. He is (2003) a member of Technical
Staff at AT&T Bell Laboratories in Murray Hill, New
Jersey (as Knuth was) and he co-authored with Brian
Kernighan The Unix Programming Environment
(Kernighan and Pike 1984), among other things. He has
published some Notes on Programming in C (Pike 1989)

147

on the internet in which he expresses his opinions about
comments:

Comments
A delicate matter, requiring taste and judgement. I tend to err on the
side of eliminating comments, for several reasons. First, if the code is
clear, and uses good type names and variable names, it should explain
itself. Second, comments aren't checked by the compiler, so there is no
guarantee they're right, especially after the code is modified. A mis-
leading comment can be very confusing. Third, the issue of typography:
comments clutter code. But I do comment sometimes. Almost exclu-
sively, I use them as an introduction to what follows. Examples:
explaining the use of global variables and types (the one thing I always
comment in large programs); as an introduction to an unusual or criti-
cal procedure; or to mark off sections of a large computation. There is
a famously bad comment style:

i=i+1; /* Add one to i */

and there are worse ways to do it:

/*********************************
* *
* Add one to i *
* *
*********************************/

i=i+1;

Don't laugh now, wait until you see it in real life. Avoid cute typogra-
phy in comments, avoid big blocks of comments except perhaps before
vital sections like the declaration of the central data structure (com-
ments on data are usually much more helpful than on algorithms); basi-
cally, avoid comments. If your code needs a comment to be understood,
it would be better to rewrite it so it's easier to understand.

There is no term that is generally used to describe this
style of coding but ‘Minimalist’ is, I believe, appropriate.
Minimalism, as I see it, is not only about sparse com-
menting, it is also about strictness in the adherence to
the grammatical rules of a programming language. It is
against all kinds of ‘clutter’.

Pike says that “comments clutter code” and he means

148

that since code is not executed by the processor, they are
in the way when reading the code. In order to understand
what the processor does one should focus on the parts of
the code that the processor actually ‘reads’. But ‘clutter’
can also be used to name unnecessary commands or
overzealous use of language:

Re: The most beautiful piece of code... by RoninM (#483167)
How about:

#include <stdio.h>
int main(void)
{

(void)printf("Hello, world!\n");
}

Re: The most beautiful piece of code... by joto (#483199)
No, it's not beautyful.
[...] 2. It is stupid to cast the return value from printf(). It introduces
more visual clutter, and serves no purpose.
3. I think you could afford a line of whitespace between the preproces-
sor directive and the main function. [...]

The second point in joto’s reply refers to the (void) that
RoninM has included before the printf(“Hello,
world!\n”). I think a short technical explanation is nec-
essary here: functions are elements of most programming
languages which have precisely defined rules of use.
Those grammatical rules, as they are called, have to be
strictly followed when writing code if one wants the
compiler to be able to translate it into machine code.
However, sometimes the rules might allow for slightly
different uses, generally to simplify the writing of pro-
grams. We have an example in the previous exchange:
functions in C always return a value when executed
(which technically means that the result of the operations
carried out by it will be stored in a particular place of the
memory) however some compilers allow function calls
that do not use the value returned. This was probably

149

included in some versions of C in order to improve the
ease of use of functions that carry out interesting opera-
tions but whose return value is generally uninteresting.
printf() is one of those functions: when called, it writes a
given string of characters on the screen, if everything
goes right it returns the value TRUE otherwise it returns
FALSE. I do not exactly know in which conditions
printf() can fail (probably depends on the compiler and
the operative system) but they are certainly rather rare.
Which means that many programmers do not even both-
er to check the return value.

RoninM’s program does not exactly check the return
value, the code just makes sure that the value is cast
away under controlled forms, that no ends are left loose.
Some programmers, like joto, find the whole thing
redundant and confusing, since there is no strict need of
casting in this particular case:

Re: The most beautiful piece of code... by joto (#483203)
[...] Anyway, I think any C-programmer on the planet knows that
printf() is called mainly for a side-effect. You do not need to tell them
that with a void-cast, as little as you need to tell them that with a com-
ment. Do you really think there is even a single programmer on the
planet that think it is easier to understand your programs because you
put in lots of redundant unnesseceary casts?

This exchange between RoninM and joto shows two dif-
ferent approaches to grammatical rules: the rigorous and
the relaxed one. I have decided to include the rigorous
one in the literate style because it can be considered a
form of clutter, and minimalists are against anything that
may appear on the computer screen and has no
significant influence in the way the processor executes the
code. However please note that the ‘relaxed’ approach
to grammatical rules in programming is quite far from
what ‘relaxed’ generally means, the rules do not offer
many alternatives and compilers are perfectly intolerant,

150

anything that is not explicitly allowed in the rules will
stop the compiling process.

obfuscated code

The previous sections present two different ways of relat-
ing to code. They do not exactly mirror the situation
among programmers (they consider more aspects than
our three) but serve as an illustration of how coding
involves more than a search for readability. Personal
preferences play an important role, if anything, because
it is impossible to decide a priori what kind of coding
styles are more readable.

I would like to wrap up this chapter on coding styles,
and their connection with the private aspects of pro-
gramming, with a short presentation of a curious
programming phenomenon: obfuscated code. Obfus-
cated code is the opposite of readable code, the idea is to
write programs that are impossible to understand. Some
programmers joke(?) that they are forced to do so at
their working places in order to make sure they will not
be sacked:

Re:True, but code maintainability can be critical. by Anonymous
Coward (#2253176)
There's (usually) no guarantee that *you* are going to be the one main-
taining the code in the future
I thought that was the point of writing sloppy code in the first place!
Job Security: it's a wonderful thing ;-)

Re:Open Source, of course by Telek (#2252952)
[...] Mind you, at one place that I worked where our jobs weren't very
secure I used obscurity of code to secure my job. Noone else in their
right mind could understand what I wrote (not necessarily due to
messyness, but no comments, and not meaningful variable names, no
documentation, etc). I had written the entire application, and before I
left I commented it, but it was fun at the time.

151

But generally, programmers write obfuscated code (at
least consciously) in order to enter contests. Perhaps the
most famous of this is the International Obfuscated C
Code Contest (IOCCC), to which people send all kinds
of inhuman, and technically extremely advanced, cre-
ations. The IOCCC is held under very relaxed forms,
there are no prices other than peer-recognition, and its
internet site presents a rather humorous tone. These are
the official goals of the contest:

But the real goal of the contest is to show who can write
the most amazing piece of code (making code really unin-
telligible requires some skills). Every year programmers
send in their programs, and every year one can find quite
impressive examples of code. Let us look at one of them.

A few introductory words first: every submission to
the IOCCC must be accompanied by a description of the
methods used to obfuscate the code, in other words,
what the author has done to make the program as
incomprehensible as possible (often the obfuscation, as
the case is with our example, simply results from squeez-
ing the program into the size allowed by the contest).
Bernd Meyer, one of the winners (for “Best Utility”) in
the 2000 edition, says the following about the obfusca-
tion in his glicbawls program (I know it might feel a bit
too technical, but the effort is well worth it):

152

figure, IOCCC’s goals

C) Obfuscation
==============
Most of the obfuscation of this program was driven by the desperate
struggle to fit all of glicbawls' features into code that fits the IOCCC's
size limits. All identifiers names are single-character, which was only
possible by ruthless exploitation of scope. There is a function M() that
handles nearly all input from stdin, handles all output to stdout, and
also recursively calculates one of the mathematical expressions needed
for error modelling. There is a function that calculates (A^(-1)*b)*x
with A a matrix and b and x being vectors, and does so in a very
efficient way --- but one would be hard pressed to find it. There is an
arithmetic coder that is even less recognizable. A lot of loop variables
don't get initialized, but instead the code is arranged in such a way that
they just happen to have the right value when control flow reaches the
loops. Lots of functions use the same two global scratch variables.
Variables change their meaning all the time, and the differences
between compressing and decompressing are handled in rather subtle
ways all over the program. The string that holds the ascii values for dis-
playing the progress image doubles as a description on how to find a
pixel's causal neighbours. And then there are a few #define's that real-
ly are just in there to save a few characters, but as an added "benefit"
make the source ever more unreadable.

In short --- running it through the preprocessor and the pretty-printer
will give you something that looks slightly less like line noise and slight-
ly more like a C program, but unless you are a true wizard, it is unlike-
ly to gain you any insights into what is actually going on....[0]

Bernd Meyer

In case you are wondering what the code looks like, this
is it (in very small font size but it does not really matter,
it’s quite indecipherable in any size):

153

This program compresses and decompresses images, but
it might be close to impossible to realise this just by look-
ing at the code. Meyer has gone more or less as far as you
can go in trying to make programs unreadable: not ini-
tialising variables, calling them short hermetic names,
using the same function to do different things, etc. The

154

#include <stdlib.h>
 #include <stdio.h>
#define a typedef
a long N;
#define i =m(p(r,o,v),e,d
N G,l,I,C,B,A,W,L,S
, R,O,c,k,s =
80, U=13
,T=169; a double P;
 #define F for(
 a P*E; a char*w; P sqrt(P); N H(){ F;
 O=scanf(" %[#]%*[^\n]",&O);); scanf("%ld%*c",&O);

 #define D return
 D O; }

#define V =malloc(sizeof(
#define M M(
#define X +=
P M N R){ s= s>=k?printf("%ld%c"
+3*(C<1),s-k, R&7?32:10):s; D R>0?B
/2?H():getchar ():R?.9+.7*M R+1):0; }
P t(N x,P K){ D x?(x>U?0:t(x+2,K)*(x-1)
/x/K)+1/sqrt(K): t(2,K*K/U+1)*K; } N _(N
J,N x){ F*(x?&W:& A)=W+J+x; (O=x=W/(J=k*k))
||A<J||((O=2*W/J) &&2*A/J<3); A X A-J+1){ F
J*=x+O; S--*B&&x==O ; O=x=!J){ s X x+s; M 0); }
W X W-J; S X 2; L X L-J*k+M S%8==B); } D 1; } E
p(E J,E x,E O){ F R=T; R--;)O[R]=J[R]+.8*x[R]; D O;
} P m(E W,E x,P s){ F R = U; --R;){ E A=W+R*U; W[R]X s/
12; *W X s; *A-=*x++; F; A>W;){ *A/=*W; F O=R; O; O--)A[O]-=
W[O]**A; A-=U; } W X 14; } D*W; } int main(int z,w*y){ N K=s,g; Y;
M z); s= B=C=15-H(); s=G= M 8); s=l=M C); G*=g=C%3?1:3; if(I=s=M 8)){ N
b=G+9,x=b*340+U,J=b*(l+5), * n V N) * J),*j=n+5*b; E h V P)*x),q=h+b,e=q+
b; P d=K; F; J--;)n[J]=J<b ? 0: I / 2 ; F; x;)h[--x]=0; s=M x); k=256; C
=4-C; B=C/4; s=_(_(T,0),0); F ; -- z ;){ R=atoi(*++y); c=R>0?K=R,c :-2*R;
} z=G/K+1; z X g>z; I++; c++; F ; ++ J<l;){ P u=0,C,y; E H =e+U,o= H+b*T,r
=o-2*T,v=r-T; F; x<G; x++){ p(H , o -T,o); o X T; H X T; q[x]= .7*(q[x-1]+h

 [x]);
 } p(H,
 H,r);
 F; x;
) { E S=
 e ; w l =
 " !{ ,;lf6D@"
; j X 1-g; F; *++l;

){ *S++ =*j; j X*l%3*g-
 g+*l%5*b-3*b; } y =M x-G);
 y =M-J)* M-x)+ M-J-1)*y+.01; y=
sqrt((u+q[--x]+.1)/y); o-=T; C i)+

 #define Z(x)(t(0,(x-C)/y)-l+1e-6*(x-Q))
 .5; K=M-B); { N f=I,Q=0; F; f-Q>c;){ P l=0
 ; N H = C+c/2+1; H%=c; H X(f+Q+c-2*H)/2/c*c; l=
Z(Q); O=(A-W)*Z(H)/Z(f); _(O,R=B?K>= H:L/k>O+W); *(

 R?&Q:&f)=H; } Q X f; *S=*j=Q/=2; s=B?s:Q+k; f=Q+n[x/z];
 n[x/z]=x%z+J%(z*2/g)?f:!putc(x?l[4*g*f/z/z/I-8]:10,stderr);
 H-=U; F O=156; O--;){ H--; *H=e[O%U]*e[O/U]/y+.8**H; } C-=Q+.5
; y i/.9)-Q-C; p(p(r+T,r,r),H,r); h[x]=.7*h[x]+C*C; u X h[x]; u*=.7
 ; d X C>0?-y:y; } } j X 9; } _(_(x,x),x); } D 0; }

 �

code, Meyer’s creation: glicbawls

preprocessor and the pretty-printer that Meyer talks
about are applications that are capable of putting some
order in the code (so that it does not look like a Martian
character, for instance) but that is, according to him, not
going to help you much. This is the paragon of unread-
ability, and this extreme sort of programming is not
without admirers:

Beautiful... sort of ! (beautiful obfuscated C) by Cedricm (#483054)
[where can I find beautiful code?] See http://www.ioccc.org/
Cool stuff !

This is not off-topic. Lousy moderation. by BeanThere (#483073)
Some of the most "elegant and masterful design" I've ever seen is code
from the obfuscated C coding competition (http://www.ioccc.org/; it
may often look pretty atrocious to the "untrained eye", but there are
some pretty amazing examples of masterful design [...]

Want nice code? by alehmann (#483100)
http://www.ioccc.org [...]

Try this.. by Arjuna Theban (#483220)
Check out savastio.c or any other ioccc winner.
If you can read those, well.. you're either too good or have too much
time in your hands. Either way, it's good.

Even if they don’t explicitly put it like this I believe they
would all admit that it is unreadable, but that is hardly a
point when the title of the contest is “International
Obfuscated C Code Contest.” The point is that it shows
the wide range of alternatives open to programmers
when coding, and also that readability must sometimes
be weighed against the pleasure of writing something
with a personal touch, even if it need not go to the
IOCCC extremes. The concept of vanity is not alien to
programmers:

Re:Beautiful software by quartz (#2253179)
I never said I blamed Perl. I just said it's what I happen to be coding in
at the moment, and I'm loving every minute of it. :-) I know I should
strive to make my code "readable", but the irresistible urge to type:

155

join(" ", map { ucfirst } split(/ /, shift)); just to correct a spelling error
in the database on-the-fly is simply overwhelming. I just can't help
myself. :)

Re:Beautiful software by fishbowl (#2253306)
I know I should strive to make my code "readable", but the irresistible
urge to type:join(" ", map { ucfirst } split(/ /, shift));
The presumption that your code is somehow "unreadable" bothers me.
I find your transformation to be okay, although I don't like the bareword
ucfirst. If I were maintaining your code, I'd probably do away with
your use of the $_, or at least, explicitly use $_ instead of implying it.
But there's nothing in this example that should be a problem for even
a beginning perl coder, in my opinion. You've used a common perl
idiom in a very efficient, clear, understandable way.
Now, if an ADA or VB programmer can't understand your program,
that's an unreasonable criticism.

Explanation: Perl is a language that allows for really
compact code, things that are quite difficult to under-
stand. IT is a sort of standing joke that it is impossible to
write readable code in Perl, and quartz’ first comment is
“My software is so ugly it's beautiful. I'm coding in Perl
these days. :).” Now, some Perl users can be sensitive
about their language and one of them claimed that Perl
should not be blamed for one’s own lack of skills. quartz’
answer to that is the first of the previous comments: he
or she admits that Perl is not to blame, but that he feels
the “irresistible urge” to code things as complicated as
“join(" ", map { ucfirst } split(/ /, shift))”. fishbowl reacts
to this, saying that he or she does not see why on earth
that line should be considered unreadable. Then follow a
few comments from Perl users that explain what the dif-
ferent parts of the line do and how it all works. And then
comes quartz’ answer to fishbowl, read attentively:

Re:Beautiful software by quartz (#2254206)
OK, OK, you got me. The $_ was actually there when I pasted the code
from the Emacs window, but just before I submitted I decided to take
it out for added effect, as I know many non-Perl coders have, um,

156

strong opinions about implicit variables. Vanity, I guess. But hey, it does
work with strict and -w!:)
As for the unreadability part, try writing the equivalent of the above in
C++ (or, god forbid, Java) and looking at the 10+ line resulting code
you'll see why C++/Java coders at least might find unreadable what's
otherwise perfectly fine Perl.

“Vanity, I guess”…I think it is safe to assume that coding,
for quartz, is not only about writing readable programs.

157

vi
Aesthetic Ideals

Through an examination of coding and its results, this
thesis has introduced the technically complex subject of
beauty in programming but it is not my intention to
go into a detailed explanation of the aesthetic ideals of
programming since this would require too much techni-
cal overhead. However, this study would be incomplete
without an overview of the most popular aesthetic attrib-
utes of software. I will present here the following ideals:
cleanness, simplicity, tightness, consistency, structure and
robustness. Programmers use these words (the adjec-
tives) to describe the beauty of their preferred programs,
or, perhaps more often, the qualities they pursue when
writing software. As in the previous chapter, the purpose
here is not to provide a comprehensive classification but
to delve more deeply into the phenomenon by offering
more evidence of the existence and significance of the pri-
vate aspects of programming.

159

Re:Not this stupid 'programming is art' BS again! by Anonymous
Coward (#2255136)
Is coding by itself even a craft? It's really nothing more than translat-
ing an algorithm from one form to another. Under copyright law, I can
make a case that *coding* is nothing more than a work-for-hire.
I find the arguments against coding standards really lame. "It hurts
my creativity".
Buddy, if your creativity depends on the placement of braces and how
many spaces you use to indent, you're a real lamer.
Designing, on the other hand, *is* art.

Programming is so much more than coding that it would
be misguiding to only write about coding styles when
discussing software aesthetics. This chapter will intro-
duce the different qualities that programmers appreci-
ate, and to which they relate in aesthetic terms. These
descriptions are not only offered in order to expand the
picture of software aesthetics but also to further illustrate
how programmers relate to software. The study’s ulti-
mate goal is, after all, to gain an understanding of this
relationship. Let me first include a short reflection about
the field of aesthetics and about the sense in which ‘aes-
thetics’ (or beautiful) is used here and by programmers.

aesthetics

The discipline of aesthetics is perhaps the most popular
branch of philosophy, and the interested reader can
chose among a great number of approaches to it. There
is little point here in flooding the text with references to
books in this field, suffice to point here to three good
introductions (Hofstadter and Kuhns 1976), (Valverde
1998) and (Langer 1957).

Aesthetics can be described in a few words as the
ontological and epistemological study of beauty and art
(what are beauty and art and what can be known about
them), was originally devoted to the study of feeling – as

161

opposed to reason. This realm of the human mind had
been mostly ignored in Western thought, overshadowed
by the notion that legitimate knowledge could only be
achieved through logical, devoid of feelings, rationality.
In the renaissance and the seventeenth century, however,
man, indeed exclusively man, became the centre of philo-
sophical theories, displacing other classic cosmic con-
cepts such as order, harmony or God, as the main episte-
mological referent. The texts that have often served to
mark the turning point in this change of views is
Immanuel Kant’s three Critiques.

Once this change of focus was made, it became
impossible to ignore the existence and significance of
feelings, even if their place in the grand scheme of things
was not (still is not) obvious. Many philosophers offered
conceptual constructions, grand narratives postmod-
ernists would say, to organise that universal scheme of
things, but the one most interesting to this study must be
Kant, who wrote the seminal book in the field of aes-
thetics: Critique of Judgement (1790) (Kant 1957). In it,
Kant establishes beauty, and the aesthetic feeling it arous-
es, as entities separate from the theoretical – pure – and
the practical logic. In other words, he established the dif-
ference between beauty, logic and moral.

The main characteristics of aesthetic judgements,
according to Kant, are self-referentiality (subjectivity)
and self-satisfaction (universality): I am satisfied with my
own judgement about the beauty of something and
believe it beyond correction (Townsend 1997); in other
words, I do not need to look anything up to find out if
something is beautiful (I possess all necessary knowl-
edge), and telling me that I made a wrong judgement
(what I thought was beautiful actually isn’t) makes no
sense. This is a concept of aesthetic judgements that still
holds today, even if there have been quite a few modifi-
cations in matters of taste, and what is considered beau-

162

tiful now may have been ugly at the time and vice versa.
But it is not only taste that has changed, Kant’s con-

ceptual construction has also seen modifications, even if
the basics still form the conventional view on beauty and
art. The characteristics of the aesthetic feeling, notably
its immediacy and strength, have been the subject of
much debate, and a number of philosophers have felt the
need to launch their own inquires into the matter. At any
rate, subjectivity and universality have remained the
main traits of aesthetic judgements, a notion popularly
summarised in the saying “beauty is in the eye of
the beholder.” Theories of beauty canons, which had
quite some importance in the classical periods, have
receded and the search for the right proportions is no
longer a central project in any major aesthetic movement.

Nevertheless, if I have chosen “aesthetic ideals” as
the title of this chapter I am not trying to suggest that
that there are canons of beauty in programming, let
alone a branch in a philosophy of programming aimed at
establishing them. In this case, ‘aesthetic ideals’ is used in
its vaguest – simplest – sense: as the desirable qualities
that make software beautiful.

Now as much as I hope that the sentence “as the desir-
able qualities that make software beautiful” helped to
explain what I mean by “aesthetic ideals”, it is a bit
problematic. It sounds as if I am going to offer some
objective characteristics that make software beautiful.
But this is impossible, as Frank Sibley points out (Sibley
2001), since aesthetic concepts, or concepts of taste, are
“not, except negatively, governed by conditions at all”
(:8). In other words, it is impossible to decide whether an
object is beautiful just by enumerating a number of
“non-aesthetic” features. On the contrary, we explain
beauty with other aesthetic concepts, such as elegance or
delicacy, which are just as irreducible to non-aesthetic

163

qualities. Beauty can however, be explained with con-
cepts that are primarily non-aesthetic, such as cleanness,
simplicity or colourfulness, but only through a linguistic
transformation. We are so used to this kind of transfor-
mations that we do not notice them. For instance, take
colourful: there is nothing in the adjective colourful that
would prevent a colourful painting from being ugly, so if
I use ‘colourful’ to describe why a painting is beautiful,
I do not just mean that ‘it has a lot of different, and vivid,
colours’. I mean that it has a lot of colours and that they
are beautifully combined. When we use ‘colourful’ in
an appreciative sense we change its literal meaning,
adding an aesthetic qualifier. In order for that aesthetic
‘colourfulness’ to become a non-aesthetic term, I would
have to explain, non-aesthetically, what ‘beautifully com-
bined’ means. And this is what Sibley says is impossible.

This, Sibley continues, is not due to “an accidental
poverty or lack or precision in language”, neither is it
“simply a question of extreme complexity” (:11); it aris-
es from the non-conditional essence of the aesthetic
judgement: we do not use any rules to decide whether
something is beautiful or not. This, however, does not
imply that it is impossible to discuss about the aesthetic
value of objects. Only that each particular case must be
considered on its own merit, and that we should give up
the idea of reducing aesthetic judgements to a matter of
enumeration of qualities.

The aesthetic concepts used by programmers, pre-
sented later on in this chapter, are all, apart from beauty
and elegance, examples of primary non-aesthetic terms
(cleanness, simplicity, tightness, etc.) used in an aesthetic
sense. In some cases, the words used by programmers
may confuse us into believing that they are not discussing
the aesthetic but the public aspects of software. For
instance, we shall see, how in some instances they may
refer to a program’s efficiency.

164

In some of these cases, the use of adjectives like ‘efficient’
is so obviously disconnected from a public perspective on
code that there is no doubt that we are dealing with pri-
vate aspects of software. In those cases, the context of
use leaves little doubt as to the appreciative sense of the
word (i.e. aesthetic (Wittgenstein and Barrett 1966)). In
others, the concept ‘efficiency’ forms part of an instru-
mental belief, and the appreciative nature of a statement
such as “this program is very efficient” is hidden behind
a pseudo-instrumental claim (more about this in the next
chapter, which considers the relationship between two
fundamental concepts: functionality and beauty). Now,
the adjective ‘efficient’ may of course also be used in an
objective sense; for instance, when comparing the speed
with which two programs carry out the same function. In
some cases, describing a program as efficient may both
be the result of a careful comparison and a proof of
admiration. Luckily, it is often easy to see whether the
adjective carries some appreciative sense or not. The fol-
lowing is a representative example of ‘structured’ being
used to denote admiration (note the ‘very’):

Older quality improvement techniques worthless? by CactusCritter
(#2254711)
A lot of stuff from the 70's and earlier 80's seems to be unknown now.
Was this due to proven lack of value or what?
IBM developed the Chief Programmer Teams which included lots of
mentoring and non-author code reviews. There was proof of correct-
ness via p-notation. (I never really mastered it, but I thought that was
my fault.) There was truly structured code. Dahl, Dijkstra, and Hoare
had "Structured Programming" published in 1972. I only saw Dijkstra
mentioned in thie discussion. Pity.

A few last introductory words before turning to the aes-
thetic ideals themselves. Listening to the programmers’
conversations about programming, we can distinguish a
number of words which are frequently used to express
their appreciation of code, the rest of this chapter is ded-

165

icated to their classification. As in the case with the cod-
ing styles in the previous chapter, and for the same rea-
sons, I have no higher expectations as to its comprehen-
siveness. When I speak of ‘programmers’ it may sound as
if I had a complete overview of the field, but this is not
the case. I use ‘programmers’ instead of ‘the program-
mers that took part in the Slashdot discussions and that
otherwise form part of my empirical material’ just for the
sake of clarity. Once again, the point of the classification
is not to be exhaustive but to illustrate how programmers
refer to software in aesthetic terms, and to describe the
private aspects of programming.

The case of coding styles was included to introduce
the reader to the world of programming and its alterna-
tives, even if the introduction finally only dealt with a
tiny bit of the software development process. It was per-
haps not as much focused on the aesthetic feeling as on
the possibilities of personal expression, and, let me insist,
it only dealt with the limited possibilities offered by
transparent coding (alternatives that were transparent to
the compiler). The non-programmer reader that has read
the previous chapter may perhaps imagine the enormous
possibilities to personal choice offered to the program-
mer throughout the whole development process: from
specifications requirement, design, coding, testing, debug-
ging, installation, etc.

Any classification of the aesthetic terms used by pro-
grammers must deal with the fact that as much as they
are, have to be, extremely exact with the use of com-
mands in programming languages, they can be as careless
as anyone else with words like ‘elegant’, ‘clean’, ‘beauti-
ful’ etc. Arguably, part of the reason for this carelessness
lies in these two circumstances: firstly, in all likelihood,
they have neither the time nor the interest to weigh every
word they use when they are publishing opinions on the
internet or being interviewed by researchers; secondly,

166

and most importantly, aesthetic opinions are seldom well
defined: expressing the feeling that a given object conveys
is an art in itself, and normal programmers are not much
better trained in that than the average citizen. But, once
again, we do not seek the chimera of an objective, com-
prehensive classification, but a description of the pro-
grammers’ relationship to software.

elegant and beautiful

These two are the adjectives that programmers use most
often for expressing their aesthetic judgements about
programs. I have chosen to present them together
because these are practically the only primary aesthetic
words used by programmers to signal aesthetic feeling.
The rest of the terms presented here are, in Sibley’s ter-
minology, non-aesthetic and are often accompanied by
‘elegant’, ‘beautiful’ or some other word that indicates
their aesthetic sense (such as ‘truly structured’ in the
previous example).

‘Beauty’ and ‘elegance’ – the latter perhaps even
more so – are often used as the paramount characteristic
of software, as C. A. R. Hoare did in his 1980 Turing
Award lecture: “I have regarded it as the highest goal of
programming language design to enable good ideas to be
elegantly expressed” (Hoare 1981).

However, simply saying that a program “is beauti-
ful” does not reveal much about it, and what we tend to
find in the programmers discussions are combinations of
the sort:

167

Simplicity and elegance
Highly commented and very elegant
Beautiful and elegant
Clever or elegant
Beautiful or elegant
Elegant & concise
Creative and elegant
Sublime elegance
Elegant simple
Wonderfully elegant
Elegant and masterful
Quiet elegance
Elegant, masterful, excellent and beautiful
Pure elegance
Purity and elegance
Incredibly beautiful well structured
Elegant or “pretty”
Great, beautiful, engaging, pleasing
Elegant efficient and really readable
Functionally beautiful
Simpler, more elegant, and more readable
Bugfree and beautiful
Concise, elegant and above all logical
Beautiful, maintainable
Beautiful robust
Beautiful and usable
Pretty or beautiful
beautifully simple

All those combinations are taken from Slashdot messages,
in which often the participants claim something about
beauty in programming and then go on to explain what
they mean. The following is a representative example:

Re: Beauty for beauty's sake makes crappy software by Anonymous
Coward (#2254673)
I always had the experience that beautiful code is superior to ugly
code. That depends on the definition of beauty in that case.My
definition of beauty comes from math and physics which means that a
shorter more compact formula is more beautifull than a formula that
has to take into account many special issues. What is nicer to look at?
Code where you have several if() clauses for several sepcial cases, or
code where the if() clauses can be omitted because the code is designed
and structured in a way that includes all these special cases without the
need of having to consider special cases at all.

168

Even if they are the only primary aesthetic terms in the
Slashdot discussions, the use of these two words is not
what proves the existence of aesthetic aspects in pro-
gramming. This existence does not depend on the kind of
words used, but on the kind of attitudes towards code
that programmers have. Furthermore, if these words were
the only ‘aesthetic’ about programming, there would
be little point in writing a thesis about it: it would
be enough to mention it en-passant. But programmers
respond to software, or relate to it, in aesthetic ways,
that is, they do things with it that one only does with aes-
thetically pleasing objects. Remember the introduction to
Slashdot’s discussion Where do I find beautiful code? and
consider the following entry to that discussion:

Re:TCL or AOLServer by velouria (#483088)
I downloaded the Tk source a couple of years ago to make a small
modification and ended up printing out and reading the whole thing for
the pure pleasure of it. It shows that C can be very easy (enjoyable even)
to follow. The code's modularity and reuseability is miles better than
most of the "Object Oriented" code I've seen too.

The existence of this kind of phenomena – like velouria
reading the Tk source code “just for the pleasure of it” –
are the real manifestations of the aesthetic aspects of pro-
gramming. This does not mean that all programmers
relate to the beauty of software in the same way. Not all
programmers, for instance, read code just for the plea-
sure of it, but more importantly, not all programmers say
that beautiful software is something desirable. This dif-
ference of opinions is an interesting subject in itself, and
the next chapter is dedicated to it, but for the moment
I shall avoid it, limiting this one to an exposition of the
terms used to describe the beauty of software.

There are many other adjectives that can be used in the
same way as ‘elegant’ and ‘beautiful’ but that turn up

169

much less frequently: nice, great, marvellous, enjoyable,
fine, excellent and other similar ones. Naturally, there are
also quite a number of adjectives that allow the pro-
grammers to express a general feeling of dislike. The
most often used is ‘ugly’ but there is a whole family of
negative evaluators: butt-ugly, horrid, horrible, terrible
hell, shit (also as “S#!%”), sucks, displeasing, poor,
hideous, crap and more. Finally, ‘pretty’ should perhaps
also be included in this group of primarily aesthetic
adjectives. ‘Pretty’ is mostly used as ‘nice’ but sometimes
we can see it showing nor pleasure or displeasure but
rather despise (as I said, not all programmers think soft-
ware should be called ‘beautiful’):

Beauty.. by gnireenigne (#483225)
.. is in the eye of the beholder - this aphorism works in this case too.
But anyone who has had a chance to look at M$ MFC or Native
Winblows code would have to agree that you would have to be blind
to find beauty in any of that kludge

25
. But code is not s'possed to be

pretty. It's gotta work. That's what it's there for.
Code On.

Summarising, ‘beautiful’ and ‘elegant’ are clear signs of
aesthetic appreciation, often used to indicate the tone of
the message. But since they do not refer to any charac-
teristic of software, they are not really aesthetic ideals,
they do not describe wherein the beauty of the program
resides. The rest of the terms presented below are, on the
other hand, proper aesthetic ideals: with their help, it
might be possible to distinguish between different
‘schools’ of programming… even if programmers them-
selves do not seem particularly interested in that notion.

170

clean

‘Clean’ is used quite often among programmers and, as is
customary with words that are used often, it can mean
several things. The most frequent meanings of “clean
code” are ‘readable code’ (white spaces and empty lines
that properly indicate of the structure of the program,
well implemented indentation, suitable names, etc.) and
‘lucid design’ (clearly distinguished functions, forms of
access to databases and other programs, etc.). Notice
that in the following examples the word ‘code’ is not
always limited to the actual code, but used metonymical-
ly for the whole program:

coldsync is a good example of The Right Way (tm) by mcoletti
(#482985)
coldsync, a Palm Pilot synching utility, has the cleanest code I've ever
seen. The design is well thought out. The source is extremely well com-
mented. It also has a lot of documentation, which has the bonus of
being informative, comprehensive, and otherwise very well written.
It also has some good "meta-level" documentation; e.g., the top-level
"HACKING" file, which gives some basic pointers for those wishing
to, well, hack the hell out of the thing.

Re:FreeBSD et al. by arnald (#483263)
Better still, take a look at NetBSD - much cleaner. :-)

not many by cabbey (#483023)
In many of the larger projects though you can ocasionally find bits and
pieces of pure poetry in code. There's an example in the Linux kernel,
I forget exactly where - maybe in the vmm, where someone took the
time to fully digest a rather hairy function and they totally rewrote it
without changing the inputs, output, or side-effects in a small clean
block of code.

So from well thought out design and “extremely well
commented” source [code] to just “much cleaner”, to
“small clean block of code”. One of the few things that
is common to all uses of the adjective ‘clean’ is that it refers
to something positive. It seems that the word ‘clean’ in

171

“clean code”, “clean programming practices”, “clean
non-local error handling”, “clean design”, “clean style”,
“clean logic” and “clean software” refers in all examples
to something good, but perhaps not necessarily to the
same thing. Let us examine a few of those uses.

Referring to design, ‘clean’ may mark the absence of
“dirty tricks”, which are programming stratagems “to
squeeze every bit (pun intended) of performance out of
[programs]”. The idea of using tricks was explicitly men-
tioned by the legendary Edsger W. Dijkstra in his Turing
Award lecture:

The competent programmer is fully aware of the strictly limited sized
of his own skull; therefore he approaches the programming task in full
humility, and among other things he avoids clever tricks like the plague.
(Dijkstra 1972)

He calls them “clever” tricks, I’d swear it’s an irony, and he
definitely does not like them. He does not like either the
programming languages that stimulate the use of tricks,
as he explains in the lines that follow the previous quote:

In the case of a well-known conversational programming language I
have been told from various sides that as soon as a programming com-
munity is equipped with a terminal for it, a specific phenomenon occurs
that even has a well-established name: it is called “the one~liners”. It
takes one of two different forms: one programmer places a one-line
program on the desk of another and either he proudly tells what it does
and adds the question “Can you code this in less symbols?” - as if this
were of any conceptual relevance! - or he just asks “Guess what it
does!”. From this observation we must conclude that this language as
a tool is an open invitation for clever tricks; and while exactly this may
be the explanation for some of its appeal, viz. to those who like to show
how clever they are, I am sorry, but I must regard this as one of the
most damning things that can be said about a programming language.

This preference for cleanness over clever tricks can be
found all over the, so to speak, official (teachers, venera-
ble programmers, etc.) view of programming. Serious
programmers hold it almost a moral maxim, that frivo-

172

lous stuff like clever tricks should be avoided. However,
there appears to be little sign of that frivolous stuff
disappearing. Easter eggs (little surprises hidden in the
code), backdoors (unofficial ways to enter a system),
obscure code contests (we have seen a few examples of
the entries to these), one-liners, hacks (in the sense of
ingenious programming stunts) and other frolicsome
behaviours are as thriving as ever. They are indeed an
important part of the private aspects of programming,
but will not be dealt with in this study.

Cleanness relates, in this sense, to a programming
approach that praises transparency of thought over clev-
erness. One of the ways to make sure one’s thoughts are
transparent is to think in a classical manner, classical in
the sense of following some basic, classic, rules of pro-
gramming. A few postings make allusion to this notion:

OpenBSD by kinger (#483093)
If I recall the OpenBSD

26
guys don't necessarily audit the code for secu-

rity, they focus on good, clean, correct programming practices. Security
then naturally falls into place.

Andrew Tannenbaum's original Minix by AReilly (#483025)
[...] It's nice, clean, traditional C style, too.

IP Filter by bbeausej (#483340)
That's one of the reason why I really like digging into Darren Reed's
code of IP Filter, I think it is ressourceful to see good code like this, that
implement standards correctly and cleanly, and that use the features of
the language without abusing them.

The expressions “good, clean, correct programming
practices”, “nice, clean, traditional style” and “stan-
dards [implemented] correctly and cleanly” all insinuate
an idea that could perhaps summarise the essence of clean-
ness in programming, if there is one: it is about doing
things properly, seriously. This is all very vague, but not
so vague that programmers would not know when they
are on the wrong side of the boundary:

173

Re:Beautiful software by quartz (#2253179)
[...] I know I should strive to make my code "readable", but the
irresistible urge to type: join(" ", map { ucfirst } split(/ /, shift)); just to
correct a spelling error in the database on-the-fly is simply overwhelm-
ing. I just can't help myself. :)

(S)he knows that one-liners are not exactly best practice,
but feels an “irresistible urge” to create them. As much
as ‘clean’ is clearly something positive, it also might be
unfashionable. And it would be foolish to imagine that
programmers, unlike other human beings, do not like to
show off every now and then. But this is the frivolous
stuff trying to find its way back to our text…

An expression derived from ‘clean’ is ‘to clean up’,
which is also rather popular amongst programmers.‘Clean
up’ is what they do to programs that are deficient and
need rework. Exactly what it is that might need rework
is difficult to explain without getting into technical details,
let us simply say that some bits of the program may have
been developed in a rush, and the programmers may feel
that their work is not ready to be shown, it is too sketchy.

Re: NeoMail by happystink (#483270)
wow, they must have really cleaned it up from a few months ago then,
cause back then it had a security flaw so super-basic that it showed
that they didn't really understand a single thing about web security

Don't scoff by fractalus (#2253006)
[...] So earlier this year I began pushing for a major project to refactor
and clean up this code. Already the initial stages of this project (imple-
mented by several programmers on our staff) have yielded huge gains
in how quickly we can develop stuff. As we continue to clean and sim-
plify, these gains increase.

Re:*ACK* VBScript!! by EWillieL (#2254034)
I feel your pain -- BUT -- Visual Interdev is NOT VB! VBScript is
indeed an abomination against God and Nature, but VB is maligned
only because its early versions were implemented well enough to allow
idiots to use it and thereby proliferate mounds of horrific spaghetti
code (written without a plan, to be sure).I do often wish the idiots had
been left out of the VB game, since I now have to go clean up after them
(like on the project I'm working right now -- yeesh!).

174

simple

Simple is an adjective that is used as vaguely by pro-
grammers as by anyone else. Also in programming, it has
both a positive and a negative connotation. The negative
one has to do with descriptions of problems: if they are
simple they do not present the programmer with a real
challenge, they are not of interest. We can observe this
use quite a few times in the Software Aesthetics discus-
sion. Remember that Connell’s article (Connell 2001),
the one that triggered the discussion, was based on a
comparison between civil engineering (building bridges
and houses, particularly) and programming. Well, some
participants thought the task of civil engineers was much
simpler than that of the programmers:

Half right. by antis0c (#2252976)
It's half right to say we should engineer software like we engineer phys-
ical aspects of our lives such as bridges, houses, skyrises, etc.
However.. Bridges, Houses, Skyrises, all are slow moving, slow changed
things. House "technology" doesn't suddenly double every 18 months.
Otherwise we'd be like the Jetsons with houses into the sky, and talk-
ing dogs. Bridges are engineered to last for a very long time, because
they do a simple, easy function. They provide land where there is none
to travel on.
Software and Hardware however does. If you talk to a lot of software
engineers, professors, etc. They'll all usually say not to worry about
performance, next years computers will run it twice as fast anyway.
This is very true at Microsoft. And its partially correct. Why bother
spending a ton of time trying to make something work fast, when dur-
ing the time you took to make it work fast, chips have doubled in speed?

This vision of civil engineering as a simple activity is not
widespread, some programmers complained about the
lack of respect shown for a profession about which most
participants did not know anything. There is, on the
other hand, a rather extended sentiment that program-
ming is extremely complex, mainly because of the inten-
sive changes in the technology, the lack of clear speci-

175

fications when designing a program, the shifting of pri-
orities halfway through the projects and so on and so forth
(in this, they share Brooks’ notion of software being some-
thing special, and of software development projects of
requiring specially dedicated studies). In many cases, this
complexity is used to excuse the poor quality of the soft-
ware that, practically everyone admits, is being produced.

However, this is not what I would call an aesthetic
use of the word ‘simple’. It is in its positive use that
‘simple’ expresses someone’s appreciation of something:

Python by AMK (#482996)
Try looking at the source for the Python interpreter (the C version;
I know little about JPython). Like any sizable program it has its messy
bits, but overall the organization is quite clear, the implementation
leans toward the simple and straightforward instead of the weirdly
optimized and obscure, and it's one of the more pleasant medium-sized
programs I've worked on.

In this appreciative use, ‘simplicity’ means very much the
same as it means in every other human activity: a sort of
clear straightforwardness, something that could perhaps
be illustrated by classicist ideals, as opposed to baroque
ones. Simplicity in programming can be achieved in as
many different ways as it can in the realm of, for instance,
architecture. For example, a deeper level of abstraction,
that allows the programmer to avoid messy construc-
tions to take care of special cases, or the right statement,
instead of an unnecessarily long combination, can both
be ways to simplify a program:

Re: OpenSource is Beautiful by Alan (#482982)
[...] For example, I had a great routine

27
for getting system mem/cpu

info from /proc/*. Browsing through the wmsysmon code I found that
(to my surprise) there is a sysinfo() call that can give me that exact
information... suddenly my code is made simpler, more elegant, and
more readable, as well as more bugfree thanks to one line in an obscure
little applet (well, maybe not *that* obscure :).

176

Programmers seem to take pleasure in finding those
commands that simplify their programs (as in making the
design more straightforward and diminishing the num-
ber of operations/commands)

28
. You must keep in mind

that a programming language like C comes with a large
number of libraries, i.e., extensions that contain ready-
made functions (commands), which allows for a great
level of redundancy and alternative writing of the pro-
grams. At any rate, finding the right “call” can at times
feel like discovering a hidden treasure (apart from the
fact that it shows how well-read you are).

Simplicity in programming is sometimes connected to
asceticism. Some programmers use ‘simple’ as a way of
expressing their admiration for a bare-boned program,
that includes no unnecessary ornaments. This is a very
similar aesthetic position to the one we saw when going
through the coding styles (minimalism). Quite a few pro-
grammers extend their admiration for simple code to the
gui (graphic user interface) and prefer applications where
the user has to write down every command instead of
clicking on nice buttons placed upon colours schemes
and so on:

And, by extension, xdvi.... by Booker (#483015)
[...] When I was using TeX, I was using xdvi as well - and that also real-
ly impressed me. Simple interface, SUPER snappy response on the gui -
no animations, alpha blending, or themes...
Click on that magnify button and zoom the window around... ahh.....
does anybody write code like TeX any more?

Re:flawed analogy by Anonymous Coward (#2257156)
[...] I miss the old command-line mail system days from MIT when I
knew what e-mail I was getting and I was in control of it - not some
overblown GUI contraption...

This aesthetic ideal can be compared to functionalism,
which in the case of programming is sometimes accom-

177

panied by a somewhat reactionary air: some of these pro-
grammers express their dislike for the way programming
is evolving, from the old austere command-based opera-
tive systems and programming environments to the new
user friendly and colourful ones.

A Prime Example by docstrange (#2252864)
Is it just me or is computing going backards. It used to take 2 seconds
to boot into DOS, yet it takes 20 seconds or so to boot into Windows
2000. We have various gui based medical management software that
we manage at my place of employment, but the old dos versions were
far more efficient. Call me a hermit, but I think that the "user friendly,
gui=productivity myth" needs to die. Visual basic should not be used
for ANY production applications. Especially in mission critical system.
That aside, I would like to thank all of the crappy programmers, for
providing me with job security. As long as your stuff breaks, my future
looks bright.

178

figure, Two ways of accessing your files, docstrange prefers the one
on the top

The opposite of ‘pleasingly simple’ is not so much ‘dis-
gustingly complex’ as ‘messy’. With the word ‘complex’
programmers frequently describe programming projects
and their circumstances. In this sense it is used to accen-
tuate the difficulty inherent to programming and, by way
of this, the great achievement it is to be able to write
beautiful software (“The complexity of large software
projects is unprecedented. I've often explained software
to my (non-technical) friends as similar to building a car
out of watch parts. And those are only for the smallish
projects I've worked on.”)

The concept of utter messiness is perhaps most vivid-
ly expressed with the term ‘spaghetti code’. Clearly,
spaghetti code is not simple; the problem is that neither
is it clean, which may serve as a reminder of the fragility
of any classification of aesthetic ideals. Another concept
that is opposed to ‘simple’ is ‘over-designed’, used to des-
ignate software that includes too many features and can
break in too many places. The richness of the concept of
simplicity in programming can be illustrated with the fol-
lowing Slashdot message:

Complexity is in YOUR own perspective only by Taco Cowboy
(#2254706)
Simple or complex.Straight forward or beating around the bush.Keep
It Strictly Simple, or make it as messy as possible.It's ALL up to you.
I write software for a living.I can produce speghetti code, if I want to.
I can make the software as complex and as difficult to use as possible,
if I choose to.But why should I?Simple things come easier for me. I am
a simple guy, living a simple life. Sometimes I make a mess out of
myself, but most of the time, I ain't that messy.Therefore, before I start
to code ANYTHING, I think, I plan, I scheme. I look at other people's
code, I steal ideas from them, I mix and match things that I like, and I
incorporate whichever is useful in the program I write.When all is said
and done, what I aim for is to produce something that is simple, and
yet powerful.Clumsy software not only hurts the users, it also hurts the
authors too !

179

tight

‘Tight’ is an adjective that, in everyday language, does
not necessarily mean ‘pleasurable’. However, whenever I
have seen it in programming environments, it was always
used in an appreciative sense. It can be used in two dif-
ferent general directions, one related to design (or pro-
gramming in general) and another one to coding. In the
first use it indicates that the program has been carefully
designed and that all its pieces fit tightly (they use the
memory in an efficient manner, they use each other’s
functions perfectly, there are no possibilities for dead-
locks or ambiguous priorities, etc). In the second use, it
indicates that the code has been written in a minimalist
(see the coding styles chapter) style.

Writing tight programs may imply a degree of unread-
ability since, figuratively speaking, there is less space
between each one of its parts. In fact, the most extreme
examples of tightness are the entries to the obfuscated
contests. Both the design and the coding of most of those
examples are exceedingly compact, and they are not
without admirers as we saw in the previous chapter.
More everyday exponents of tight code seem to exist a
little bit everywhere:

What is "elegant" code anyway? by foobarista (#2253952)
Is it:1. Massively documented, heavily object oriented code with lots
of reuse, designed for ease of enhancement and maintenance, etc?2.
Tight, fast-executing code which, while it may be difficult to figure out
at first glance, is powerful, resource-sparing, and generally cool algo-
rithmically? Of course it is well documented, designed carefully, etc.3.
Other standards of elegance?There are jobs for which (1) is the
definition, and others for which (2) is a good definition - although my
own bias leans toward (2). Note that systems built with (1) as the
definition tend to be resource inefficient, but in many applications, this
doesn't matter. Are you writing code which glues together a bunch of
legacy db's and other apps or are you coding an OS or filesystem?
To borrow a phrase from architecture: form follows function.

180

As foobarista suggests, ‘tight’ in programming is related
to “fast-executing”, “resource-sparing” and “powerful”,
all of which are obviously much better than their oppo-
sites. The tradition of writing tight code can perhaps be
traced back to the conditions that the first computers put
on the programmers. The amount of bytes of memory
they could work with was almost infinitely smaller than
what is available today in any mainstream PC and pro-
grams had to consume as little of it as possible. Also,
computers were much slower than they are today and
calculations and access to data took years – well, tenths
of seconds, or even seconds. All these circumstances
forced programmers to minimise execution times and
database searches and everything else, turning program-
ming into the art of compressing – and creating the Y2K
concept. Stephen Levy’s book about hackers (Levy 1984)
tells the story of some of their achievements, the most
admired of which were those that made the computer
do things that seemed unfeasible. Today not everyone
is in favour of this sort of programming style but it lives
on and has enough force to raise up some disputes:

Re: The Story Of Mel (or: Ugly Code) by noahm (#483000)
This classic hacker legend came up in a software design class while at
Northeastern. It was used as an example of terrible coding practice.
Sure, Mel was an artist, and an incredibly skilled programmer, but his
code was completely unreadable. Unless you're one of those people
who follows the "if I write unreadable code then they can never replace
me" school of thought for job security then you should definitely not
look up to Mel.

Re: The Story Of Mel (or: Ugly Code) by Mark Imbriaco (#483198)
What you're failing to consider is that Mel was coding for a far differ-
ent era of computers. Not only did he do things the way he did because
it was *cool*, he did it because computers weren't really all that fast
and you had to play dirty tricks in order to squeeze every bit (pun
intended) of performance out of them that you could.
-Mark

181

Re: The Story Of Mel (or: Ugly Code) by noahm (#483001)
I get the point, I just strongly disagree with it. Code needs to be read-
able in order to be useful. I aknowledged Mel's skill and creativity in
my original post, but I stick to my point: he was a poor engineer. I'm
sure you've heard the quote "If builders built buildings the way pro-
grammers write programs, the first woodpecker to come along would
destroy civilization." That describes Mel's coding style perfectly. Make
the tiniest change to the system it's running on and the whole thing falls
apart, requiring a complete rewrite. That's rediculous.
I don't know where in my post you find any reference to debuggers that
hold your hand or some kind of context sensitive help system or what-
ever. I sure never mentioned that. I'm just saying that Mel was a bad
programmer because his code was unnecessarily obfuscated and com-
pletely inflexible. It has nothing to do with what tools he did or did not
use. Obfuscated, inflexible code can be written with the latest GUI IDE.
It doesn't take an old timer with a hex editor, and any hack value it has
is quickly lost when you're the one tasked with figuring out why the
code won't work after upgrading the system.

Re: The Story Of Mel (or: Ugly Code) NOT by Anonymous Coward
(#482980)
god damn it!
Ok, yea, right there in the hex, you should put a few lines like

function for generating the card to be delt to the
user from the computer.

29

Ok, so with compiler coding (post-Mel), you could do this, and that
useless ascii would total maybe half a kilobyte, maybe one. In olden
days that was a gabillion dollars!!
Arogent people who bash those before them with their 20/20 hind sight
piss the shit out of me.
Mel wrote the fastest and most optimal program possible, hands down.
That's not a negotiable fact. He went the extra mile(s) to get get it
working the fastest, at which point, it became a work of art. Since Mel,
things have changed, and now greener pa$ture$ rule the world. That
wasn't the case back then, when conserving resources was everything.
Why do you think we had y2k? Because it was that damn important to
save resources. That was the real cost.
Anyone who calls Mel's code Spaghetti code should go to hell. Mel was
an artist. That's like saying that frank lloyd wright's blueprints where
scribble, because his buildings couldn't go through a tornado. Mel was
an architect in a world of engineers. To quote RENT, "take him for
what he is". Damnit, that really really pissed me off.

182

Other examples of tight code are what Dijkstra called
the ‘one-liners’. Even if he did not have much good to say
about them, they seem to attract some programmers,
remember for instance how quartz expressed his or hers
“irresistible urge” to type them. According to quartz,
that construction (join(" ", map { ucfirst } split(/ /, shift)))
would require a “10+ line” code “in C++ (or, god forbid,
Java)”, something that a) makes it pretty tight and b)
shows that quartz has some mastering of Perl (the lan-
guage in which the line is written). This way of making
one’s code tight might remind you of one of the possible
meanings of ‘simple’ in program formulation: finding the
right command. It would seem quartz has found the right
combination of functions that translate 10+ lines of code
into a simple one-liner. Now, whether one liners are a
question of tightness, simplicity, proficiency, baroqueness
or irresponsibility is an open question.

The fact that writing one liners, and tight code in gener-
al (clever tricks), requires skill and cunning is perhaps the
central element of tightness as an aesthetic ideal in pro-
gramming: achieving it is seen, by some programmers, as
a proof of mastery. There are many voices (Dijkstra’s
and Knuth’s amongst others) that advocate for a more
self-explaining and readable code but there are also quite
a few that support tighter coding. On the other hand, I
would not like to imply that all forms of tight coding are
against Dijkstra’s and Knuth’s ideals. I cannot imagine
that they would be against an optimal use of the proces-
sor resources or for writing many more lines of code than
needed. As a more concrete example of a form of tight-
ness as one of Knuth’s ideals is his use of low level lan-
guages in his books. One of the ways of tightening up
one’s program is to write in assembler, or at least in a
low-level language (languages that are near the machine
code) since that gives the programmers a more exact con-

183

trol of the processor’s actions. All the examples in
Knuth’s seminal The Art of Programming (Knuth 1997)
are written in a low level language, to allow the tightest
possible control over the processor.

Code written in a high level language (what most
programmers use) must be compiled into a series of oper-
ations that the processor can carry out (see the beginning
of the coding styles chapter). The compilation is usually
carried out opaquely, in the sense that programmers can-
not see the exact operations into which their code has
been translated. This inserts some sort of slackness in the
program since one is not sure of exactly how the compil-
er will implement one’s high level code. Some program-
mers seem to quite dislike this and therefore go through
the pain of writing their programs in assembler - or at
least the central part of their programs. This is the rea-
son why Knuth chose a low level language for his exam-
ples in The Art of Programming and also what tarsi210
refers to:

Compilers depriving us of beauty? by tarsi210 (#483113)
From the: Borland-has-nothing-on-Van-Gogh dept.
It seems to me that the bulk of "beautiful code" which is produced
today is that which is still written in an editor at a low level to be com-
piled on the fly or to do low-level, system-admin type of stuffs. (IE: Perl,
shell, etc.)
Since making it through the scads of OOP methodologies and theories
in college, I have seen little to nothing in the way of high-level (C++,
Java, Smalltalk, PowerScript) languages that come even close to the
pure genius of a nicely written Perl function.
Is it just me, or have our fancy compilers and IDEs and methodologies
removed from us that intricate, complicated, horribly frustrating task
of doing low-level, compact work that now we rarely see something of
beauty? When was the last time you read some good assembly that just
made you smile because it was so damn clever?
Swiss watches still sell well because they have something that the
$5 digital watch from Wal-mart doesn't. Intricacy of the parts, the
beauty of the syncronization of movement, the pure elegance in physics.

184

Coding in assembler (remember that each sort of proces-
sor has its own assembler language) might very well be
necessary for programs with tough performance require-
ments, or at least for parts of it, but it has nowadays lost
the significance it had at the times of strict hardware lim-
itations. However, it persists amongst programmers as a
sort of subculture, very much like the Atari or the Com-
modore (really ancient computers with low graphic pos-
sibilities and not much processor power) gaming clubs.

I suppose the opposite of ‘tight’ would be a program
designed with complete disregard to the number of lines
of code, whether there are any routines that can be
reduced to a command, the amount of memory it uses,
the number of time consuming accesses to databases it
carries out, etc. I have been unable to find any adjectives
that would describe exactly this sort of code. It can be
called ugly or, perhaps more often, sloppy, but both of
these are used to describe other sorts of code as well
(such as ill-structured and un-clean). The fact that the
opposites of so many adjectives seem to be common
confirms the idea that the ideals that I am listing here are
in no way clearly separated.

Anyhow, gojomo, one of the participants, describes
ugly programs as those with the following characteris-
tics: “complexity, poor modularity, leaky interfaces, and
sacrific[ed] design and comments in the name of rapid
deployment”. ‘Poor modularity’ and ‘leaky interfaces’
are quite the opposite of tight: a program has poor mod-
ularity and leaky interfaces when its parts do not fit well
in the overall structure or amongst themselves. But the
interesting thing is that gojomo’s entry is actually a apol-
ogy for these characteristics:

Worse is Better by gojomo (#2254683)
Charles Connell's essay presents appealing ideas; it'd be nice to think
software could be "more aesthetic". However, the truth is that Worse
Is Better [dreamsongs.com] -- as Richard P. Gabriel will often argue

185

(and other times refute). Exactly those things which make software
"ugly" -- complexity, poor modularity, leaky interfaces, and sacrificing
design and comments in the name of rapid deployment -- can also help
make it more successful, commercially and socially, in the long run.
Exactly those things which make software "beautiful" -- such as Con-
nell’s qualities of "appropriate form", "minimality", "component sin-
gularity", "functional locality", "simplicity", and even "readability" -
- can in fact make software fail, as "great programmers" spend a bunch
of time making "elegant solutions" that never catch fire, because they
lack the immediacy and approachability of more haphazard solu-
tions.While this idea may sound like an excuse to avoid doing up-front
thought, it’s actually a hard-earned lesson that what aesthetically
appeals to good, well-intentioned programmers may in fact involve all
the "wrong" tradeoffs.Read all the stuff on this topic at Gabriel’s
Worse Is Better pages [dreamsongs.com], then revisit Connell’s aesthet-
ics peice, and Connell may seem downright naive to you.

gojomo suggests reading Gabriel, and Gabriel’s notions
on how to write useful programs are opposed to the ideal
of tightness. His ideal, habitability, is not opposed to
leaky interfaces and poor modularity, since this may be
exactly what makes the program truly useful, as gojomo
explains. Those imperfections allow programmers to
work with more ease when maintaining and improving
existent programs. Truly tight programs can be a night-
mare to maintain because any small change made on
them or its environment can have unexpected conse-
quences; as noahm put it: “make the tiniest change to the
system it's running on and the whole thing falls apart,
requiring a complete rewrite”

30
.

‘Tight’ has a number of cousins, other adjectives that
mean very much the same. Some of them are so closely
related that perhaps they should be called sisters.
For instance, I personally cannot find any significant dif-
ference between the uses of ‘efficient’ and ‘tight’. In fact,
I could have explained ‘tight’ as ‘efficient in terms of use
of memory space, lines of code, modules and processor
time’. It appears in quite a few entries (“I've been pained

186

watching my coworkers code in the past, replaced exist-
ing routines with amazingly smaller and more efficient
pieces”

31
) and it carries, as far as I can see, very much the

same meaning as ‘tight’.
‘Small’, which appeared in the discussion about

assembler (“small is beautiful”) appears also in a few
postings and its meaning is rather straightforward: either
few lines or little space in memory.

Another adjective that I would say is closely related
to ‘tight’ is ‘fast’. In the world of programming there are
at least two different kinds of speed: that of the program
when executing and that of the programmer when writ-
ing a program. Only the first one is related to the tight-
ness of a program, in a rather straightforward manner:
one of the results of writing tight code is its rapid execu-
tion, or perhaps it is more correct to say that tight code
is code that runs fast.

The second one is less connected to the beauty of
code, but appears nevertheless often in the discussions
about software aesthetics. There it not only refers to the
creation of the program but also to its maintenance.
There is much admiration for the skills of those pro-
grammers who can write beautiful code quickly and
there is also some complaint about managers (and other
programmers) that are not able to understand the deed of
writing good code on the first try:

Making it "beautiful" IS making it work. by Ungrounded Lightning
(#2253315)
[...] For instance: I habitually use these principles in my coding, and
debug as I go. My work was once characterized as "... takes three times
as long as anyone else, but it usually works."Bullshit.The techniques
made my work so blazingly fast that I was able to deliver a complete,
debugged, essentially error-free component in about three times what it
took the other programmers to get to their first clean compile, or to do
a debugging iteration. And by "essentially error-free" I mean that in
over two years of work at one site, with thousands of lines of code, I
had one error detected by someone else, in a preliminary internal
release, before I had corrected it.But the result was that my time-to-

187

completion was measured against everybody else's time-to-do-a-debug-
ging-iteration. And the administration discounted my advice in favor
of that of the "most productive" - read least careful - member of the
team. And the bulk of the project iterated until the sponsor turned off
the money [...]

Then there is ‘optimised’, another adjective that I see is
directly connected to the idea of ‘tight’ code. There are
two slightly different uses of the word: a) after writing a
program, programmers can return to it and rearrange
bits that they believe could be better done (thereby opti-
mising it); and b) from the beginning a program can be
composed and formulated so that it is optimised in a par-
ticular sense, say, fast execution. Optimising a program
for something, whether it is done from the beginning or
once the program runs, is in many aspects the same thing
as writing tight code. On one hand, being capable of
really optimising a program is a proof of talent; on the
other, an optimised program might be incomprehensible
to anyone else than the author or, even worse, the design
that results from an optimising approach may prove rigid
and impractical (given that conditions for the project will
probably change). The early hackers seem to have been
masters of optimisation, according to Levy (Levy 1984)
they even had their own verb: to bum (an instruction),
which meant to write the same program with an instruc-
tion less. For them, being able to bum a program was a
proof not only of mastery but also of belonging (the
chapter on beauty and functionality in programming –
section true-geek attitude – contains an illustrative quote
on the subject).

But as much as optimisation in some cases allow pro-
grammers to achieve impressing results (and this is par-
ticularly true for the resource-poor early computers), it
also makes the program quite unreadable and, conse-
quently, unmaintainable This was not a problem for

188

Levy’s hackers, who were devoted to computers and
could find all the time in the world to decipher the pro-
grams and who, besides, could use this difficulty as a
means for separating the true initiates from the novices;
but it may be one for less extreme programmers. Exam-
ples from this other view of optimisation can be found in
the online discussions, participants Procrasti and beej
present a negative view on optimisation (and it is perhaps
not so surprising that Knuth, founder of Literate Pro-
gramming, is not much for it either):

Java is inefficient by Procrasti (#2253348)
[...] To sum up, Java is generally a more elegent language than C++, this
leads to code with quicker times to market, less bugs and less cost in
support and maintenance - efficiency isn't everything, afterall, "prema-
ture optimisation is the root of all evil" -- Donald Knuth, and how
much more premature can you get than in choosing the implementation
language?

Simpler isn't always faster by beej (#2253341)
Simple programs [...] run faster (because there are fewer machine
instructions)
This can be true, but certainly isn't often the case. To optimize code for
speed often involves contortions that do not clarify the code or make it
simpler or easier to read.
The real trick is making it fast and readable. :-)

But they are far from representing all programmers.
Readable or not, an optimised code is still viewed by
some (perhaps many) as a sign of talent. tjb tells us how
he spiced up his CV with a “insanely optimized” pro-
gram, in order to impress the employer. According to the
story, that seemed to help when looking for a job. tjb’s
message is part of a thread started by someone who
blamed ugly software on the poor skills of programmers,
hence the subject “Hiring better programmers would
help.” Someone else replies that despite being a good
programmer he or she has difficulties to find employ-
ment, lacking an official degree. To which tjb answers:

189

Re: Hiring Better programmers would help by tjb (#2253920)
Dude, I don’t have a degree either, but I got hired at a modem-chip
company almost exclusively because I did send them code. Not that
they asked for it, but I decided that I'd improve my chances by sending
in some code.Along with my resume, I sent a 320x240 space-invaders
program I wrote in straight 80x86 assembly. It wasn't a large, profes-
sional style project or anything (only about 750 lines of code, not
counting art) but it demonstrated that I knew my shit. I program DSPs
and small embedded devices now, and I have my insanely optimized
little game to thank for it :) [...]

We can include in the same positive view of optimisation
those who refuse to work with programming languages
that do not allow hand-optimisation (“Damnit, I want a
programming language that gives me access to the freek-
ing carry flag! =). I've done math routines a lot, and the
code is literally 10x faster when you can optimize it by
hand in assembly. I love assembly for small things that
you want speed for.”

32
)

Finally, there is the verb ‘to squeeze’, that is an
expressive way to indicate the tightness of a program
(notice how “most people didn’t think it was possible” to
do what Future Crew, Orange and other similar groups
did, one of the characteristics of an awe-inspiring hack):

Doesn't anyone remember the 'scene' by codetalker (#483296)
Remember back in the days of Second Reality by Future Crew and
groups like Orange et all.
If you can find the source to a demo, you can witness some truely awe
inspiring code. www.scene.org These people squeezed every last clock
cycle out of those old 386's. Most people didn't think it was possible.
I know I didn't back then.

consistent

There are many different possible ways of constructing a
program, and programmers know this. They also know
that each one of them has her or his own way of writing
software, that discussions about style cannot be settled

190

with technical arguments, and that it might be difficult to
convince them about using a given programming style.
Paradoxically, they seem to agree that one of the most
important things to obtain beautiful programs is consis-
tency (“Consistency and symmetry are the first two
design guidelines that come to mind when people think
about well-designed software, and of course software has
to actually do what it was written to do.”

33
) The follow-

ing quote is an extract of the guiding lines for coding that
McCann, a Computer Science teacher at the University
of Wisconsin, suggests to his students:

Why Indentation is Important
[...] People have been writing programs for several decades now, so it
should be no surprise that some indentation conventions have been
adopted over the years. What may be a surprise is that authors of text-
books for beginning programmers rarely devote much time to a discus-
sion of acceptable indentation styles. Instead, they usually adopt a style
for their example code and encourage their readers to adopt it as their
own.The problem with that approach, as far as I'm concerned, is that
it doesn't encourage the beginner to adopt a style that the beginner
finds appealing. If you like a style, you are more likely to use it. I'd
much rather see you use a consistent, acceptable style that you like and
I don't than see you pretend to use a consistent, acceptable style that
you hate but I adore. Programming is an art, and its beauty is in the
eye of its beholder. Try to find a workable intersection between utility
and attractiveness.Having said that, you're much better off finding and
adopting an existing style than creating one from scratch. Where can
you go to find examples of existing styles?
• Textbooks. Each author has their own style. Try visiting the library
and look though some books that cover your programming language.
This is particularly helpful when you are using a relatively uncommon
construct of the language and you have no idea how to indent it.
• The Internet. Lots of instructors have created lots of web pages for
their programming courses, and some of them have taken the time to
create documents on programming style, including indentation.
• Also, there do exist some general programming style documents.
Visit my Programming Style Documents page for a few links. Even if
there isn't one for your particular language, the ideas covered in these
documents are usually applicable to other languages as well.
• Language Standards Documents. Your language is almost certainly
maintained by an ANSI and/or ISO committee. If you can find a pub-
lished copy of the language standard document, you can find out what

191

indentation style they like to use. Often, the style from the standard is
the one textbook authors adopt. (McCann 2001)

The issue of consistency can be a nuisance for careless
programmers who, even when working alone, change
their style within one program, but the real problem
seems to arise in projects with several programmers, who
might have problems agreeing on a given method (“if
you get more than 2 programmers in a room, they'll
end up in some stupid religious war over editors or inden-
tation style”

34
). In the following entry geophile com-

plains about the difficulty of writing beautiful code and
offers some explanations. Explanation #2 is about con-
sistency, is has to do with the ‘too-many-cooks’ syndrome:

Frustrated artists by geophile (#2252963)
In all development shops I've seen it is very difficult to write beautiful
code. I find myself getting the job during the day, and writing my own
beautiful code, for my own projects, in my spare time. I imagine my feel-
ings about this are not too far from that of a serious musician earning
money by playing bar mitzvahs, or novelists writing ad copy. Anyway,
here are the reasons why writing beautiful code at work doesn't happen:
• Deadlines. If it ain't broke don't fix it.
• Too many cooks. Someone else touches my code and they don't fol-
low my coding style. Even worse, the offender doesn't follow any con-
sistent style at all.
• The original designer did a crappy job. Which is just another version
of If it ain't broke don't fix it.
• No time for re-factoring, even after requirements change, or you just
realize better ways to meet the original requirements.

So far I have only discussed about a program’s consis-
tency from the perspective of the programming style, but
the consistency of a program may also refer to something
different, namely to the fact that it behaves in the same
way under different conditions. If the conditions vary
enormously, for instance a different Operative System,
the program will not work at all, but sometimes it is
enough to change a few conditions (such as version of
the Operative System, Internet connection, etc.) for the

192

results to vary. Programs with this sort of execution
problems are not appreciated by programmers: “Visual
Basics (particularly VBA) problems include: - Inconsis-
tency (damn thing behaves differently on every comput-
er, application, OS version, etcetera, and the changes in
the objects versus the changes in the code are not always
coherent).” Naturally, programs that behave well even
when conditions are changed are more admired.

robust, structured

There are a number of qualities that are also, if less fre-
quently, used to express appreciation. Some of them refer
more clearly to a technical feature than, for instance,
‘clean’, and they are often used as normal (non-aesthet-
ic) descriptors. The statement “this is a structured pro-
gram” is not necessarily an aesthetic judgement, even if
it is a subjective one (there is no objective way of mea-
suring how structured a program is). But subjective and
aesthetic are not the same, and we must look at the con-
text to decide whether the adjectives are used aestheti-
cally or not. We saw at the beginning a good example of
‘structured’ being used in an aesthetic sense, consider this
one with ‘robust’:

If software were a hard science... by Hard_Code (#2255196)
...following that analogy, we could build beautiful robust software, in
say, a century perhaps? Sorry, but real users want real software yester-
day...not beautiful 100% bug free correct software ages from now.
Programming != Engineering.

A robust program is one that has been designed to cope
with as many unexpected situations as possible.
Programs, during their lifetimes, face lots of different sit-
uations, many of them practically impossible to foresee
(phone lines that are blown away by snowstorms, elec-

193

trical shutdowns, users that do what they are supposed
not to, etc), and only those carefully designed react well
(do not fail). Some programs, many programs, are so
fragile that they fail without the need of external cata-
strophes. They fail because the programmer did not do a
good job in anticipating the conditions under which they
would be used. Or because different programmers worked
on different, but interacting, parts without telling each
other what they were doing. Or because programmers
were not told how they would be used. Or... robust-
ness is a complex issue, and a time-consuming one too.

nice, but welcome back to the real world by room101 (#2252826)
[...] The bottom line is, software isn't a bridge or a house, people don't
trust their lives to my software. If I made software for the medical field
or something like that, yes, I would have a different view. But the fact
remains that you should only make it bullet-proof when you need to,
because you never have time to make everything bullet-proof.

The adjective ‘structured’ is especially difficult in pro-
gramming since not only can it be used as a technical
descriptor and an appreciative ideal but it also refers to
a particular kind of programming, one that can be, a bit
simplistically, described as ‘not using the instruction
GOTO’. There is no need to go into deeper technical
details, it is sufficient to know that this kind of structure
is an objective characteristic of a program, similar to that
of a car engine having V-formed cylinders or not.
Naturally, there are no final conclusions as to whether
structured programming is more or less beautiful than
non-structured programming, very much, I would imag-
ine, like the V-cylinders in an engine. At any rate, in the
aesthetic sense that is of interest here, ‘structured’ means
basically ‘well designed’, or ‘well thought-through’.

194

sloppy code and the real world

After going through all these aesthetic ideals it would
seem that all software attains one or another kind of
beauty, but the reality is rather the opposite. Most of the
software seems to be, according to the programmers,
rather poor. Whether this is the case or not is of little
significance here, the important thing is how they discuss
the matter.

They have all kinds of explanations for the perceived
abundance of sloppy code, lack of time being perhaps the
most frequently mentioned. Indeed, by all accounts there
seems to exist an endemic scarcity of time in the software
world, being late is what Ellen Ullman calls the “terrible,
familiar way of all software” (:3) (Ullman 1997). To
those claiming that beautiful software is possible, includ-
ing Connell, most of the participants answered some-
thing like this:

Re: Its a "I'll do it later" thing... by jmccay (#2253130)
Either you don't work in the real world, or you have no deadlines.
I think a lot of software is "designed bad" for because doing a complete
and thorough design which is good, neat, and handles 99% of the
problems takes way too much time to fall within the time frame of the
usual project. I usually have more than one project going at a time I
am lucky if I can afford to work on them for a whole day.Designing
"good software" just is not practicle outside the glass house world of
education environment. It takes too much time to meet the time
requirements of most projects.

This is a typical example of what programmers may say
about beautiful software: yeah, it is great but it is unre-
alistic. Which leaves you with a impression that beauti-
ful software may be more a symbolic entity than some-
thing that programmers expect to achieve. Would beau-
tiful software be really achievable if programmers were
given more time? Or is it just that having an opinion
about software aesthetics (and following one’s personal

195

style) is an essential element of ‘being a programmer’? It
is impossible for me to know whether beautiful software
is just some more slack (in the project scheme) away, and
it is perhaps also impossible for programmers to know,
but what is clear is that the notion of beautiful software
is central to the programmers’ relationship to software.
It serves them, for instance, to position themselves
against other groups, such as managers:

Oh Yeah... by Greyfox (#2252945)
Try telling your manager sometime that you want to redesign a piece of
code because ”It's aesthetically displeasing” or because ”The design
sucks.” He’ll laugh you out of the office and quite possibly the compa-
ny. Nevermind that you were right or that your redesign would drasti-
cally improve maintability and probably speed things up. Managers
don’t want good code. They want code that you can squat and shit
as quickly as possible because the only metric they look at is the dead-
line. It may not smell good. It may self destruct in a few months.
It will certainly keep your team in ”fireman mode” for the rest of the
time they’re at the company, but by God it made the deadline and that’s
all that counts.
Just to make matters worse, a lot of managers believe that if they give
their programming teams Rational Rose or Visual C++ or whatever,
that those tools will magically make the code the team is producing
well designed. Well if you give a monkey a computer, he's still a mon-
key and you won't get anything out of him at the day except a bunch
of monkey shit. Most of the commercial code I've ever seen has been
monkey shit. Ironically open source code tends to have a much lower
monkey shit ratio because the programmers don't have time constrains
and care to get their design right.

There will be an opportunity to return to this us-them
distinction, since it is such an important part of the pri-
vate aspects of programming. For the time being we can
note that even if lack of time seems to be the reason most
frequently employed to explain the whipping up of func-
tions and the production of monkey shit, there are oth-
ers: some programmers humbly admit their own short-
comings while others complain about a general lack of
skills in the field:

196

Re:Most good programmers are capable... by mikehunt (#2255599)
Yeah, but the problem is how few "good" programmers there are.
Let's fact it, most programmers write awful code but nobody ever gets
to see it. I would estimate that of all the programmers I have worked
with over the last 18 years that less than 10% of them could actually
write well designed, well structured and maintainable code.

I hope that this long chapter has clarified that ‘beautiful
software’ might mean different things; that, in any case,
it is always an expression of appreciation; and also that
it can be used to separate programmers from, for instance,
managers. All these things form part of the private world
of programming, which is the subject of this thesis.

Now, I have so far avoided the most dominant fea-
ture of programming, namely the fact that to program is
to construct (virtual) machines, hence to construct things
that do something, that have a function. It is time to deal
with this fact, and to see what it means for the private
aspects of programming.

197

25 It is difficult to exactly describe what “kludge” is, but it is definite-
ly not anything you want to be associated with. Kidders (1981) offers
the following image: “Kludge is perhaps the most disdainful term in the
computer engineer’s vocabulary: it conjures up visions of a machine
with wires hanging out of it, of things fastened together with adhesive
tape.” (:45)
26 OpenBSD is an volunteer effort (open source) to that produces an
operative system (another free alternative like the more known Linux).
It has its own website, www.openbsd.org, and in its press coverage sec-
tion we find the article “Why Linux Will Never Be as Secure as
OpenBSD”, whose author, Kurt Seifried, uses ‘clean’ in the following
manner: “OpenBSD users on the other hand have an extremely clean
and secure code base to work from, that is proactively being audited on
a continuous basis.”. Earlier in the article Seifried suggests one of the
reasons why Linux is not as clean as OpenBSD: “Linux vendors care
about having happy customers. OpenBSD developers don't. The Linux
market has become a very competitive space, with around a dozen
"major" distributions, and literally dozens (if not hundreds) of smaller
players. The major distributions generally pursue similar markets,
home desktop users, corporate/educational desktop users and corpo-
rate/educational servers. Almost every commercial vendor has invested
significant effort in graphical installation programs, desktop software
like Gnome and KDE, and other usability/entertainment/productivity
software. There is absolutely nothing wrong with this, as more people
use Linux the installation must become easier, and things like word
processors are needed. However it means that Linux vendors have to
spend a lot more effort pleasing users, several distributions now ship on
multiple CD's because of all the add on software they include.
Although customers complain about security, very few will actually
take a secure product instead of an insecure product with more features
(even if they may not need those features). Unless a sizable portion of
customers start putting their money where their mouth is vendors will
not change significantly.” In other words: too many features, too many
actors and too many uses, make it difficult to keep the code clean
27 A routine is, for all we need to know, the same thing as a function
28 Commands and operations are not necessarily equivalent.
‘Commands’ refers to the words written by a programmer in the code
and ‘operations’ to the orders the processor executes. Only in the case
of assembler language are those the same; in other programming lan-
guages commands are generally translated (by the compiler or inter-
preter) into several operations.
29 This is a comment, something the processor will not read.
Anonymous Coward is not of the opinion that the lack of comments in
Mel’s programs makes them lesser.
30 Slashdot message #483001
31 Slashdot message #2253515
32 Slashdot message #2253618

198

33 Slashdot message #2255923
34 Slashdot message #2254113

199

vii
The Relationship between Instrumental

and Intrinsic Goodness
in Programming

The previous chapter about instrumental, semi-instru-
mental and intrinsic goodness provided a description of
these three concepts with the aim of introducing the
notion of instrumental beliefs. This conceptual toolkit
was hopefully useful when reading the two empirically
intensive chapters that followed. In this chapter we return
to the concepts of instrumental and intrinsic goodness (of
code), this time using them to explore how programmers
approach the relationship between the public and the
private aspects of software.

201

The two most important public characteristics of a pro-
gram are its function and its price. The function of a
program may loosely be described as ‘what it makes the
processor do’. It is having a function that makes pro-
grams valuable and it is this function that characterises
them. This is what makes of them tools. And it is, sim-
plifying things a bit, their price that makes them ‘prod-
ucts’, even if a program has essential economic charac-
teristics other than its price, such as its production and
maintenance costs, or its profit.

From the private perspective, programs are, essen-
tially, creations; in the sense that they, above all, reveal
things about their creator. Up to this point, I have
focused on this essence, setting aside the public aspects of
programs. But the fact that code speaks of its creator
does not imply that programmers disregard the fact that
code is supposed to do something, or that they make
a living out of code. In fact, there is a close relationship
between the public and the private aspects of code. This
relationship will be explored here through a study of
how programmers relate the ‘intrinsic goodness’ and
‘instrumental goodness’ of the code they write. The study
will be based on a classification of programmers accord-
ing to their approach to the aforementioned relationship.
But before the different classes are presented there are
a few clarifications to be made.

The first clarification deals with the concepts ‘intrinsic’
and ‘instrumental goodness’. As mentioned above, they
are used here as a representatives of the private and pub-
lic aspects of software, respectively, and their meaning is
therefore rather vague. This vagueness is mostly due to
the fact that none of those expressions are used by pro-
grammers, who instead speak of code as ‘beautiful’ in the
first case and as ‘functional’, ‘useful’, or, in some cases,
‘that works’ in the second one.

203

‘Instrumental goodness’ is especially vague, since the
adjectives it represents (functional, useful and working)
actually refer to different characteristics of a program.
So different that they can only be grouped together
because they are all used in the Slashdot discussions in
opposition to beauty (or ‘intrinsic goodness’). In fact, the
original title of this chapter was ‘beauty and functionali-
ty in programming’. However, this title run into two
problems: one, that slashdotters not only used ‘function-
al’ but also ‘working’, ‘useful’ – and even ‘cheaper’; two,
that they did not always use ‘functional’ in a strict sense,
but more as an opposition to beauty. They were more
interested in explaining the notion of beautiful software
than the notion of functional such, which is perfectly sen-
sible, since the discussions dealt with software aesthetics,
and not with the strict uses of the adjective ‘functional’.
So the title could also have been ‘beauty and its opposites
in programming’, but the actual title I think describes
better what this chapter is about.

The second clarification has to do with the absence of
‘economic goodness’ from the title. Price being one of the
public essences of software, one would also expect it to
appear in opposition to beauty. And, in fact, we shall see
that some programmers do oppose them (or, if not ‘price’
itself, some other general economic characteristic, such
as ‘cost’). I have decided not to include yet another type of
goodness because it would make things less readable and
because it is unnecessary. From a strict perspective, eco-
nomic goodness is a kind of instrumental goodness: all we
need to do is to think of software as a tool to raise money.

Granted, this is a poor kind of scholasticism, the point
is simply that including economic goodness as a separate
notion would not have made a better analysis. If ‘func-
tional’, ‘working’ and ‘useful’ can be grouped together
under the notion of instrumental goodness, I see little

204

point in leaving ‘inexpensive’ out of it. All four of them
are used by programmers to explain their views of beauty.

A third clarification is in order, this one dealing with the
correlation between the classifications laid out in the two
previous chapters and the one that will be presented here.
The message is simple: there are no correlations. There
might be some slight correlation between a programmer’s
preferred coding style (chapter five) and her aesthetic
ideals (chapter six), but nothing worth much attention.
At first, my idea was to offer a classification that covered
both notions, indeed all thinkable private notions, but
it was simply impossible. Constructing such a taxonomy
is as hopeless as first classifying painters according to
their favourite colour, then according to their favourite
subject, and then finally trying to find the correlation
between those two.

There are of course other classification principles,
and you could argue that I have not found the ones that
work. What about, for instance, expert programmers
and novices, does this classification have some correla-
tion with aesthetic ideals or coding styles? No, it has not.
What about their job positions? or their salary? or their
degrees? Nothing. And what about their approach to the
relationship between intrinsic and instrumental good-
ness? Nothing here either. The fact is that there are many
different kinds of programmers, with all manners of
ideals, styles, approaches, jobs, degrees and salaries, and
I have not found any classification that would bring
order to these aspects.

Moreover, this is besides the point. The aim of this
thesis is not to present classifications of programmers,
but to explore a particular phenomenon, or set of phe-
nomena, namely the private aspects of programming.
In the course of the exploration I have constructed a few
taxonomies, but these are only there to help me explain

205

what these private aspects are, they are means, not ends.
It is, as I see it, not problematic at all that the three clas-
sifications do not correlate, in fact, it might be an inter-
esting fact in itself: it tells us about the personal nature of
the relationship between a programmer and her code.

And now, without further discussion, let us examine what
different kind of approaches to the relationship between
intrinsic and instrumental goodness exist. Please keep in
mind that her approach to this relationship will not tell
us anything else about a programmer (neither about her
aesthetic ideals not about her skills).

the alien approach

I start with an ungrounded assumption, since I have not
met, or read about, any programmer who would take
this approach (hence ‘alien’). However, it is an approach
that makes sense, so to speak, and it is an approach
apparently held by other people. It can be bluntly sum-
marised as ‘there is no intrinsic goodness in program-
ming’ (alt. there is no such thing as a beautiful program).

This is rather the attitude of those who, in a sim-
plified Heideggerian style (Heidegger and Krell 1993),
understand technology as a sterile perception of the world.
According to this view, the world, from the technological
perspective, appears as ‘standing reserve’, as a set of pos-
sibilities to be manipulated. The essence of the manipu-
lations (technological arrangements) lie in the result
obtained, and not in their form; to use the word ‘beauty’
in this context is the result of a misunderstanding. Hence,
when a programmer tries to ‘perfect’ a piece of code
(such as for instance, using well chosen variable names),
it can never be a question of enhancing its beauty, only
of making it more efficient. The expression ‘intrinsic

206

worth of code’ is, from this perspective, an oxymoron.
This view seems not uncommon outside the engi-

neering world, and people that dedicate most of their
time to perfecting their programming skills and to write
exquisite software are not considered artists – as are
those who, for instance, dedicate most of their time to
practicing Bach’s cello suites – but nerds. There have
been attempts at introducing the complexities of engi-
neering to the outside world ((Petroski 1992) (Kohanski
2000) (Florman 1994)) – and this thesis is, in some ways,
one such attempt – but little has changed. The conven-
tional outside view of software development is blind to
its aesthetic dimensions, and main-stream research seems
to share this perspective.

As mentioned earlier, the common axiom underlying
most of the scientific articles published in specialised
journals (IEEE Software, Communications of the ACM,
etc.) is that programming can be successfully described as
a series of calculations – or objective decisions – devoid
of aesthetic value. From this, there is a little step to think-
ing of it as a process that can be optimised through sta-
tistical analysis. Such an assumption results easily in a
Tayloristic approach to software development method-
ologies: the process can be improved with the help of
careful time measurements and statistical comparisons.
This method does not explain anything about program-
ming, but on the other hand, it assumes that there is
nothing to be explained: it is a mechanical procedure,
something to measure, not to understand. From this
perspective, it makes sense to consider code inspection
meetings, for instance, as something whose meaning can
be conveyed time measurements (see the figure below).

207

From this perspective, the idea of making a program beau-
tiful is absurd. I hasten to add, however, that I do not think
that researchers such as Seaman do not know that pro-
grammers relate to code in terms of beauty, and ugliness.
They simply adopt an approach that ignores this fact.

On the other hand, I have met laymen whose concept
of programming does not include aesthetic considera-

208

figure, An alternative description of code inspection meetings as
found in (Seaman and Basili 1998)

tions. For them, to insist, as programmers do, that some
programs are beautiful and some others ugly is the fruit
of a misunderstanding, or of linguistic laziness. If they paid
more attention to their language, or to the ‘real’ meaning
of concepts, they would say ‘more useful’ (or smaller, or
more optimised, or faster, or more effective) when they
say ‘more beautiful’. There are, therefore, no genuine
aesthetic ideals, and speaking about beauty in a program
is neither legitimate nor illegitimate, it is plain incorrect.

As I mentioned earlier, I have not met, or read about,
a programmer who does not acknowledge the possibility
of beauty in programming. This does not mean that
there are not any programmers who think so, of course.
So perhaps the label ‘alien’ is somewhat extreme… but
I still think it is meaningful. More interesting, though,
is that acknowledging the possibility of beauty in code –
or, more generally, of intrinsic goodness – does not imply
that one thinks code should be beautiful. I shall now
deal with the different approaches to intrinsic goodness
by studying how it is related to instrumental goodness.

instrumentalism

This approach is based on a peculiar signifier-signified
connection between the two kinds of goodness. Typi-
cally, an instrumentalist will say that beauty is a sign of
usefulness, or functionality, or ‘workingness’. At any rate,
a sign of some kind of instrumental quality.

From this perspective, beauty in software does exist,
in the sense that some programs arise feelings that can
only be described as aesthetic, even if it has little value in
itself. The argument is that even if the goal of a program
is to work and not to be beautiful, it just so happens that
the beautiful programs are the ones that work best.
Beauty, or the aesthetic feeling, is a sign of the quality of

209

software; hence, as for instance Connell proposed in his
Software Stinks (Connell 2001), the quest for beauty
is the quest for correctness. Or, as Ungrounded Light-
ning suggests, making it beautiful is making it work:

Making it "beautiful" IS making it work by Ungrounded Lightning
(#2253315)
I don't get paid to create beauty, especially not internal beauty. I need
it to work, not look good.
You're paid to make it work, make it keep on working, and do so in an
efficient manner.
That is WHY you must "make it beautiful". To do otherwise takes
longer and costs more. A LOT more.
One of the problems with this debate is the use of the vocabularity of
aesthetics. That software with certain characteristics is also "beauti-
ful" is a side-issue. The characteristics that make it "beautiful" are also
those that make it:
fast to write
low in errors
easy to debug
easy to modify, augment, and improve.

Being "beautiful" is pleasant for the programmers (which also improves
productivity somewhat). But issues of "beauty" and "style" - AS beau-
ty and style - are a red herring.
And these characteristics that are usually only describable in these
terms make an ENORMOUS differece.
For instance: I habitually use these principles in my coding, and debug
as I go. My work was once characterized as "... takes three times as
long as anyone else, but it usually works."
Bullshit.
The techniques made my work so blazingly fast that I was able to deliv-
er a complete, debugged, essentially error-free component in about
three times what it took the other programmers to get to their first
clean compile, or to do a debugging iteration. And by "essentially
error-free" I mean that in over two years of work at one site, with thou-
sands of lines of code, I had one error detected by someone else, in a
preliminary internal release, before I had corrected it.
But the result was that my time-to-completion was measured against
everybody else's time-to-do-a-debugging-iteration. And the adminis-
tration discounted my advice in favor of that of the "most productive"
- read least careful - member of the team. And the bulk of the project
iterated until the sponsor turned off the money.
So this esperience was an example of how using the vocabulary of art
to describe practical issues of programming methodology is actively
counter-productive.

210

Of course we cannot know exactly what happened in
that project. Was Ungrounded Lightning actually treated
unfairly? We do not know, but it is not important.
The important thing is how s/he expresses his/her dis-
content, and the role that the concept of ‘beautiful code’
plays in his/her misfortunes.

Clearly, ULightning does not grant beauty, in itself,
much value. In fact, it is “a red herring”, and it may be
this kind of contempt that feeds the alien attitude. After
all, ULightning’s central message is that programmers
that discuss beauty in its own terms are doing everyone
else a disservice, they are disconnecting it from its real
value: to be a sign of high quality, a sign that the soft-
ware works properly and is useful. At first sight, s/he
seems to be saying that the real meaning of beauty is
to be a sign of correctness, a notion that is frontally
opposed to the Kantian idea of beauty as an independent
quality. Given the fact that the Kantian is, in our society,
the ‘genuine’ meaning, Ulightning’s apparent suggestion
that beauty is a sign of instrumental goodness is a misuse
of the word ‘beauty’. But those who read ULightning’s
comment as a dismissal of beauty’s own value are not
reading closely enough.

ULightning seems to be equating beauty with a few
apparently prosaic characteristics of code (“fast to write,
low in errors, easy to debug, easy to modify, augment,
and improve”) and one might be tempted to see this as
a manifestation of a reduction of the aesthetic feeling.
However, if we study those characteristics more care-
fully, the picture changes. To start off with, all of them
share the quality of being unquantifiable and subjective.
Yes, one can measure how long it takes to write a pro-
gram, and how many discovered errors per line it has, so
objective comparisons are viable. But visibly, ULightning
does not suggest a measure of how much time is ‘fast’
and how many errors are ‘low’, perhaps because there

211

are no definite measures for this. So “fast to write [and]
low in errors” are subjective assessments that require
good knowledge both of programming in general and of
the specific project in particular. A matter for educated
critics, in other words.

Even more difficult to assess are the other character-
istics: “easy to debug, [...] modify, augment, and
improve.” What is it that makes a program easy to mod-
ify? A few things, different for each personality, I imag-
ine, but perhaps all translatable into ‘that the code is
readable’… and we have already seen how many differ-
ent opinions there are on this subject. ULightning knows
exactly which software is readable for him/her, and hence
easy to modify, but this does not mean that everyone else
shares that opinion. So those seemingly banal character-
istics that made software beautiful turn out to be quite
complex; and it would seem that it is a mistake to accuse
ULightning of dismissing beauty. You can, at most, blame
him/her for trying to express it with too blunt technical
words. What ULightning actually does can in fact be
interpreted the other way round: s/he is not reducing
beauty to technical characteristics but inferring technical
quality from the aesthetic feeling. The process is not
“good code implies beauty, and hence beauty is a sign of
good code” but “beauty implies (not is a sign of) good
code”. It is, therefore, the look of the code that decides
whether it is good or not, it is from its form that
ULightning deduces quality. In other words, the instru-
mental qualities (low in errors, easy to modify, etc.)
depend on the intrinsic goodness of code.

An extreme kind of Instrumentalism can be found in the
aesthetic movement called ‘Functionalism’. Its goal is to
achieve a form that reflects the function of the object; in
a way, it is a sort of applied Platonism (cf Plato’s discus-
sion of objects being defective copies of a perfect essence),

212

an aesthetic search of the form that echoes the tool-essence
of the object. The aesthetic component of this search is
not to find the object’s function, which is generally given
(a chair’s function is to serve as an object to sit on, for
instance) to but to find the form that echoes the func-
tion. As with ULightning’s comment, one might try to
argue that functionalists reduce beauty to functionality,
but what actually happens is that functionalists infer
functionality (not function) from beauty. The process in
this case is not “functional hence beautiful” but “beauti-
ful hence functional.”

As far as I have seen, few programmers speak in
terms of the code reflecting the function. In fact, most use
vague terms. They refer to the general idea of instrumen-
tal goodness, using a mixture of concepts, such as work-
ingness (whether a program runs well or not), usefulness
and functionality. But sometimes one can find the func-
tionalist ideals very clearly expressed, as when O’Connell
wrote, in the article that triggered Slashdot’s Aesthetic
Software discussion (Software Stinks!):

The internal design of a software system should reflect
and create its external functions. Beautiful buildings
merge form and function, and good (beautiful) software
does the same. Why does this matter though? As long as
a software system works correctly, does it matter what
internal design achieves that end? It does matter. An
internal structure that acknowledges the external fea-
tures is more likely to create those features correctly. A
software form that follows the software's function also is
likely to be simpler, since the external features arise from
the internal design rather than being forced on top of the
design. A software system whose form does not mirror
its function forever will be difficult to debug, will have
more bugs, will be difficult to extend and modify, and
likely will perform is core functions poorly.

213

As the attentive reader will have noticed, this approach
is, essentially, a manifestation of instrumental beliefs.
There are different instrumental beliefs, but they all share
the following structure, presented in chapter four:

external quality of program
�

instrumental belief
�

internal characteristic of code

This is exactly what Instrumentalism is about: linking an
external quality of a program with an internal (formal)
characteristic of its code. This process is by no means
mechanical and ordered, it happens at various levels, and
it has much to do with the vagueness of language. For
instance, ULightning says that beautiful code is that which
is easy to modify. This, obviously, is an opinion, and
there is little to say about it. However, one can note that
there are different styles of coding and of programming,
and that programmers find different kinds of code easier
to modify than others. As has been said, ULightning’s
proposition can also be stated ‘code that is easy to mod-
ify is that which is beautiful’. But is it important that
code is easy to modify? Perhaps, or perhaps not. At this
level, there is an instrumental belief: ULightning believes
that easy-to-modify code is better, in an instrumental
sense. S/he does not say this explicitly, it is implied in
the message, and it is this lack of explicitness that
makes instrumental beliefs rather vague affairs. But the
results of such beliefs, their manifestations, are quite
clear: ULightning, for instance, thinks that it is danger-
ous to speak of beauty in its own terms, and considers
it a sign of instrumental qualities. Furthermore, in a dis-
cussion such as the one held in Slashdot about Software

214

figure, Structure of instrumental beliefs

Aesthetics, s/he will hold that programmers should avoid
terms like ‘beauty’.

Summarising, the main characteristic of the instru-
mental approach is that it assumes an immediate link
between the intrinsic and instrumental qualities of a pro-
gram. How this link is actually established (which is the
sign and which the signified) is less clear. Instrumentalists
suggest that if it is low in errors, easy to modify, etc. then
it is beautiful (therefore beauty is a “side-issue”), but
I argue that the situation might be the inverse: only after
it has been ‘decided’ that a program is beautiful (any
other appreciative term will do), does it become low
in errors, easy to modify etc. In other words: at some
point, programmers must decide whether a given piece of
code is good enough or not (is low in errors, for
instance), or whether a given solution to the problem is
better than another; the grounds upon which this deci-
sion is made are seldom based on objectively measurable
characteristics. They are instead based on their personal
beliefs and preferences.

the ‘true-geek’ approach

This approach, and the next one, are based on the sepa-
ration of the aesthetic feeling towards the code from the
instrumental qualities of the program. Programmers with
both attitudes agree that beauty in software does exist,
and that it is not directly related to function, correctness,
usefulness or price; they differ however in their view on
the significance of software aesthetics: is beautiful code
something inherently good, what ‘real’ programming is
about; or is it a waste of time and effort?

I shall first turn our my attention to the true-geek
approach, which could also have been called “positive
Kantian”. The adjective ‘Kantian’ signals the fact that

215

beauty is quite clearly set apart from function – and I say
“quite” because they are never perfectly separated in
such an instrumental art as programming. The qualifier
‘positive’ refers to the fact that beauty is spoken of as
something good, sometimes as a proof of mastery, but
more commonly, as the result of approaching the pro-
gramming effort with the right frame of mind. The most
important difference between this and the previous func-
tional attitude is not the kind of programs that are beau-
tiful – they may very well be the same – but the way
the quality of being beautiful is discussed. In this ‘true-
geek’ case, beauty is legitimate, something worth pursu-
ing in itself, for the love of programming, whereas the
functional discourse only acknowledges its value as a
sign of correctness.

So the functional and this attitude are not opposites
of each other, true-geeks do not see a conflict between
instrumental qualities and beauty even if they do not
equate them either. Instead, they exalt software aesthet-
ics in itself, without making any mention of usefulness,
functionality, profitability or any other external charac-
teristic of the code. For instance:

software is like building w/ toothpicks by MikeFM (#2254465)
I think in the book 'The Hacker and the Ants' there is a quote along the
line of programming being like building out of toothpicks carefully
glued together and if just one toothpick is out of place the whole thing
comes crumbling down. I always liked that.. it seems very truthful.
I might add that programmers are usually encouraged by those they
work for to forget careful design and implementation and just duct tape
parts together as quickly as they can make it work 'most of the time'.
I like to write beautiful code.. as I imagine most real programmers do..
us geeks that live, breath, and dream in code.. but in real life there usu-
ally is not enough time or resources given to manage to write really well
planned out code. This is why Microsoft sucks and a popular motto
is "When it's done!" among the truely geeky programming houses
and why open source will eventually kill most commercial software.
With commercial software if it's ugly you aren't likely to get a second

chance to really make it beautiful. With open source software it may

216

start out ugly but over time can gradually become beautiful as people
clean and fix it. The code is visible and so is everyone elses. You can
help each other and learn from each other.

We cannot know, on the basis of this message, what
MikeFM thinks about the relationship between beauty
and usefulness. But it is clear that he thinks it is not
absurd to talk about beauty without associating it with
functionality, let alone usefulness. “Open Source will
eventually kill most commercial software” because it is
written more carefully and it “can gradually become
more beautiful as people clean and fix it.” There is of
course an assumption that clean and beautiful software
is somehow better (or, at any rate, preferable for the
users) than ugly one, but the interesting point is that
MikeFM’s perspective is centred on the programmer and
the code, not on the user and the application.

MikeFM’s attack on Microsoft – perfectly normal,
this being a Slashdot message – allows us to imagine that
Windows, for instance, is ugly, but he does not say any-
thing about it being dysfunctional, let alone useless. He
simply states that it is ugly, letting everyone understand
that ugly software is not what real programming is
about. And this is the central element of the true-geek
attitude to software aesthetics: beauty and ugliness are
not directly related to the program’s functionality, or to
its usefulness, saleability and profitability, they are instead
the fruit of the programmer’s approach to the task.

According to true-geeks, one may approach the pro-
gramming challenge either nonchalantly or with due
respect. Sometimes those with the wrong attitude are
called ‘coders’ (or even ‘lamers’) as opposed to ‘pro-
grammers’; and, well, there is no doubt about which atti-
tude is the right one:

217

Code aesthetics by KingAzzy (#2252919)
There is a definite difference between a "Programmer" and a "Coder".
Programmers are interested in the aesthetics of their engineering as well
as the science behind it (the two are non-distinguishable) whereas
Coders only care about getting the job done well enough so that they
continue to have employment and not get fired.
Programmers are much more expensive than coders and harder, much
harder, to find for employment. Coders are very abundant. I have never
seen a development department (in the 'big corporate IT world') that
had more than just a small handful of true programmers, yet dozens
and dozens of coders all whittling away at these massively bloated,
poorly designed, inefficient, unscalable, pieces of pure SHIT that
absord millions and millions of dollars from the corporate budgets.
I don't think comparing houses and bridges to pieces of software is a

very fair comparison, btw.. In construction it's quite easy to put lower
skilled people to work effectively for the larger picture (doesn't take
much as much skill to lay brick as it does to design the wall) than it
does in coding (an inexperienced coder can virtually infect the entire
project with his or her incompetence.
These are my opinions after working in big IT for too long and perhaps
after reading too much Dilbert and Slashdot.

The moral implications of this view of software aesthet-
ics are obvious: the nonchalant approach to program-
ming is bad, it does not acknowledge the exceptional
nature of programming, it reduces it to a matter of “just
solving the problem”:

Its a "I'll do it later" thing... by FortKnox (#2252832)
I've found that most of the cause of the problem is people "whip out a
function that does that job" so they can compile

35
the program, then

never go back and fix it up. Same with code comments. "I'll add good
comments later/when I'm done", and you finally get the program sta-
ble when it needs to be released.
I find it a ton easier to do everything the way you were taught in soft-
ware engineering 101. Design the hell outta documents (I, personally,
use RUP which I find nice), then code complete objects, nothing that'll
just "let me compile", but whole objects. *AND* I'll code in the
javadoc when I make the object. The code comes out quit nice that way.

KingAzzy and FortKnox are both responding to
O’Connell, explaining to him (and the public in general)
why there is such a proliferation of ugly software. The

218

latter blames this on an attitude that limits programming
to “whip[ing] out a function that does that job”, sug-
gesting that this kind of approach is not going to result
in beautiful software. Neither is it the proper thing to do.

The true-geek attitude is the opposite of that: pro-
gramming should be taken seriously and its significance
recognised. The true-geek attitude towards the task at
hand, characterised by an acknowledgement of the impor-
tance of doing the thing right, regardless of whether it
really needs so much attention and care, is not exclusive
to programmers. It exists in basically all sorts of instru-
mental (goal-oriented) activities, since they present an
opposition between the goal that must be achieved and
the way there: is it enough to reach the goal, or must it
also be done with style? Is intrinsic goodness legitimate?

Thorstein Veblen discusses this issue in his work The
Instinct of Workmanship (Veblen 1990), and his treat-
ment gives the issue an even stronger moralistic position:

Chief among those distinctive dispositions that conduce directly to the
material well-being of the race, and therefore to its biological success,
is perhaps the instinctive bias here spoken of as the sense of workman-
ship. The only other instinctive factor of human nature that could with
any likelihood dispute this primacy would be the parental bent. (:25)

So, it seems that approaching the task at hand offhand-
edly is not only going to result in low quality, ugly prod-
ucts that others will have to suffer; it is also unnatural
(i.e. against the instincts), and thus doubly questionable in
a moral sense. Why, it is comparable to being a bad par-
ent… Our programmers on Slashdot put it more bluntly:

Right now... by Axe on Tuesday September 04
..right now I am *supposed* to sit tight and fix a boatload of old, ugly
code, apparently written by a crack addict. I know how to make it
nice, tight, fast and clean - but they would not let me. Old one passed
some joke of a QA, and nobody wants to commit their ass into rewrite
- in this times the universal question is "what if it fails and I get laid
off".. Sucks. I hate every line I look at, and use every bug as an excuse
to clean up part of it..

219

Axe, apart from struggling with a code s/he finds dis-
gusting, has to fight against those who cannot see the
point of rewriting it, as long as it does the job. His/hers
message distils the same kind of despise that we saw ear-
lier in MikeFM’s comment.

MikeFM’s disdain for commercial software, or Fort-
Knox´ scorn of the code that just “does that job”, can be
interpreted as a contemporary echo of Plato’s contempt
for artists and sophists, two kinds of professionals that,
it would seem (Guillet de Monthoux 1998), were more
successful than him in moving the masses. It is important
to remember that Slashdot is a forum originally populat-
ed by Linux developers – it has now widened the audi-
ence – for people ready to spend many hours program-
ming for the pleasure of it. Some of them do it also for
the cause of a more just world, others because they can-
not be kept away from a computer, and others because
they’ll do anything to combat MS (Moore 2001) (Ray-
mond 1998; Raymond 2000) but most of them seem to
share the notion that true programming, and beautiful
code, require independence from pure commercial inter-
ests; a perspective that has much in common with the
conventional, idealised view of ‘true-artists’.

Hence, true-geeks (the adjective ‘true’ starting to
sound more and more like a moral qualifier) are likely to
experience differences between their idea of proper pro-
gramming and the world’s – particularly the corporate
world’s – view of the software industry (which can be put
into the alien approach class). Differences that have been
met by others throughout history and throughout the
arts. Guillet de Montoux, who in his Konstföretaget
(Guillet de Monthoux 1998) tackles the issue of art and
business, mentions how Wagner’s Bavarian opera-enter-
prise (operaföretag) infuriates Nietzsche, who originally
inspired the whole project into motion but who had
nothing but contempt for it once it became a success:

220

Deceiving transcendentalism... teatrocrathy... something arranged and
dishonestly adapted for the masses

The seekers of beauty are likely to be disappointed by
those who are ready to make compromises in order to
convince (another word for ‘marketing’). MS might be the
paramount example used by true-geeks to illustrate the
evil consequences of selling one’s soul, or one’s program-
ming spirit, but other actors, like managers or even users
are also to blame for the ugliness of today’s software:

software manager managing bridge architects.. by Anonymous Coward
(#2252893)
manager -> we need to ship this bridge in 3 months.
engineer -> yes, but it's really big and really important
manager -> yes, but it has to ship in 3 months.
engineer -> so how much weight does it need to support?
manager -> i dunno, I'll let you known in 2.9 months.
engineer -> what is it bridging?
manager -> why all these stupid questions, start building.
engineer -> I should do an architectural drawing first.
manager -> why bother, here's some metal, start slapping it together.
Remember it ships in 2 months.
engineer -> I thought you said 3 months?
manager-> oh didn't I tell you, we heard a rumour that a competitor
will be shipping their bridge in 2.5 months, so we have to beat them
[…]

This anonymous slashdotter is referring to Connell’s com-
parison of software and civil engineering, much to the dis-
advantage of the former. “We should expect the same
level of quality and performance in software we demand
in physical construction”, Connell said, and this partici-
pant answered that the problem did not lie in the pro-
grammers, as Connell suggests, but in the managers that
dictate the conditions. The main problem with those
managers seems to be that they are oblivious to the inner
qualities of software, its aesthetic component: for them a
program is not valuable in itself, only in relation to its use-
fulness, preferably measured by its commercial success.

221

A few remarkable examples of true-geeks can be found
in Levy’s afore mentioned Hackers (Levy 1984): people
who would spend entire weeks, sometimes it feels like
their entire lives, perfecting impeccably working pro-
grams; not because they needed to be improved but just
because they could be perfected. In the early days of
computers at MIT (in the fifties), Levy tells us, there
was a particular kind of admired programming stunt: to
bum instructions out of a program, i.e. to write the same
function with less instructions. At the origin of this
behaviour lied the technological fact that computers had
very little memory to work with and making your pro-
gram smaller meant giving more space to others.
However, writing short programs became soon more a
question of belonging, of being a true-hacker, than of
technical considerations.

Various versions of decimal print routines had been around for some
months. If you were being deliberately stupid about it, or if you were
a genuine moron – an out-and-out “loser” – it might take you a hun-
dred instructions to get the computer to convert machine language to
decimal. But any hacker worth his salt could do it in less, and finally,
by taking the best of the programs, bumming an instruction here and
there, the routine was diminished to about fifty instructions.
After that, things got serious. People would work for hours, seeking
a way to do the same thing in fewer lines of code. It became more than
a competition, it was a quest. For all the effort expended, no one
seemed to be able to ckrack the fifty-line barrier. The question arose
whether it was even possible to do it in less. Was there a point beyond
which a program could not be bummed?
[…] Jensen […] came up with an algorithm that was able to convert the
digits in reverse order but, by some digital sleight of hand, print them
out in the proper order. […] Forty-six instructions. People would stare
at the code and their jaws would drop. Marge Saunders remembers the
hackers being unusually quiet for days afterward.
“We knew that was the end of it,” Bob Saunders later said. “That was
Nirvana.” (:45)

It is only natural that programmers who consider that
software beauty is worthy in itself, regardless of whether

222

other people are prepared to finance it, or to buy it,
become moralists. Theirs is the fight of the faithful, those
that see and respect software’s ‘true’ essence, against the
sophists, ready to dismiss the most elemental program-
ming etiquette (such as giving it the time it requires) just
to sell more. This opposition has, naturally, important
consequences in the world of programming, as we shall
see in a later section.

the software-engineering
approach

Re:And How!!! by Trepidity (#2253255)
Anyone taken a look at the code of SSLeay? Good package thou).
And that is exactly why I consider software "beauty" to be a minor
point of importance. I'd much prefer something like SSLeay to be
hideous on the inside but still be a "good package" than some elegant,
beautiful, but overall rather useless and crappy piece of software.

Being a software engineer is, in a formal sense, the out-
come of a university degree but the software-engineering
approach to the relationship between the intrinsic and
the instrumental goodness of software is not necessarily
related to one’s higher education. Programmers do not
need to have degrees to hold this attitude nor do all
degree-owners share it. I have nevertheless decided to call
this the software-engineering attitude because its view of
prototypical programming is derived from an idealised
image of other engineering disciplines: proper program-
ming must be based on a well defined methodology and
on a serious attitude to the task at hand, something that
excludes frivolities such as beauty.

This approach is based, therefore, in a separation of
instrumental and intrinsic qualities (as in the true-geek
case) and its main characteristic is that the search for
beauty in software is a waste of resources. Serious pro-

223

grammers should steer clear from any beautifying efforts
(any intrinsic considerations) and concentrate on writing
software that solves the problem efficiently (i.e. on its
instrumental quality).

Re:software is incredibly complex... by Space_Nerd (#2253038)
Well, in my experience beauty of code and how efficient that code is
do not go hand in hand. The most efficient pieces of code i wrote were
butt ugly and needed heavy explanations to my coworkers, but they got
the job done in few lines and they took up little resources to do it.
So what we want is no beautifull code, but really efficient one, and cod-
ing beautifully often goes against it.
On the other hand, beautifull code is easier to maintain and to share,
but its always best to have good code, not code that looks good.

Re: nice, but welcome back to the real world by jbum (#2252929)
Hear hear. Engineers with an over-developed aesthetic sense are writ-
ing their code for other engineers, not the end-user. Too many times in
my professional life have I seen inordinate amounts of time wasted on
issues which are invisible to the end-user, because some overly-aesthet-
ically minded engineer couldn't sleep at night.It's a craft, not an art;
and if you can't sleep at night, try getting laid.

Software-engineers (with a hyphen to avoid confusion
with degree holders) are not impressed by software aes-
thetics, they know that a program can be beautiful, but
they consider that programming should not be about cre-
ating beauty but about solving people’s computing prob-
lems. Laplace’s reaction to Connell’s article is a good rep-
resentative of this:

Ha, but really. . . by Laplace (#2252821)
Every extra day that I take to plan, every minute I spend thinking about
design, and every extra line of code I write to make my software more
pleasing is another line that could add more functionality, another
minute wasted not producing something tangible, and another day that
I need to be paid. When it comes right down to it, most software is just
good enough to get the job done because that is what is most profitable
in the short term. I revel in every bit of beautiful code I write, but also
know that if I spend too much time making my code beautiful I will be
replaced by someone more interested in just getting the job done. If I
really wanted to produce art, I would have gone into a field that pro-
duces recognizable art.

224

Both Laplace and jbum (see above) defend the instru-
mental essence of software: programs are not supposed
to be beautiful, they are supposed to work. Laplace even
dares, in a true-geek dominated environment like
Slashdot, to defend the need for software to be profit-
able, raising some heat and getting replies of the sort
“Are you in management? You sure sound like it.”
Laplace’s comment provoked an interesting exchange,
but even more interesting is the dispute that ensues in the
following comment (the whole thread is available in one
of the annexes):

Not this stupid 'programming is art' BS again! by Flabdabb Hubbard
(#2252879)
to recognize the artistry involved in writing software
What pretentious bullshit. Software is NOT art. It can be closely com-
pared to bricklaying, or cabinet making, it is a CRAFT.
Try expressing an emotion in C++. It cannot be done. Please think
before repeating these banal opinions that software is art. It just isn't.
Deal with it, and if you want to be an artist, learn to paint.

Flabdabb Hubbard, as jbum and Laplace, reacts to the
idea that software is art, starting off a thread of about 30
messages in which different participants offer opinions
on what art is, on the difference between art and craft
and on whether programming is any of those. There are
all kinds of ideas thrown into the discussion, making
classification almost unviable but one thing struck me:
many of the comments could be interpreted not as state-
ments of fact but as moral statements. Participants were
not discussing what programming is, but what program-
ming should be. From this perspective, Flabdabb
Hubbard’s comment can be read: software should not be
treated as art, and programmers should concentrate on
writing code that works, not on making it beautiful. Such
an opinion is controversial in Slashdot, getting strong
support and equally strong criticism:

225

Re:Not this stupid 'programming is art' BS again! by chris_mahan
(#2255424)
[...] Computer code is like sheet music. You can have a ten line canon
or a 40 pages symphony, either of which looks like complete gibberish
to those who can't read sheet music, but which truly represents the art
of the artist who wrote it.
[...] Now, I write code. I want to make the user feel a bond with a freak-
ing motherboard. If I succeed in making a grown man or woman
"enjoy the interaction" with a piece of plastic/metal/goo, and I have
done that on purpose, is that not art?
I contend that in the same way the common man does not recognize
Beethoven's 5th symphony by looking at the sheet music, likewise the
common man does not recognize great, beautiful, engaging, pleasing
software by looking at source code.
There are millions of programmers in the world who consider source code
to be art, to be speech. Who are non-programmers to say that it isn't?

The dispute between those who argue that programming
is and those who argue it is not art can be read as a
debate between the true-geek and the software-engineer-
ing attitudes. Software-engineers want to avoid mixing
feelings into the work of writing a program since the
only expectable result of that is a deviation from the cor-
rect attitude, or at least, a loosening of the methodologi-
cal discipline required for proper programming. They are
more likely to put the blame for the overall low quality
of today’s software on the programmers’ shortcomings,
rather than on the managers’ or users’ disinterest, as
true-geeks did.

Planning and review save time and money by tim_maroney (#2252954)
Every extra day that I take to plan, every minute I spend thinking
about design, and every extra line of code I write to make my software
more pleasing is another line that could add more functionality, anoth-
er minute wasted not producing something tangible, and another day
that I need to be paid.
That is an absolutely absurd statement. Every moment spent in plan-
ning, review, consideration of potential problems, creation of general-
purpose solutions, and documentation of architecture pays for itself
many times over later in the development, validation, release and main-
tenance cycles. Failure to undertake sensible planning activities early in
a project leads to massive schedule delays from forced late-game

226

rearchitectures that would have been headed off by early consideration,
review and communication.
Software engineering is the only engineering discipline in which the
practitioners are permitted to indulge themselves in work without plan-
ning or review, and that's the #1 reason that software sucks.
Tim

It may look strange that I put both tim_maroney and
Laplace in the same group, given that the former’s com-
ment is an acrid reply to the latter’s. But his attack might
be the result of a too hasty reading of Laplace’s com-
ment. It would seem that Laplace is defending the lack of
planning, but if we read carefully, we see that the only
thing s/he says can be dispensed with is the “extra line[s]
of code I write to make my software more pleasing” (my
emphasis). tim_maroney, on the other hand, seems to
read that all planning is unnecessary, and reacts to that.
But the part of his message I want to focus on is the last
paragraph: “Software engineering is the only engineering
discipline in which the practitioners are permitted to
indulge themselves in work without planning or review,
and that's the #1 reason that software sucks.”

tim_maroney exaggerates a bit to make his point
(this is perfectly normal in Slashdot – and in life),
because the fact is that most programmers do, in the
great majority of occasions, plan ahead, at least as much
as they are allowed to. More interesting, however, is his
idealised view of the methodological approach applied in
other engineering disciplines. He is not alone in this,
quite a few of the entries to the Slashdot discussion were
based on the same idea, some of them suggesting that
civil engineering, or vehicle engineering, for instance, are
much better planned, among other things, as a result of
the liability typical of those industries. This idealisation
can surely be explained in part as the fruit of Connell’s
article, that praised civil engineering as the example to
follow (“We should expect the same level of quality and

227

performance in software we demand in physical con-
struction”); after all, the Slashdot discussion I am pre-
senting here was triggered by that article. But, as I see
it, the idealisation runs deeper, it has its roots in two
main conditions: in the way programming is taught and
in the main body of literature on software development
projects; both of which are interrelated. In both cases,
engineering is idealised as a highly disciplined endeav-
our, in which strict methodologies should be applied
(which may also be partly responsible for the general
view that engineering has no private aspects, as we saw
in the alien approach).

Against this idealisation of methodology one can
present the work of Feyerabend, who denounced the
irregular nature of scientific method. If not even an activ-
ity as formalised as science proceeds according to a strict
methodology, it is reasonable to ask whether engineering
actually does, as software-engineers seem to suggest.
Indeed, in what I see as a continuation of Feyerabend’s
arguments, the growing body of Science Studies shows
that an essential part of technical and scientific develop-
ment comprises political struggles, social conventions and
taboos, shifting economic expectations, etc ((Latour 1996),
(Bijker and Law 1992) are two good examples). These
texts and our material indicate that Lindblom’s (Lind-
blom 1959) phenomenon of ‘muddling through’, origi-
nally observed in the administrative environment, also
operates in other settings (such as technological creation).

Clearly, thus, the software-engineer approach
acknowledges the existence of private aspects of pro-
gramming, at the same time as it denounces them as a
source of poor software. Hence, software-engineers
advocate the installation of strict programming method-
ologies, which should prevent programmers from wast-
ing time in useless aesthetic considerations, and produce
better software. However, the link between following

228

a strict methodology and obtaining better software is not
so easy to prove. It is based on a belief that relates the
instrumental qualities of a program not with the formal
characteristics of code (standard instrumental belief) but
with the formal characteristics of the programming
methodology (there are several methodologies). It is a
special kind of instrumental belief.

Software-engineers face a difficult problem since they
claim that programming should be about solving peo-
ple’s computing problems, i.e. their goal is to write use-
ful programs. But, as we saw in chapter four, it is difficult
for programmers to know whether their programs are
useful or not, unless they themselves are the users. Fre-
quently, however, they write programs for others, and in
these cases they cannot, strictly speaking, decide whether
the programs are useful or not. In order to surpass this
problem, they set up a careful methodology, in the belief
that by following it they will obtain useful programs.
Unfortunately, there is no method that assures the use-
fulness of a program, due to a number of circumstances
that will be discussed in the next chapter.

So, despite their rejection of the intrinsic qualities of
code, they also have created one. In their case, the intrin-
sic value of the code is not based on what the code looks
like but on the methodology its creators have followed.
Following this methodology is good, in itself (since it is
not sure that it will result in useful code). Once again, it
may seem a play with words, but it has bearing on the
role of the private aspects of programming (or the intrin-
sic goodness of code) and, hence, in the understanding of
the software development process.

229

ugly code, bad programs

Instrumentalists will be guided by their sense of beauty
towards good software, even if they avoid the notion
of software aesthetics. Software-engineers are outright
opposed to the idea of writing beautiful software, but in
that process, they create a new kind of intrinsic goodness.
True-geeks is the only group that explicitly acknowledges
the importance of the private aspects. This, however,
should not mislead us into thinking that they are the only
ones that care for the code they write. As I have tried
to show, intrinsic qualities of code play an important
role also when the other two groups develop software.

Now, are there any cases in which the private aspects
of programming do not play any role in the development
of software? Yes there are. Firstly, there is the possibility
of not seeing any sort of intrinsic qualities in your own
code. This would imply that you see programming as
a job, and your code as something you must produce and
for which you are paid. This requires a disinterest for
what your code says about you, and, even if I have not
read about this kind of programmers, this is perfectly
plausible. We discussed this approach in the alien sec-
tion. Note that this attitude does not imply that you will
produce code deemed ugly by others (you do not think in
these terms at all).

So, who writes all the ugly code that seems to be out
there? O’Connell complained about this, and slashdot-
ters complained with him: most of the code they had run
across was definitely ugly. Now, is ugly the same thing
for all three groups?

From the instrumental perspective, ugliness is a sign
of badness: programs that have many errors, that are
difficult to modify, unreadable, etc.. Obviously, true-
geeks do not think that code of these characteristics is
beautiful, and software-engineers will directly see that

230

the code has been written without following any kind
of method. Even if their approaches to the relationship
between the intrinsic and the instrumental qualities
of software are different, all of them agree that sloppy
code is ugly, and that the programs that result are bad.

Sloppy code and bad programs, are produced by pro-
grammers with all kinds of approaches to the intrinsic
qualities of code. Many of the slashdotters that partici-
pated in the Software Aesthetics discussion admitted to
producing bad software, and blamed all kinds of circum-
stances. Some blamed the lack of time, others the lack of
clear specifications, others shitty management routines,
others… others blamed other programmers and their
attitude towards programming.

True-geeks may accuse software-engineers of not car-
ing enough about the essence of programming (to write
impeccable code), and, vice-versa, serious engineers may
accuse the frivolous hackers of not caring enough about
the essence of programming (to follow strict methodolo-
gies and solve people’s problems, not to indulge in one’s
own desires). In most cases, however, your approach to
the intrinsic qualities of software has little, or nothing, to
do with the instrumental (and intrinsic) quality of your
programs. Much more important is whether you are
given the resources needed to produce good software.

So, I do not know which of the three approaches
results in better software tools, or in more profitable soft-
ware products. All groups want to produce good tools and
inexpensive products, and I doubt that the classification
presented here can help us differentiate the, let us say, suc-
cessful programmers from the sloppy ones. After all, writ-
ing good programs is not only a question of having the
‘right’ approach to the intrinsic qualities of code but also of
skills, time-tables, colleagues, managers, customer’s inter-
ests, etc. And, of course, there are really poor program-
mers within all four groups, and also really skilled ones.

231

aesthetic ideals slight return

Just to hammer the point home that this classification of
approaches is not correlated with the classification of
aesthetic ideals presented previously, I think it would be
sensible to wrap up this chapter with a slight return to
one of those ideals. The idea is to show that instrumen-
talists, true-geeks and software-engineers all might share
the ideal of writing, for instance, clean software.

As I said earlier on, I did try to find some correlation,
to see if, say, true-geeks did not all share the same ideal
(or coding style). But I could not find any such corre-
spondence. They may put some different shade on
the meaning of ‘tight code’, but I came to the conclusion
that looking for this kind of connections is quite unfruit-
ful. The main finding, therefore, is that, regardless of
their approach to the relationship between intrinsic and
instrumental goodness, programmers may admire any
aesthetic ideal(s).

What differentiates the approaches is not so much
what kind of programs are beautiful, but how this beau-
ty is discussed and legitimised. The vagueness of the
terms ‘functional’, ‘careful’ and ‘proper’ – that could
hastily represent each one of the attitudes – allows them
to include all kinds of aesthetic ideals: simplicity, clean-
ness, tightness, etc. An instrumentalist may say that
a clean program is functional (or works well), a true-geek
that it is the result of a respectful approach to the pro-
gramming task and a software-engineer that it is the
result of a well organised project.

So, let us, just for the sake of completeness, look at
how ‘cleanness’ may be interpreted from the three differ-
ent perspectives (remember that the alien attitude does
not think of software in terms of cleanness, or any other
aesthetic ideal):

232

true-geek version of “clean”:

not many by cabbey (#483023)
[...] In many of the larger projects though you can ocasionally find bits
and pieces of pure poetry in code. There's an example in the Linux
kernel, I forget exactly where - maybe in the vmm, where someone
took the time to fully digest a rather hairy function and they totally
rewrote it without changing the inputs, output, or side-effects in a small
clean block of code. These are the folks that turely deserve this shirt.

software-engineer version of “clean”:

Re:software is incredibly complex... by Fortmain (#2254219)
Beauty isn't really the issue here, it's maintainability. The current pro-
ject I'm on, I 'inherited' someone elses butt-ugly code. It did the job
fine, but I spent the first six months reading, re-reading, and testing,
just so I could understand what the thing was doing. All told, I spent
over a year just getting comfortable with the program. Meanwhile, I'm
also supposed to be updating this thing for a new release every six
months! Every chance I got I did 'code clean-up', fixing things that
worked, but were difficult to understand the logic of, or just plain
stupid (take a long, often-used routine, and make it in-line everywhere
rather than use a function!?).

Re:software is incredibly complex... by budgenator (#2254950)
I was trained as a COBOL programmer, it's a language that will not
die, mainly because it readable. There is a lot that can be done to other
languages to increase readability, but the real need is for clean logic, a
clear API, and documentation. When Pro athletes go to training camp
every year, they are re-taught the basics. We change the names but they
basics remain the same, design, walk-through, code, test, and document.

Re:Beauty for beauty's sake makes crappy software by Anonymous
Coward (#2253811)
Meeting user requirements often means having a bug-free program
which is amenable to future changes (to as great an extent as is practi-
cal), in a reasonable amount of time. So, when you write "good, clean
code", you in fact do it with the purpose of better satisfying the user,
be through a superior product or a quicker development cycle or what-
ever. So, in fact, you are agreeing with the poster...

233

instrumental version of “clean”:

Re:And How!!! by Telek (#2253566)
Woah tiger... It's very possible to have both, and it's not very difficult
to have both either [functionality and beauty]. The best code is the
code that you can read and maintain, and is functional. In my experi-
ence it's better to write clean code from the beginning, as you'll suffer
from fewer bugs and easier maintenance in the future

Clean code = cost savings by Anonymous Coward (#2252917)
For all the management out there to keep putting deadlines on things
that can't be met. Think about it. If you fix something before it is
released, you will save your self thousands techsupport phone calls per
release! That saves money!
Clean code means cost savings!

234

235

35 FortKnox refers to the situation in which a program is more or less
finished and a programmer wants to check if it works or not. In order
to do that, it must be compiled, which in turns requires all functions to
be there, even if they only have been whipped up (or, in some extreme
cases, only have been defined, but that is another story)

viii
Instrumental Beliefs

As advanced in the chapter about instrumental goodness,
and as described in those that followed, programmers
find themselves making decisions based on a mixture of
aesthetic preferences, instrumental beliefs about ‘what is
best’ (for the user, for the company and for their col-
leagues), and technical knowledge. This may result in
behaviour that is difficult to explain unless we accept
that programming is not an objective activity but one in
which personal factors play an important role. This
chapter considers the concept of instrumental beliefs
through the study of one such behaviour: careful previ-
ous design. Is there a point in calling this rather wide-
spread procedure a ritual?

237

The concept of instrumental beliefs – that (as we outlined
in chapter four) emerges from the analysis of program-
mers discussions but that programmers definitely do not
use – is one of the central components of the private
aspects of programming. It links the private and the pub-
lic spheres, which otherwise are unrelated. For instance,
as we saw, they relate formal aspects of code, or of code-
writing methods, to the instrumental qualities of pro-
grams. In other words, they connect the characteristics of
code itself (structure, looks, readability, commenting)
with its external qualities (not only usefulness but also
price, cost, maintainability).

Instrumental beliefs are not false in the sense that, for
instance, readable code does not yield more useful appli-
cations. Readable code might very well yield useful appli-
cations, but not necessarily. Programmers, of course, are
aware of this. The problem is that the only aspect of the
application they have access to, while writing it, is the
code. Most of the time, they cannot possibly know
whether, for instance, the application will even reach the
user, or if it will be an economic success. They probably
do not even know how much it costs to develop the
application (their salary may only be a small part of the
whole project). It is very likely that no-one in the com-
pany knows all of these things, and yet everyone must
make decisions. Instrumental beliefs cannot, on the other
hand, be scientifically proved (at any rate, I do not see
how such a proof could be carried out).

Instrumental beliefs are the result of a simplification
of reality: everything else being equal, readable code is
more useful than non-readable code. In most occasions,
this is an imposed simplification: programmers may find
themselves with in a situation of severely bounded ratio-
nality. Other times, of course, programmers may be quite
uninterested about widening those boundaries.

Bounded rationality gives rise to beliefs, forcing

239

actors to make decisions they believe (and hope) are the
right ones. Of course, the level of awareness about the
assumptions required by the conviction varies from actor
to actor, but I think it is safe to claim that programming
is not the only environment in which instrumental beliefs
play an important role. Many researchers in the field of
organisation studies have pointed out the existence of
phenomena similar to the instrumental convictions dis-
cussed here (even if they do not call them like this), and,
generally, of different kinds of private aspects of man-
agement. It is important, therefore, not to give the
impression that programmers are particularly inclined to
imagine things, and to guide their professional activities
by personal opinions. They are neither better nor worse
than the rest of us (Feyerabend has shown how also sci-
entists act upon beliefs).

Even though instrumental beliefs are not exclusive to
programmers, it is still justified to study how these are
manifested in the world of software. As I was saying,
they form an essential part of programming, and more
specifically, of its private aspects.

We have already taken up two different beliefs, rather
common but by no means held by all programmers: that
readable code results in better programs (by way of mak-
ing them easier to modify) and that code that looks func-
tional results in more useful programs. We shall now
study another belief, the special kind mentioned in the
previous chapter: the conviction that a particular kind of
methodology results in more useful programs. In fact, we
shall look at two opposed principles, one states that it is
(generally) necessary to carry out a thorough prior design
in order to obtain good programs, the other that such a
method often results in (next to) useless programs.

The idea is that by comparing these two notions we
may gain some further insight into the workings of the

240

private aspects of programming. More specifically, we
shall introduce the notion of programming rituals. But
let me first offer a quick overview of the contexts of these
two beliefs.

the issue of prior design

The original conditions under which programming took
shape, in the forties, fifties and even the sixties (Lohr
2002) (Cerruzi 2000) (Levy 1984), marked strongly the
way in which it is understood today. Even if they were
almost totally different – computers were huge, expen-
sive and unreachable machines, which could not be
accessed personally, programmers had to wait for their
time-slot (the few machines were generally tightly sched-
uled) to hand over their programs (punch-hole cards) to
the machine operator, who fed them to the computer.
Every second of execution was counted, and billed; so
there was not much room for fiddling around with the
code, things had to work from the outset. Stories abound
of hackers who would found ways to reach the computers,
explore them, program them, play with them, and who
often ran into such high bills that the university had either
to bar them from the computing centres or to hire them
as system administrators. But the normal programmers,
with limited access, had to avoid handing in erroneous
programs: if anything was wrong with the code nothing
could be done on the spot, the whole stack of cards had
to be taken back to the desk, revised, and re-punched.

Those programs were generally not too large, and
‘careful design’ meant basically ‘careful programming’
and implied making sure the program would run once it
was fed to the computer. One did not just try things out
to see if they worked, but started with a careful analysis
of what the code would do. Such an approach was sensi-

241

ble, given the size of the programs and the economic cir-
cumstances. This does not mean that all programs writ-
ten in that era were bug-free, far from it, but that the
absolute priority was to code the program correctly from
the very beginning, even before feeding it to the comput-
er, since making modifications was extremely expensive.

Things are different nowadays. To begin with, every pro-
grammer works on a computer a million times faster and
infinitely more accessible than the first ones. Program-
ming today is also, as it was then, writing commands in
order to make the processor carry out calculations, but
apart from that, everything else has changed. Programs are
generally far larger than the early ones and the program-
mers’ interaction with the computer is wholly different.

As I hope has become clear in the course of this the-
sis, there is no programming methodology today, nor any
software development management methodology, that is
the undisputed best one, let alone one that could be
properly called scientifically correct. Neither the soft-
ware industry nor the academics know how to make sure
programming projects produce the results expected, in
the expected time. This is not for lack of suggestions,
in fact, there is a large and growing body of literature
dedicated to the issue (Cooper 1999; Gabriel 1996; Hunt
and Thomas 2000; McConnell 1996; Winograd 1996;
Yourdon 1997) – not to mention all kinds of individual
suggestions that abound in the internet –, with varying
methodological approaches and proposals. Most of them
however, agree on the fundamental problem: much of
the software written today is not only of poor technical
quality, it does not even serve the user appropriately.

The issue of design is of great importance to all those
interested in advancing ways to produce better software.
However, the word ‘design’ is, as one of them puts it, a
“big word”, meaning that it includes a whole load of dif-

242

ferent activities. Consequently, we find quite different
approaches to the role of design in the production of
‘good’ software. On the whole, though, one could say
that there are two main attitudes to design: one based on
a careful and thorough study of the intended functional-
ity of the program, and another one that refuses the pos-
sibility, or at least the practicality, of constructing a use-
ful picture of that functionality before the program is
written and users start to fiddle with it. These are, indeed,
our two instrumental beliefs.

The first approach is the offspring of the original notion
of programming. It is based on the assumption that it is
possible to understand the way in which the program
will be used and to prepare a detailed design that takes
into account the expected functionality of the program,
both from the perspective of technical specifications
(what the program must be able to do) and of phenome-
nological experience (what the user can do with the pro-
gram, and how). Once the programming team, which
should include other professionals apart from the pro-
grammers, has been able to define both, producing the
corresponding documents, the designing can start. And
once the design is finished, the coding can follow. And
after the coding, or during it, the testing. Once all that is
ready the product can be installed (or released): a com-
plete program that due to the detailed prior work – tech-
nical specifications and design – will fulfil the user’s
expectations and become an indispensable tool. Let us
call this the traditional approach and the prior work sim-
ply ‘prior design’ (notice that ‘prior design’ includes
more than the plain ‘design’, used earlier on in this thesis).

The proponents of the second approach (let us call
them bricoleurs) do not share the belief in the possibility
of producing such a design. They do not deny the possi-
bility of producing a coherent set of technical specifi-

243

cations from which to construct a detailed design. Neither
do they think it impossible to produce a design that cov-
ers perfectly the technical specifications, and to code
from that design. The problem is that technical specifi-
cations are seldom fixed once and for all at the beginning
of the project. They have a tendency to be modified,
either by the final users, who have decided that they
wanted something else; by the managers, who are eager
to include new features, or to shorten the deadlines; or
by the programmers themselves who, as they gain insight
in the project, are able to see new ways of solving it.
Furthermore, the design is also subject to modifications,
often due to similar reasons. But even more important
than this is that a program that fulfils the technical
specifications may nevertheless not be useful to the users:
translating their needs into technical specifications is
anything but straightforward

36
.

There do not seem to be many cases in which a devel-
opment project achieves the goal of producing code that
perfectly mirrors the technical specifications even if,
given a stable and realistic schedule (both quite unlikely,
it appears), it should be possible. The real difficulty, as
mentioned just above, is to produce a program that actu-
ally solves the users’ needs.

These problems are not ignored by the traditional-
ists, everyone seems aware of them; their particularity is
that they blame them on originally faulty technical
specifications and/or design: an appropriately carried out
prior design (including both specifications acquirement
and design proper) must take all those circumstances into
account. Bricoleurs disagree, they claim the core problem
lies in the fact that users cannot possibly describe exact-
ly what they want the program to do, among other
things because they do not know what can be done, and
because once the program is available, their reality
changes. Furthermore, users do not always approach the

244

designing effort with a positive attitude: not everyone
likes changes, not everyone likes computers and not
everyone has time for these things, even if they liked
them. The result is a half-hearted attempt to provide
thorough specifications, leaving the programmers
with just a list of functions instead of a clear and com-
prehensive documentation about how the application
may help final users. “Poor designing strategy and poor
designing effort”, the traditionalist could argue; “real
life”, the bricoleurs might answer, “this will not change
regardless of the intensity of the designing effort: the idea
of a careful design is, if not outright unviable, then
definitely unpractical.”

Not surprisingly, the bricoleurs call software based
on prior design ‘monolithic’ (Gabriel 1996), suggesting
with that term the inflexibility that results from an appli-
cation founded on a set of static technical specifications.
Their proposal is to do away with the idea of prior design
and instead tackle the project in a gradual manner:
talk to the customer, present a coarse design, a working
prototype, ask for suggestions, re-design, modify the pro-
totype, test, present, ask again... etc. This way they hope
to assure that the final product is useful, if not very
carefully designed (the same calculation may be done in
different parts of the program, the structure is not
perfectly tight, etc.). They are perfectly aware that the
result of this kind of work does not comply with soft-
ware’s traditional values (notice the title of the message):

Worse is Better by gojomo (#2254683)
Charles Connell's essay presents appealing ideas; it'd be nice to think
software could be "more aesthetic". However, the truth is that Worse
Is Better [dreamsongs.com] -- as Richard P. Gabriel will often argue
(and other times refute).
Exactly those things which make software "ugly" -- complexity, poor
modularity, leaky interfaces, and sacrificing design and comments in
the name of rapid deployment -- can also help make it more successful,
commercially and socially, in the long run.

245

Exactly those things which make software "beautiful" -- such as
Connell's qualities of "appropriate form", "minimality", "component
singularity", "functional locality", "simplicity", and even "readability"
-- can in fact make software fail, as "great programmers" spend a bunch
of time making "elegant solutions" that never catch fire, because they
lack the immediacy and approachability of more haphazard solutions.
While this idea may sound like an excuse to avoid doing up-front
thought, it's actually a hard-earned lesson that what aesthetically
appeals to good, well-intentioned programmers may in fact involve all
the "wrong" tradeoffs.
Read all the stuff on this topic at Gabriel's Worse Is Better pages
[dreamsongs.com], then revisit Connell's aesthetics peice, and Connell
may seem downright naive to you.

Both sides defend their positions with reasonable argu-
ments. Who is right? I don’t know. Some programmers
seem to be doing fine with the first approach and others
with the second. And there is a third group that seems to
have trouble regardless of their approach. However,
since this thesis is not about suggesting methods to
achieve better software but about the private aspects of
programming, we shall leave that discussion there and
continue with the concept of prior design.

By ‘prior design’ I do not mean the general and com-
monsensical idea that it is better to have considered the
problem carefully, and produced some sort of plan of
action, before the coding starts. ‘Prior design’ refers
instead to the elaboration of a meticulous blueprint
based on a set of technical specifications

37
that (a) cannot

possibly reflect the users’ needs, and (b) cannot be per-
fectly translated to code. The first circumstance origi-
nates in the (almost) insurmountable difference between
the world of computational logic and the world of
human enterprise. Ellen Ullman, a programmer and
writer, relates what it may feel like for a programmer to
speak to the final users about the application she is build-
ing for them:

246

I talked, asked questions, but I saw I was operating at a different speed
from the people at the table […] Notch down, I told myself again. Slow
down. But it was not working. My brain whirred out a stream of logic-
speak: “The agency sees the clients records if and only if there is a rela-
tionship defined between the agency and the client,” I heard myself say-
ing. “By definition, as soon as the client receives services from the
agency, the system considers the client to have a relationship with the
provider. An internal index is created which represents the relation-
ship.” The hospice director closed her eyes to concentrate. She would
have smoked if she could have; she looked at me as if through some-
thing she had just exhaled.” ((Ullman 1997) :13)

The roots of the second problem lie in the vagueness of
natural language, and the practical impossibility of trans-
lating it to the strict logic of computer languages. Once
again Ellen Ullman provides us with an articulate com-
ment on the process of transforming a set of technical
specifications (the “system”) into code:

The “system” comes to [the programmers] done on paper, in English.
“All” they have to do is write the code. But somewhere in that transla-
tion between the paper and the code, the clarity breaks down. […] As
the months of coding go on, the irregularities of human thinking start
to emerge. You write some code, and suddendly there are dark,
unspecified ideas. All the pages of careful documents, and still, between
the sentences, something is missing. Human thinking can skip over a
great deal, leap over small misunderstandings, can contain ifs and buts
in untroubled corners of the mind. But the machine has no corners. […]
Now starts a process of frustation. The programmer goes back to the
analysts with questions, the analysts to the users, the users to their
managers, the managers back to the analysts, the analysts to the pro-
grammers. It turns out that some things are just not understood. No
one knows the answers to some questions. Or worse, there are too
many answers. A long list of exceptional situations is revealed, things
that occur very rarely but that occur all the same. Should these be pro-
grammed? Yes, of course. How else will the system do the work human
beings need to accomplish? Details and exceptions accumulate […]
(ibid :21)

247

programming rituals?

So, some programmers (here labelled ‘traditionalists’)
firmly believe that carrying out a prior design results not
only in more beautiful but also in better software. Others
(‘bricoleurs’) believe the opposite, namely that prior
design usually results in “monolithic” constructions that
are difficult to work with and to modify. But these beliefs
not only illustrate certainty about different methodolo-
gies, they are also, and more importantly, manifestations
of a particular view of the world, more specifically a par-
ticular view of what programming is, what it should be
and what is possible to achieve through it.

This is all very patent in Richard P. Gabriel’s argu-
ments against prior design. His thoughts about program-
ming, described in Patterns of Software (Gabriel 1996),
are inspired in the work of an architect, Christopher Alex-
ander, for whom master plans (more or less the architec-
tural equivalent of prior designs), far from just being neu-
tral construction tools, are the fundamental elements that
form a technological structure of control and dominance:

Master plans have two additional unhealthy characteristics. To begin
with, the existence of a master plan alienates the users... After all, the
very existence of a master plan means, by definition, that the members
of the community can have little impact on the future shape of their com-
munity, because most of the important decisions have already been made.
In a sense, under a master plan people are living with a frozen future,
able to affect onle relatively trivial details. When people lose the sense
of responsibility for the environment they live in, and realize that there
are merely cogs in someone else’s machine, how can they feel any sense
of identification with the community, or any sense of purpose there?
Second, neither the users nor the key decision makers can visualize
the actual implications of the master plan (Alexander 1975, as quoted
in (Gabriel 1996))

The traditional view of programming, based on the con-
cept of prior design, has, according to Gabriel, not only
alienated users but also impoverished the art of program-

248

ming. Programming is a human capability that should
not be restrained by constricted views about careful plan-
ning, Gabriel elaborates his ideas further in an internet
essay, co-written with Ron Goldman (Gabriel). The essay
starts like this:

The authors, writing in first person, start their essay
describing the conditions in which programming is actu-
ally carried out. A gloomy view of the present state of
software creation:

Over the years I’ve despaired that the ways we’ve created to build soft-
ware matches less and less well the ways that people work effectively.
More so, I’ve grown saddened that we’re not building the range of soft-
ware that we could be, that the full expanse of what computing could
do—to enhance human life, to foster our creativity and mental and
physical comfort, to liberate us from isolation from knowledge, art, lit-
erature, and human contact—is left out of our vision. It seems that
high-octane capitalism has acted like an acid or a high heat to curdle
and coagulate our ways of building software into islands that limit us.

But like survivors, we’ve managed to make these islands homes.
We’ve found the succulent but bitter fruit that can sustain us, the small
encrusted or overfurred creatures we can eat to survive, the slow-mov-
ing and muddy streams from which we drink against the urge to spit it
out. Being survivors, we can make do with little. But how little like life
is such an existence.

249

figure, Programming according to Gabriel & Goldman

The “small encrusted or overfurred creatures” and the
“slow-moving and muddy streams” which programmers
must accept are, I assume, the applications from which
they make a living. It is the software that stinks, in
Connell’s terms, forced upon programmers by tough
deadlines, clueless management and ignorant colleagues.
But most of all, according to Gabriel & Goldman, it is
forced upon them by their own fear of failure, manifest-
ed in their need for master plans:

Software is full of failure, and will be until we can learn how truly to
build it.
Fear of failure is fear of death. In fear of failure, we seek order.
Let me say it plainly: We know how to produce small portions of soft-
ware using small development teams—up to 10 or so—but we don’t
know how to make software any larger except by accident or by rough
trial and error.—Because the software we’re trying to build is too mas-
sive—it is simply too difficult to plan it all out, and we have no idea
how to coordinate the number of people it takes. Every piece of soft-
ware built requires tremendous attention to detail and endless fiddling
to get right.
In response to this problem we have clung to fads: structured and
object-oriented programming, UML, software patterns, and eXtreme
Programming

38
. We grasp for mathematics or engineering to come to

our rescue—perhaps even the law: By requiring licenses for our devel-
opers maybe we can force improvement in software making.
[...] Software development methodologies evolved under this regime
along with a mythical belief in master planning. Such beliefs were root-
ed in an elementary-school-level fiction that great masterpieces were
planned, or arose as a by-product of physicists shovelling menial and
rote coding tasks to their inferiors in the computing department.
Master planning feeds off the desire for order, a desire born of our fear
of failure, our fear of death.

Gabriel’s suggestion for better software, and more stim-
ulating approaches to programming, are condensed in
the concept of ‘habitability’, which is “the characteristic
of source code that enables programmers, coders, bug-
fixers, and people coming to the code later in its life to
understand its constructions and intentions and to
change it comfortably and confidently” ((Gabriel

250

1996):11). But we do ourselves a disservice if we reduce
Gabriel’s message to its methodological aspects. The
opposition between the traditionalists and the bri-
coloeurs concerns more than just the planification of pro-
gramming projects. As mentioned above, the opposition
goes further, it is two world views that confront each
other. Programming is not the same activity, i.e. it does
not fill the same place in the great scheme of things, for
a traditionalist and for a bricoleur, and the difference
between both methodologies can be interpreted as the
traces left by this confrontation. We can therefore change
the word ‘methodology’, that only denotes superficial
rules of behaviour, with ‘ritual’, that denotes the process-
es by which convictions about the great scheme of things
are both created and reaffirmed. Or, as Geertz (Geertz
1973) puts it:

... for it is in ritual – that is, consecrated behaviour – that this convic-
tion that religious conceptions are veridical and that religious directives
are sound is somehow generated. It is some sort of ceremonial form –
even if that form be hardly more than the recitation of a myth, the con-
sultation of an oracle, or the decoration of a grave – that the moods
and motivations which sacred symbols induce in men and the general
conceptions of the order of existence which they formulate for men
meet and reinforce one another. In a ritual, the world as lived and the
world as imagined, fused under the agency of a single set of symbolic
forms, turn out to be the same world, producing thus that idiosyncrat-
ic transformation in one’s sense of reality to which Santayana

39
refers in

my epigraph. (:112)

Geertz is interested in religion, we are interested in pro-
gramming, and both are obviously not the same thing;
among other details, programming does not offer “anoth-
er world to live in”. But they do have some formal simi-
larities, as, for instance, the existence (and the practical
effects on everyday activity) of unscientific beliefs.
We shall come back to the similarities between program-
ming and religion, but let us leave them aside for the

251

moment and change Geertz’ religious conceptions and
directives into programming conceptions and directives.

Geertz describes rituals as ceremonies in which “the
world as lived and the world as imagined, fused under
the agency of a single set of symbolic forms, turn out to
be the same world” ((Geertz 1973) :112). For those with
a traditional approach to programming, prior design is
a ritual in which the assumptions about what is possible
to do with software (the world as imagined) coincide
with what is done (the world as lived). For traditionalists
prior design is perfectly reasonable; it is nothing but
rational behaviour, considering the structure of the
world. The same, of course, goes for the bricoleurs; both
groups act rationally, they simply depart from different
perceptions of the world.

The symbols used in the programming version of
Geertz’ fusion (between the world as lived and the world
as imagined) are the documents that constitute the
design, i.e., the design

40
. This does by no means make

prior design an exclusively symbolic activity: its effects
have an enormous significance on the instrumental plane.
The symbols in this case have as much instrumental as
symbolic value; after all, it is during this phase of the
software development project that the documents that
will be used as the basis for the coding phase are pro-
duced: technical specifications, design of user interfaces,
database structures, separation between main program
and libraries, specification of each library’s technical
interface, etc. Clearly, all these things are, essentially,
instrumental: unlike the case of religious rituals, they are
not primarily carried out for their symbolic value. Is it
then helpful to say of prior design that it is a ritual?
Well, I think so, since it indicates that the production
of technical documents (tools) is not its only conse-
quence, even if it may be the dominant (one would have
to check if it actually is dominant). At the same time, it

252

is clear that prior design is a very weak kind of ritual:
its formal aspects are, in general, not very pronounced
and, more importantly, it is not consecrated behaviour

Traditionalists will argue that a correct performance
of every phase of prior design results in useful software.
For them, this is a true proposition, and bad software
can always be explained as the result of some fault in the
prior design, some detail will surely always be found…
but is it really a true proposition? This is a tricky question.

On the one hand, the connection between a proper
performance and a desired result are more closely con-
nected in the case of prior design than in the case of, for
instance, the ritual of the rain dance; but usefulness is
neither a mechanical nor a logical consequence of prior
design (programmers I have labelled ‘bricoleurs’ are
aware of this, and suggest that the idea of writing ‘mono-
lithic’ pieces of code be scrapped – their own method
does not either logically imply usefulness and is another
kind of ritual). On the other hand, analysing prior design
from the perspective of ritual may present it in a mysti-
fying light that it does not deserve. Indeed, speaking
about the ritual of prior design may give the impression
that traditionalists are wrong, or more specifically, that
they do not ground their decisions on scientifically proved
states of fact. It may also create the idea that they write
software on whimsical preferences, and that there is (or
could be) a way to write software properly, that is, sci-
entifically. This line of thought is flawed on several
points. First of all, programming is not a scientific
endeavour, it is an act of creation, and it is unclear
what it exactly means to carry out an act of creation sci-
entifically. Second, it is impossible, for reasons given
before, to identify all the variables that form part of a
programming project, let alone to define the relation-
ships between them. Hence, it is absolutely necessary to
make assumptions, to have beliefs, about how to write

253

good software. Third (and this is particularly clear from
the perspective of rituals), in order to find a different, but
still rational, programming methodology we need anoth-
er view of the world, in which programming is accorded
a different nature and a different purpose. Gabriel pro-
poses one such, and his suggested methodology is indeed
very unlike the traditionalists’. But are his mob software
and his patterns of software just another ritual or are
they the real thing?

Clearly, what we need is a world view beyond all the
others, from which to judge them. In the West this view
is, as has been insinuated, Science. Hence, neither the
bricoleurs nor the traditionalists are right until they can
prove their propositions scientifically… the problem is
that I do not see what this science-of-the-prior-design
might look like, even if it appears to me that statistical
accounts are not going to take us there.

A discussion about prior design is not complete without
at least noting that there is also a Machiavellian way to
look at the whole phenomenon. It is not absolutely
unlikely that some of those who follow the traditional
methodology do so not because they believe it results in
better software but because it is the best-established
methodology. As such, it is the most legitimate way of
developing an application, and if the program proves to
be useless, late, unstable or whatever, they can at least
guard themselves saying that they are ISO9001 – or
something – approved, and that they followed the book.
The requirement of holding an instrumental belief is then
passed on to the customers, at least if they are to accept
that the best way to develop software is to follow the
established methodologies. But that is another story.

At any rate, instrumental beliefs are a fundamental part
of the private aspects of programming. In previous chap-

254

ters we touched upon two of them (based on the read-
ability and the functionality of code), without going into
much detail. In this one we have studied yet another one
(based on the acceptance or rejection of prior design),
this time analysing the belief as an element of a particu-
lar world view. We have seen how programming method-
ologies then can be interpreted as rituals in which that
world view is reaffirmed.

Programming can, from this perspective, be under-
stood as a symbolic activity, in which programmers
express their beliefs about the world, more specifically
about the nature and the purpose of programming. The
argument continues on this line, and in the next chapter
we shall consider a basic form of symbolic activity that
can also be identified in programming, and that also has
observable effects: sacrifices.

255

256

36 Once again, we meet a classification of programmers, this time the
two categories are ‘traditionalists’ and ‘bricoleurs’. And once again, the
classification is not an end in itself, it is only valid as a means of
explaining a particular programming phenomenon (beliefs, in this
case). I make no claims as to the comprehensiveness of this classifi-
cation, there are probably other methodologies, other beliefs about
how to write good software. And, once again, this classification is not
correlated with the previous ones, in particular not with the one pre-
sented in chapter seven. The category of traditionalists is equivalent
neither to instrumentalists, nor to software-engineers, or aliens, or true-
geeks. All combinations are possible
37 Not all programs have a final user, i.e. interact with a human actor.
Many of them exist between other programs, where conditions are very
stable and where it is possible to write technical specifications that
detail exactly what the program must do. In these cases the adjective
‘useful’ means something completely different to the case in which there
are human users involved. The argument here concerns the cases in
which there are final, human users
38 eXtreme Programming (XP) is a programming methodology that
has become popular lately. It is not ‘extreme’ in any thrilling sense of
the word, as can be seen by reading their principles Jeffries, R. E. 2001
'What is Extreme Programming?'
39 The quote by Santayana to which Geertz refers is: “Any attempt to
speak without speaking any particular language is not more hopeless
than the attempt to have a religion that shall be no religion in particu-
lar.... Thus every living and healthy religion has a marked idiosyncrasy.
Its power consists in its special and surprising message and in the bias
which that revelation gives to life. The vistas it opens and the myster-
ies it propounds are another world to live in; and another world to live
in – whether we expect ever to pass wholly over into it or no – is what
we mean by having a religion.” (Santayana quoted in Geertz 1973:112)
40 Unfortunately, both the verb and the substantive are ‘design’, mak-
ing it fastidious to express oneself clearly. This is why I have opted for
calling the process ‘prior design’, and the product ‘design’. Hence, the
ritual is ‘prior design’ and the symbol, and product, ‘design’.

iv
Community

The concept of ‘programming community’ can be found
a little bit everywhere, including scientific articles in the
IEEE Software Journal, where it is used to explain why
some programmers hold strong opinions on technical
subjects that have not been empirically solved. In this
chapter we shall explore the relationship between what
we have called ‘private aspects’, our gathering term
for that kind of phenomena, and the existence of a
programming community. Bataille’s concept of sacrifice
as expenditure will be our link, the argument being that
some of private phenomena of programming (e.g. writ-
ing beautiful software) can be interpreted as the manifes-
tation of a constant and individual sacrifice that brings
about a sense of community. The sacrifice may take
different forms, but in all cases expresses the same:
a concern for software itself (its intrinsic qualities), more
specifically, an economically oblivious concern for soft-
ware. Obliviousness, however, is not the same as opposi-
tion, sacrifices are not generally carried out in order to
waste but in order to express something. In fact, they
may make good economic investments, as some pro-
grammers insist.

259

In previous chapters we have observed that programmers
face different alternatives when they are programming
and that these alternatives cannot be, so to speak, calcu-
lated away. They require a personal choice from the pro-
grammer. Programmers, we have also seen, are further-
more concerned by what their creations say about them,
not only about whether they work or not. This aspect of
programming has been here called the aesthetic aspects
of programming, which are a part of the private aspects
of programming.

Since the same problem can be solved in different
ways, the choices made by the programmer, reflected in
the code, say something about her. Thus, the code carries
a symbolic value that is not a direct function of its instru-
mental value. In other words, a piece of code says some-
thing about its programmer, and what it says about
him/her does not exclusively – probably not even mostly
– depend on the whether the application is useful or not.
The effects of this will be considered in the next chapter.

This chapter is instead dedicated to the concept of
programming community, more specifically, to its con-
nection with the private aspects of programming. The
argument spins around Bataille’s notion of un-economic
expenditure (sacrifice) as the origin of the instant of com-
munion. So let us begin with an overview of his concept
of sacrifice.

sacrifice as waste

The concept of sacrifice and its role in culture has been
broadly studied. It is probably the ethnographers that
have shown most interest, but I came in contact with it
through the work of a sociologist: Georges Bataille.
It was while reading the first volume of his classic text
The Accursed Share (TAS) (Bataille 1988) that I came to

261

think about coding styles, programming aesthetic ideals
and other phenomena that will be presented in the next
chapter (vanity, disputes about programming languages,
etc.) as kinds of sacrifices. The concept of sacrifice can be
treated in different ways, and I may as well clarify this
from the beginning: my argument is based on Bataille’s
notion of sacrifice, in fact on a very concrete side of it (it
being an un-economic expenditure), and we shall see that
my treatment of the concept is not quite as careful as the
ethnographers’ and anthropologists’. I use it here as a
tool to explain an aspect of programming, inspired by
Bataille’s visionary work; the purpose is not to propose
an account of sacrifices as detailed as is the norm among
ethnographers and anthropologists.

Programmers do not carry out what we convention-
ally call sacrifices, very much like they did not carry out
‘proper’ rituals. The other-worldly aspects are missing in
both cases. Programming rituals are not sacred in any
other sense than the metaphorical, and the sacrifices are
not offered to supernatural gods. The idea is that by
interpreting some of their actions as if they were sacri-
fices we gain further insight into the meaning of pro-
gramming. But before going into that, what is a sacrifice,
literally? Or, rather, what are its essential characteristics,
as they have been discussed by Bataille?

Bataille was particularly interested in the concept of
sacrifice, and the first volume of TAS is arguably a long
description of the notion of sacrifice and its effects on the
celebrants. He takes up a few different kinds of sacrifices
(Aztec, Tibetan, Christian, etc.) but he is not as interest-
ed in enumerating the formal characteristics of the ritu-
als, or in categorising them, as in studying their funda-
mental essence. His suggestion is that sacrifice must be
understood, above all, as the consumption of resources
with an uneconomic frame of mind. Hence, in the case of
Tibetans, for instance, he does not delay in a description

262

of the formal aspects of religion but analyses the fact that
a whole layer of their society – the monks – is sustained
regardless of the economic sense that their sustenance
may make. This is the single most important characteris-
tic of a sacrifice: the denial of economic reason

41
. The

whole TAS is nothing else than a severe criticism of the
Western fixation with the notion of (economic) useful-
ness, and of the moral dominance that the idea of ‘being
good for something’ (utilitarianism) has reached in our
society. This criticism is a recurring theme in TAS, but it
is perhaps most clearly visible in the chapter where he
analyses Christian sacrifices, and their vanishing in our
(capitalist) era. For him, the moral predominance of (eco-
nomic) usefulness results in the marginalisation of sacri-
fices and, hence, of the single most important feature of
a community (Bataille is more poetic, or more baroque, in
his formulation: “it is not necessity but its contrary, lux-
ury, that presents living matter and mankind with their
fundamental problems”(:12) – luxury being the essence
of sacrifice). Why is the offering of sacrifices such an
essential part of a community? Because it is in those
moments that the community is enacted, that is when the
sense of community emerges

42
.

The essence of sacrifice is for Bataille something else
than following a formal set of procedures, it is instead
nothing less than the denial of economic reason. He
opposes the notions of productive and unproductive con-
sumption, using words such as expenditure, squander-
ing, dissipation and, above all, waste, to describe the lat-
ter kind. The formal aspects of the rituals become there-
fore a secondary concern, the essence of sacrifice lies in
the consumption of resources with a conscious ‘dis-
expectation’ (omission) of economic return.

From this perspective, the contrary of sacrifice is
investment. Their opposition does not lie in the fact that
an investment always yields a return whereas a sacrifice

263

never results in anything – neither of those propositions
are true. It lies instead in the attitude with which they are
carried out: an investment is the result of calculations, a
sacrifice the result of one’s respect to the power of the
sacred. To invest is to consume resources with a produc-
tive frame of mind, i.e. to introduce them in a system of
economic calculations. The actual – as opposed to calcu-
lated – process may or may not yield a gain, but the
essence of an investment does not lie in a final success but
in the nature of the system of which the speculation
forms part. To sacrifice is, on the contrary, to consume
resources regardless of any calculations: to give them
away as a gift.

Scholars have pointed out that sacrifices usually include
an expectation of some sort: the Aztecs did not ritually
kill children, women and prisoners for pleasure. On the
contrary, their world-view (their world as imagined)
required them: they were necessary to assure the sympa-
thy of the gods (Carrasco 1999). The difference between
this kind of expectation and what I have called econom-
ic expectations is the nature of the system of which they
form part. An economic gain is expected as the return on
an investment, following an economic rationality, based
on calculations – which may very well be incorrect. It is
impossible to know, in a general sense, which invest-
ments will yield a result, and no amount of calculations
can change that, but the question here is not whether one
can be sure of a later gain but on what fundaments the
expectations are based. In the case of an investment, the
expectation is based on the hope that the calculations
prove correct. The case of sacrifice is diametrically
opposed. In this case the expectation is based on the
hope of reciprocation, the sacrifice is a gift to the gods,
who they hope will accept it and give something else in
return (like rain, for instance).

264

As Mauss already made clear in his seminal The Gift
(Mauss 1967), accepting a gift is part of a social mecha-
nism that includes an obligation to reciprocate it. How-
ever, the conditions of this obligation are very vague.
There are no laws that govern it other than a general
sense of social correctness. Mauss hints at it in his afore-
mentioned work and Lewis Hyde (Hyde 1983) makes the
idea explicit: sacrifices are gifts to the gods. These gifts
may be made by the celebrants either to reciprocate the
gods for everything they have been bestowed upon
humans or else in hope that, after accepting it, the gods
will feel the obligation to reciprocate. So, in a way,
sacrifices are a primitive kind of investment (and given
the incertitude involved in the latter, they both share
more than is initially apparent), but they differ in an
essential point: the expectation of result in sacrifices is
not the result of economic calculations, it springs from
social considerations.

A gift, including a gift to the gods, is not an economic
investment. Certainly one can analyse the economic con-
sequences of offering a gift (what may be expected in
return, etc.) but a present given with the intention of
a certain return is not a gift, it is an investment (faux-
gift?). The boundary is thin, and permeable, especially in
a society well trained in reducing things to economic
terms, but it exists (Hyde 1983).

A gift is an action governed by social etiquette and
not by economic reason (or economic law). Social eti-
quette consists of rules of behaviour, but both the rules
and the punishment for breaking them are vague, an idea
already present in Mauss’ work. In some occasions, for
instance, one is supposed to offer a gift. Going to a birth-
day party without a present breaks a well-known rule,
but it generally does not carry any clear consequences to
the offender. One can also accept a present and never
return anything, or many years later, or return something

265

of lesser (or higher) value, without for that matter even
becoming immoral. There is a social mechanism that rules
the giving, acceptance and reciprocation of gifts but there
are no automatic levers, no counting, no calculating of
returns, no economic considerations.

The kind of ‘sacrifices’ that I have in mind for the pro-
gramming community are, however, not gifts to the gods,
neither in the propitiatory nor in the thanks-giving sense.
It seems to me farfetched to set up a series of gods that
the programmers, as programmers, relate to, or that
form part of a programming world-view. One might won-
der if it is correct to name actions ‘sacrifices’ when they
have no connection to gods. This depends naturally on
the sense of ‘sacrifice’ that one wishes to use and, as I
said before, I am following quite closely Bataille’s notion
of sacrifice as uneconomical consumption, which, strict-
ly speaking, requires no gods. The sacrifice, in this sense,
is an action that occurs among humans, and that has
concrete consequences on their interaction, more speci-
fically, on the meaning they attribute to their interaction.

The suggested programming ‘sacrifices’ differ from
the conventional ones in that their formal structure is
little or not developed at all. Hurbert and Mauss’
(Hubert and Mauss 1964) offer a structuralist approach
to sacrifices, suggesting they can be divided into various
moments. I make no claims as to the existence of these
moments in what I call the programming sacrifices. This
is a metaphor, and I am only interested in illuminating
one aspect of the programming effort. More specifically,
I am interested in those moments of waste (uneconomic
consumption of resources), which, according to Bataille,
are the moments of actual community. The actions that
temporarily transform a group of programmers (which
initially are an instrumental system, for instance a pro-
gramming team) into something that transcends the mere

266

economical convenience are what I have called ‘pro-
gramming sacrifices’. The denial of economic reason that
lies at the foundation of the sacrifice gives rise to the
moment of communion.

Denial of economic reason does, however, not imply
denial of practicality. Due to its visionary nature,
Bataille’s work lends itself to different interpretations,
and to critiques, such as Daniel Miller’s: “Bataille was
wrong, above all, because his vision of sacrifice was one
of pointlessness that thereby repudiates utility, but in tra-
ditional sacrifice … the dominant concern is to achieve
specific purposes – which are often pragmatic and prac-
tical.” (Miller 1998) As I see it, though, Bataille does not
deny the idea that sacrifices are pragmatic and practical
but the kind of pragmatism they are based on. Bataille
simply highlights the non-economic nature of the prag-
matism that lies behind sacrifices. Pragmatism and eco-
nomic reason are not synonymous, and this is the main
point of the programming sacrifices.

beautiful code as a sacrifice

In what sense do I then mean that programmers carry
out sacrifices? There are no gods, no reciprocation and
no propitiation, no formalised destruction of resources
and no public performances. But I suggest, with Bataille,
that there is something even more essential to a sacrifice
than all that: the dissipation of resources, and the sense
of community that this waste brings about.

Take, for instance, the notion of beautiful code.
Programmers do not perform rituals of computer burn-
ing, or anything as extravagant as that. Their offering is
in accordance with the immaterial nature of the fruits of
their work: the main resource they waste is time (it is
difficult to see how knowledge could be wasted… other

267

than by not being applied, but this is not what I have in
mind); the time dedicated to keeping a consistent pro-
gramming style, to making their programs tighter, more
habitable, more elegant. Also the time dedicated to
“parental-visit-strength clean-up”, to proper indentation,
to the selection of fitting names for their classes, func-
tions and variables, to the formulation of their comments,
to the search for the right command, or function, etc.

Suggesting that we consider these activities as sacrifice is
not at all unproblematic. As I said earlier, they do not fol-
low the phases proper to a sacrifice, as described by
Hurbert and Mauss. There is, for instance, no phase one,
in which the programmer turns her/his attention to the
offering that is going to be made, to the gods, to the
sacredness of the moment. All those activities (naming,
indenting, finding existing commands and functions,
etc.) are part of the programming process and are often
undistinguishable from the non-sacrificial components of
programming: constructing an algorithm, designing the
structure of a database, etc. In fact, it is not that they are
undistinguishable, it is that they are two aspects of the
same activity. Constructing an algorithm cannot be
divided into ‘constructing the algorithm proper’ and
‘making sure it is elegant’. Both activities are the same.
Either the algorithm is elegant or it isn’t. To perfect one
that already exists is, in fact, to construct a new one.

Remember that we have considered what program-
mers say about programming, I have not conducted an
ethnographical study in situ. But even if I had, I do not
think (based on my short experience as one) that it is
possible to differentiate specific sacrificial frames of
minds. A programmer sitting in front of a computer may
stop typing for a second, try to remember that little neat
function, what its grammar is, in which library it can be
found, in what cases it can be used... Perhaps s/he will

268

have to ask a colleague, look it up in a manual or post a
question on the internet; time will be spent on the issue
but it is incorrect to think of it as ‘writing the program’
+ ‘making it more beautiful by adding this neat function’.
Writing the program is adding this neat function, there is
no separation. It is hard to see, just by looking at the
process of writing the program, that anything worth the
name ‘sacrifice’ is actually going on.

But something is happening as the programmers
write on, even if it takes something out of the ordinary to
bring it up to the surface. One of those extraordinary
things is the challenge of going through someone else’s
code. Programmers become then aware of the stylistic
choices of the original author in the code they are hand-
ed. They can see whether these little neat functions have
been used, whether care has been taken to comment
properly, the idea behind the design, the indentation and
naming schemes… the readers can also see whether the
original author’s ideas of ‘properly commenting’ and
‘neat functions’ resonate with theirs. Or if they are ugly,
or simply sloppy.

The sacrifice in programming is not a separate act that
brings about a spiritual transition marked by a series of
moments: from A to E, peaking in the act of destruction
of resources. The ‘sacrifices’ carried out by programmers
consist of a continuous, more or less conscious, attitude
towards the intrinsic qualities of the program they are writ-
ing. Maintaining this attitude, and hence producing intrin-
sically good (beautiful, for instance) software, requires the
dissipation of resources (time) and it leaves traces that can
be read in the code: from the superficial marks of coding
style (the choice of variable names, indentation, com-
ments) to the marks that tell about the program’s structure
(the abstraction depth of the procedures and the functions,
the way in which the main program interacts with the
rest of the elements, the programming languages, etc).

269

But is there any waste at all in the maintenance of this
programming attitude? The fundamental characteristic
of sacrifice, as it is used in this thesis, is the dissipation of
resources. If writing beautiful software cannot be sepa-
rated from writing software then where is the denial of
economic reason? Well, listen to the programmers’ com-
plaints about being forced to write software that sells, as
opposed to beautiful software:

It's the buyers fault, not the programmers fault. by maitas (#2254987)
Crappy programmers are cheaper than good ones. People prefers to
buy cheap software with lots of features, even if it doesn't work!! So
right now the situation is that, or either you make crappy cheap soft-
ware with lots of features fast and keep selling like crazy (Microsoft
way), or you built expensive great code with only a fraction of the fea-
tures (belive me, to add features to a given soft takes lots of time) and
no single person will buy it.
!!Don't kill the messanger!! Kill the software buyers!!

Re:complexity by StevenMaurer (#2253780)
That's an easy one to answer. Software companies don't back their
products because their customers don't expect them to. Instead they
expect low prices.
Bill Gates is a billionare because he was one of the first people to real-
ize that given a choice between a $200 program that works flawlessly
and a $99 program that fails 5% of the time, most people (and busi-
nesses) will choose the cheaper product (while moaning how bad soft-
ware is). […]

features vs bugs by josepha48 (#2252949)
The problem is that while software developers may want to fix the bugs
and make it work nice and all, the managers generally want to make
money and the only way to sell a product is through new features.
Usually adding in features after an application has been developed
makes an app a nightmare to work on and harder to debug. […]

Not a hill of beans. by Anonymous Coward (#2253224)
I look forwards to the general public gaining an appreciation of good
code. Much of the discussion so far seems to revolve around how soft-
ware is not hardware and how much harder it is than physical engi-
neering. No comment on this issue. […]
The point for me is that the general programming community (I) need
to successfully explain to the general public (my mum) why some code
is beautiful and other code is not. Until then the public will not pay
more for good code than bad code. I am failing miserably so far. […]

270

The constraints that economic (costs, profit, competi-
tion) considerations put on programming are experi-
enced by most programmers as obstacles to beautiful
software. There is however no necessary connection
here: not all profitable software is ugly and not all ugly
software is profitable, regardless of the quite radical
opinions held by some programmers about this matter
(particularly about Microsoft’s products). My point is
not that commercial software (as opposed to open
source, developed without economic constraints) is nec-
essarily ugly, or that open source programming will nec-
essarily yield better software, but that (some) program-
mers experience an opposition between economic con-
straints and beautiful software.

However, this opposition is not sustained in the same
terms by everyone. In some cases it is simply rejected, as
Myopic does here:

Re:nice, but welcome back to the real world by Myopic (#2253074)
I've seen this comment a lot in this discussion: "well, my software
works, so it's good enough". You even say that you don't get paid to
make pretty software; just usable software.
I suppose that might be true, but I would venture that not everyone is
in the same boat. I, for example, AM paid to write pretty code. My job
is to come up with relatively simple perl scripts (modules) to solve
various problems that Dartmouth [dartmouth.edu]'s website users
have. (For example, I wrote a quota module to help people verify that
files they want to write to disk will fit within their alloted disk quota.)
I have NEVER turned in to my boss anything but well-documented,
well-commented, readable code. I don't do this out of respect for my
users; frankly, I know how to use the software and if they don't they
can read my docs and try to figure it out. No, I do it for the other
schmucks like me. At some point, my boss will probably tell his next
lackey to add some little feature to one of my modules, as he's asked
me to do with some older programmer's works. And it's DAMNED
IMPOSSIBLE to wrap my head around code which is all mixed up.
I comment for other programmers. People who might need to sink their
hands into my code.
Paying me now to write comments and format things well is worth it
for the added speed with which the software will be maintained in the
future. So for me, and I'm sure most of the code jockeys on Slashdot,

271

the "real world" is one where software is written, THEN MAIN-
TAINED. Beauty is part of maintanence.

As Myopic argues at the end of the message, some pro-
grammers seem indeed to be of the opinion that truly
beautiful software is more profitable, defending their
ideas with cost analysis:

Re:software is incredibly complex... by Anonymous Coward
(#2253398)
That's about the most naive blanket statement I've ever read. "its
always best to have good code, not code that looks good."
Consider a project that lasts 5+ years. Over the life of the project, there
will be dozens of developers added and cut from the payroll. Assume
your "good code" gets executed once or twice a week and instead of
taking 2sec it takes 1sec. You've saved 1sec (possibly 2sec) per week
which adds up to 52secs (or 104secs) per year.
Let's compare that to the human maintainer. Assume one person has
to look at that code 1 time every 6 months and it takes them 30 min-
utes to understand it. That's 60 minutes that someone is getting paid
to understand that code.
If the person earns $80,000 US, that's about $4 (assuming 4 week vaca-
tion) that was spent on the human. It's actually less when you consid-
er that a person's salary is not their labor rate. Over the life of the pro-
ject (5 years) you've spent $83 on your "enhancement".
Now, if the cost of up'ing the Mhz on your CPU is greater than $83
then it may make sense to implement the "enhancement". However,
when you consider the price differential between a 900mhz processor
vs a 933mhz processor (the argument being that a 933mhz processor
could run the slow code and keep up with the 900mhz processor run-
ning the fast code) you won't find an $83 difference. It'll be more like $20.
That being the case, humans are more expensive than computer CPUs
these days. Maybe they weren't in the past, but they are today.
Another argument for clean easily-readable and understandable code is
that, if you take your argument, the entire system will become
"enhanced" and no one will understand how it works. That will add
on an additional overhead in the form of lack-of-enthusiasm for a pro-
ject and will have financial implications.
All in all, I've worked on XP projects where code formatting and
understanding was important. And I've worked on government con-
tracts where people hack'ed their way through to save a couple of
cycles. Maintainability speaks volumes... And I'd go with readability
and understandability in a heartbeat...

272

The idea is that managers who push for tough deadlines
in order to be the first to market make an economic mis-
calculation: the software will become more expensive
as bugs have to be corrected, angry customers met, etc.

Re:No financial incentive for good software by mrbuckles (#2253107)
Actually, I would argue that there is a very real financial incentive to
well designed software. Namely, it is easier to maintain and extend.
The problem I've seen (and this is from building in-house software for,
say, banks) is that the managers of software projects don't understand
this fact. They only understand the known relationship between time
spent on a project and cost. They don't figure the time that will be
spent AFTER initial coding.
The amazing thing about all of that is that there are thousands and
thousands of pages of studies done on these very topics. Books are
written every year to discuss this. It's a field of study unto itself. Yet,
most managers you work for will still believe if you're behind on a
project you should double the number of people working on it to
get done twice as fast. At some point, the responsibility for these prob-
lems needs to be pushed up to people who can do something about it.

Clean code = cost savings by Anonymous Coward (#2252917)
For all the management out there to keep putting deadlines on things
that can't be met. Think about it. If you fix something before it is
released, you will save your self thousands techsupport phone calls per
release! That saves money!
Clean code means cost savings

Would commercial software houses make more money if
they wrote more beautiful code? That is difficult to
know, not only because it is hard to know which version
of ‘beautiful code’ to choose but also because market
processes are generally too complex to allow for the
claim that elegant software will yield higher gains. The
anonymous participant and mrbuckles are, it appears to
me, rather expressing their frustration over the poor
quality of software produced and the amounts of time
spent correcting mistakes that could – they firmly believe
– have been avoided in the first place. Whether or not
that would imply any actual profit increase depends on a
good deal many more variables.

273

It is clear that programming sacrifices are not absolute
phenomena, and that this is simply an analytical concept.
Some programmers can be said to carry out sacrifices,
others to carry out semi-sacrifices and others not to carry
them at all. The key to the sacrifice lies in an uneconom-
ic concern for the intrinsic qualities of software, and we
have seen that the uneconomic nature of the concern may
be concealed, or polluted, by a legitimising discourse that
follows economic reason. Or else that nature is neither
concealed nor polluted but simply non-existent: it is
possible that some programmers’ concern for the intrin-
sic characteristics of code is the result of an investment-
like calculation. They want their code beautiful because
they have calculated that it will yield better programs.

Programmers of this kind are probably uncommon,
since those in charge of the economic aspects of software
(planning, development, distribution, marketing, sales,
services, etc.) do not seem to accept the result of those
calculations. It does not sound too controversial, hence,
to suggest that those interested in developing beautiful
software are not necessarily in phase (do not share
the same world-view) with those interested in making
economically based decisions about software develop-
ment. This idea can also be expressed in other terms: con-
sidering code something worth in itself is not compatible
with considering it just a cog in the machinery of profit.

At any rate, the concept of programming sacrifices is
not meant as a categorical truth, it is only a tool for gain-
ing insights into what programming is. There are certain
phenomena that can be explained by using such a con-
cept, even if there are certainly other ways to explain
them. One of the phenomena that the concept of sacrifice
explains is that of the programming community.

274

community

One of the problems we meet when trying to apply the
concept of ‘sacrifices’ to programming is the absence of
sacred actors: to whom do programmers offer their
sacrifices? But even if there are no properly religious
parts to be played in the programming sacrifices, there
still exists a transcendental actor. An actor that, like the
gods in the conventional sacrifice, is constituted in the act
of writing elegant code. This actor is the programming
community. According to Bataille, it is the act of unpro-
ductive expenditure, the sacrifice, that brings about the
moment of communion, the community. This moment of
communion is what puts the participants in the sacrifice
in contact with the transcendent realm, and in true con-
tact among themselves.

His idea of community should not be confused with
the more usual sense that the word has. For him, com-
munity is not about a group of people that have some-
thing in common, that meet every now and then, or that
live in the same area. That is a community, something
that can be founded, whose regulations can be written
down, and that exists regardless of any unproductive
expenditures. Like Bataille’s community, it must be main-
tained (although not through the offering of sacrifices)
but the essence of this ‘conventional’ community is a cer-
tain practical convenience: it is set up in order to meet
concrete, including economic, goals.

Bataille’s community, on the other hand, is a special
frame of mind, or frame of spirit, that is triggered by a
common sacrifice. But both kinds are not incompatible,
the only thing that Bataille wants to point out with his
‘true’ community is the existence of a common sense of
belonging that goes beyond mere economic convenience.
Most ‘true’ communities also present the ‘usual’ features:
a hierarchical structure, a set of routines, etc. but Bataille

275

insists that the heart of a community lies in the sacrifices,
and not in its organisational details; as we saw earlier
on, that “it is not necessity but its contrary, luxury, that
presents living matter and mankind with their funda-
mental problems.”

The more prominent examples of communion
moments are those – archaic – massively attended
sacrifices, such as the midsummer’s and midwinter’s cel-
ebrations. Or the Aztec sacrifices, or the native American
Potlatch. In all of them, goods gathered by the commu-
nity are burnt, killed, thrown to the sea or dissipated
in other striking ways, which is what makes them so
remarkable. But there are other kinds of sacrifices, less
conspicuous, which can nevertheless be described as
unproductive expenditure. Small everyday offers, like
fruits, tea leaves, etc (Plog and Bates 1976), that also put
the person that carries out the offer in contact with the
transcendental realm.

The programming ‘sacrifices’ follow the second form.
The unproductive consumption of resources that takes
place while programming consists of inconspicuous actions
– perfectly camouflaged in the normal flow of events – that
keep alive the sense of community among programmers.

The programming community emerges as a by-prod-
uct of each member’s concern for her code’s intrinsic
value, and of the actions that ensue from such a concern.
The efforts of making it beautiful, what I have called
‘programming sacrifices’ create a sense of communion,
regardless of their economic effects (profit, user-happi-
ness, etc) – or I should say, exactly because of this “regard-
less”. It does not matter that there are different opinions
as to what makes software beautiful, the fundamental
issue is that it is worth making it beautiful.

This moment of communion is made durable, and
observable, through, for instance, the (in)formal commu-

276

nities that emerge around topics of interest to program-
mers. Slashdot, the website from which so much of my
empirical material comes, is a good example of such a
community (the expression ‘Slashdot community’ appears
every now and then). In fact, websites are a frequent
form of manifestation, and there are sites dedicated
to Perl, C, Assembler, eXtreme Programming, Unix,
Linux… anything. The ‘sacrifices’ (uneconomic waste)
carried out at these places include activities other than
writing elegant software such as offering free technical
advice and free code

43
.

The more general, and more loose community of
programmers (as opposed to the more concrete examples
given above) does not present manifestations as obvious
as websites. There is no www.programmer.com, perhaps
because programmers speak all kinds of languages. Per-
haps also because the ‘sacrifices’ they all perform, their
communion link, is not experienced as such: the idea that
code is worth in itself is not strong enough to generate
organisations and routines (to make itself durable).

But there is a common, and vague sense of forming
part of something which has been noted for instance by
Sharp et al. while studying programmers’ conventions.
In their article Software Engineering: community and
culture (Sharp, et al. 2000), they describe ‘un-scientific’
behaviour among programmers, who may, for instance,
consider particular languages “undesirable without
recourse to any justification or explanation”, and which
may be ridiculed in public at a conference “devoted to
choosing among languages for teaching”:

We see a surprising amount of movement towards C++. Devastating
really because if you ask them why, they haven’t got a clue (audience
laughter), not a clue. We see all sorts of anachronisms; people still pro-
gramming away in Basic, Fortran, or SQL. Why (audience laughter),
for goodness’ sakes, why?

277

Clearly, the speaker (and it would seem part of the audi-
ence too) has a definite opinion about someone who
chooses Basic to teach programming. Not particularly
positive, it appears. What this opinion is based on is hard
to know, but it probably has more to do with personal
experiences and preferences (and perhaps with a desire
not to appear old-fashioned) than with a scientific proof
that Basic is, indeed, a bad alternative when teaching
programming. Sharp et al. ascribe this behaviour to the
existence of a “distinct culture of software engineering
[that] transcends national, regional and organizational
cultures” (:40). I would rather go the other way round,
unscientific (and uneconomic) ways like the one
described above is what constitute that “distinct culture”
(sense of community).

As an end to this chapter, I would like to present one
more manifestation of the existence of a programming
community. It is based on material from the Slashdot dis-
cussions, but I think it is not too farfetched to imagine
that similar manifestations take place among other pro-
grammers. Let us now see how programmers moralise
about those who do not show concern for software’s
intrinsic qualities (or, in other words, about those who
are not ready to carry out programming sacrifices).

moralising

The programming community, as I use the term, is a
weak phenomenon; it is as weak as the sacrifices are
unplanned and lacking in common rituals. Those pro-
grammers that can be said to carry out sacrifices do
absolutely not think in terms of sacrifice, they think in
terms of elegant problem solving. They approach their
computing problems with a vague vision of what kind of
programs they seek to achieve (clean, tight, scalable and

278

other ideals). Despite the lack of public sacrifices, the
communion does exist and we can observe some of its
effects. One of the most visible traces it leaves is the
moralising that takes place among programmers. This
process, which deserves a more thorough study than the
one I propose here, classifies people into the good ones,
the bad ones and the clueless ones, who are mislead
by the bad ones to side with them and who, inadvertent-
ly, contribute to the expansion of evil software (pro-
grammers’ moralising schemes are as simplifying as any-
one else’s). The good ones are the programmers who
fight, against all odds, for the creation of good software.
As we have seen, there are different opinions as to what
makes software good (see chapter seven), but all share
the view that writing good software is the duty of every
‘true’ programmer.

True-geeks, instrumentalists and software-engineers
alike moralise about how programming should be done,
and the following quotes come from all three groups. For
instance, do you remember MikeFM:

software is like building w/ toothpicks by MikeFM (#2254465)
I think in the book 'The Hacker and the Ants' there is a quote along the
line of programming being like building out of toothpicks carefully
glued together and if just one toothpick is out of place the whole thing
comes crumbling down. I always liked that.. it seems very truthful. I
might add that programmers are usually encouraged by those they
work for to forget careful design and implementation and just duct tape
parts together as quickly as they can make it work 'most of the time'.
I like to write beautiful code.. as I imagine most real programmers do..
us geeks that live, breath, and dream in code.. but in real life there usu-
ally is not enough time or resources given to manage to write really well
planned out code. This is why Microsoft sucks and a popular motto is
"When it's done!" among the truely geeky programming houses and
why open source will eventually kill most commercial software.
With commercial software if it's ugly you aren't likely to get a second
chance to really make it beautiful. With open source software it may
start out ugly but over time can gradually become beautiful as people
clean and fix it. The code is visible and so is everyone elses. You can
help each other and learn from each other.

279

As we saw, true-geeks accuse software-engineers of not
doing real programming, and vice-versa. But apart from
that, they have common foes. Among these we may
emphasize the actors of the software industry that are
only interested in the profit-aspect of programs: reducing
software to profits denies that code is something worth
in itself.

Even true programmers understand that software
must be sold, but they argue that programming should
not be forced to serve economic objectives, high quality
should be given priority before marketing goals such as
time-to-market and price. The clash between the intrin-
sic and instrumental (including economic) perspectives
on software gives rise to many comments:

Re:software is incredibly complex... by sg_oneill (#2255418)
Yeah bloke, I sorta agree, but the thing I note is your refering to 5 year
plan projects, and not everyone is talking in that sort of headspace
where we can do the whole waterfull-pretty diagram-dfd-usercase-
point'o'failure analysis mumbo.
In the industry I'm in, I'm more likely to be hit by management with
the "How long will this take?" ME(After back of envelope figurin'
"Month & Half to do it properly" Manager: "You've got a week".
A lot of programmers get that sorta thing. Granted that there is gonna
be a little noodling with a rough sketch of how it's gonna hang to geth-
er, quite often it's a rough job on an ill-considered designed followed by
fixum-hacks because commisioning is tomorrow.
And yeah... The bugs then roll in. I've figured that for every day
stripped of a sugested timetable for development, three days are added
fixing the mess.
But don't blame the programmers. The "Fixit or fired" managerial
aproach kinda forces it
Reverse engineering documents can wait. Commenting'll probably
never happen.
It's a shame, but that's life in small business.

So the ‘bad’ people are those who refuse to see the intrin-
sic qualities of software, those who measure everything
in money. ‘Managers’ are an easy target, they are the
ones who most obviously do not care about the code

280

itself, only about its sales. But they are not the only cul-
prits, users are also to blame for neglecting quality and
focusing on prices:

BiggerBetterFasterNow! by lupine (#2253967)
[...] The general lack of quality in current software apps is a reflection
of our society. Quality Craftsmanship is a thing of the past, mass pro-
duction is where its at. Businesses and managers are pressured to bring
products and services to market As Soon As Possible. Process design,
peer review, and quality control of central components fall by the way-
side as new useless features are added willy nilly in an effort to bolster
sales. I try to write good software, but without proper project planning
there is never enough time or thought allowed to enter the process.
Sometimes I feel like writing quality commercial software is like trying
to swim upstream.
I have written some good tools that are used by many of our applica-
tions to quickly build linked customizable html displays of database
data. I used another project as an excuse to build the tools. No time in
the workplan for that! And have never been allowed time update and
extend the tools even though it would clearly be beneficial and save
time for many other programmers. Projects could be created with
object oriented reusable code and modules well planed, organized, opti-
mized etc, but clean code doesn't sell.

Consumer driven, not quality driven. by tshak (#2254328)
We should expect the same level of quality and performance in software
we demand in physical construction. Consumers are not willing to pay
for such quality, or wait for it.

It's buyers fault, not programmers fault. by maitas (#2254998)
Crappy programmers are cheaper than good ones. People prefers to
buy cheap software with lots of features, even if it doesn't work!! So
right now the situation is that, or either you make crappy cheap soft-
ware with lots of features fast and keep selling like crazy (Microsoft
way), or you built expensive great code with only a fraction of the fea-
tures (belive me, to add features to a given soft takes lots of time) and
no single person will buy it.
!!Don't kill the messanger!! Kill the software buyers!!

Users can also be victims. They do not know what is best
for them, partly because they are too uninterested for
their own good, but mostly due to their lack of knowledge
about software systems. Many of them have never known

281

what quality software might offer, they have been made
to believe that what is available is also what is possible:

Re:blah by bmj (#2255128)
we haven't reached the point when end users expect bug-free software.
thanks to microsoft, users expect an application to have its quirks and
problems. how many ms users have had windows 98 unexpectedly
crash, and not even think twice about it? you just give it the three finger
salute and wait for your box to reboot. there isn't a great deal of pres-
sure on the development community (at least those who produce con-
sumer-driven, non-critical apps) to produce *perfect* products.

The message of the moralising discourse in programming
is quite straightforward: the right thing to do is to write
high quality software, this is what ‘real’ programmers
do. Economic and other kinds of external constraints
may make this impossible, but it is still what should
be done. Exactly in what terms quality is to be measured
is not as clear, and definitely not as important. Sometimes
there is no indication, the programmers just use the word
“quality” (see tshak’s comment above) and the conclu-
sion I draw is that their point is that programmers, man-
agers and users alike should (and usually fail to) show
the respect that software development deserves.

So even it is not very clear what ‘doing things prop-
erly’ exactly means, this is not really a problem, since
what is at stake is not the description of the right
methodology but of the right attitude. Slamming code
together to meet the deadlines is not the right attitude,
demanding the resources needed to carry out a develop-
ment project properly, on the other hand, is. Some par-
ticipants had some more extreme ideas:

Accountability in Sofware Engineering by JohnsonWax (#2253786)
Last year I was talking with some high-ups in Boeing (VPs perhaps,
I forget) about the need for licensing software engineers as Texas
had recently begun doing, wondering what they thought of that move.
While they agreed that there was need for accountability for software
engineers (IIRC, these guys were planning YA-air traffic control net-

282

work) their argument against licensing was that there were no defacto
accepted standards for code. That is, it's obvious to license a structur-
al engineer - there are building, seismic, etc. codes to adhere to that
have been written down.
Software has no such animals. No state (these are all state labor board
issues) has ever written down that you should free a memory block
after you're done with it, or check a pointer to see if it's null, and
so on. Sure, these are accepted practices, but they aren't requirements.
As to previous posters that suggest that buildings are chaotically built,
they seem to be overlooking tiers of state and local building codes,
building permits, inspectors, plus the need for contractors to be
licensed in most states. There's a lot of checking and balancing to be
done and if it's wrong... Well, in the case of buildings that engineers
need to sign off on (3 stories and up + special purpose, in most states)
structural failure can result in criminal malpractice suits and jail time.
If people die and the engineer overlooked something, possibly
manslaughter.
Next time you are writing code, consider how you would approach the
project and your boss if the prospect existed of the code causing bodily
harm and you could be sent to jail? What if your code is used to control
a traffic light, a power grid, an anti-lock brake system, an EKG display?

What JohnsonWax, and others, are suggesting is quite
remarkable: they would like to see themselves being
liable for the code they write. Together with their man-
agers and their colleagues, naturally. This is moralising
becoming law, and it is not forced from the outside, as
one might have thought. Rehn (Rehn 2001) has
described a similar process among warez d00dz (warezo-
nians), software pirates that crack comercial software
and give it away for free. Even if their activities are ille-
gal, they are governed by a set of rules created by them-
selves, which they try to enforce as strictly as possible. In
both cases we witness the first steps, which may never
come to a conclusion, of moral principles solidifying into
regulations (Elias 2000) (Huizinga 1955). One would
expect users to require these laws but instead we see that
programmers, are the ones that, through their moralising
discourses, suggest their necessity. Comments such as this
one speak of the frustration experienced by program-
mers: they hope that by holding the companies responsi-

283

ble for the software they sell, programmers will be given
the time needed to write high quality software, to have
the possibilities that other kinds of engineers have. They
also speak of their moral indignation: no-one shows the
respect that software production deserves.

The moralising discourse that takes place in the Software
Aesthetics discussion on Slashdot, and in the program-
ming community in general, is more complex than the
previous paragraphs suggest. There are no simple ‘bad’
and ‘good’ people, even it makes sense to introduce it in
this way. The complexity is not only due to the rich
diversity of programmers that take part in the discus-
sions, but also, among other things, to the fact that pro-
grammers are not at all interested in constructing a com-
prehensive moral system. The moralising arguments and
counter-arguments that they throw at each other are only
the by-product of their real interest: programming, and
talking / bragging / making fun about it. But it seems
clear that what we see here is a community drawing
boundaries as to who is a member and who isn’t.

In this and the previous chapter, we have seen that some
programming phenomena can be interpreted as two
basic religious elements: rituals and sacrifices. Is there a
point in comparing the private aspects of programming
with a religion? In other words, is it fruitful to apply a
religious metaphor to programming?

284

285

41 I am using a rather narrow, although dominant, sense of ‘economic
reason’, namely its capitalist-utilitarian version. Bataille is slightly more
careful since he makes the distinction between ‘restricted economy’ (my
‘economy’) and ‘general economy’, which includes a wider repertoire of
exchanges (cf the following note). Alf Rehn, for instance, discusses the
narrowness of ‘economy’ in the capitalist-utilitarian sense in his
Potlatch (Rehn 2001), in which he describes a generous sort of soft-
ware pirates (warezonians, warez d00dz).
Sahlins notion of economy as the “process of provisioning society”
(Sahlins 1972:185) is, I believe a much more comprehensive description
of the economic phenomenon, but I have nevertheless decided to use
‘economic’ in the aforementioned narrow sense because it seems to me
that it makes the reading easier and it is anyway unlikely to lead to mis-
understandings. Besides, this is the notion of economy that program-
mers use
42 Bataille also insists in the notion of general economy and the essen-
tial role that sacrifice plays in it. General economy is a notion that
Bataille opposes to ‘restricted economy’, which is the conventional con-
cept of economy: the production, exchange and consumption of goods
among humans. Bataille considers this view ‘restricted’ and insists that
this movement of goods and services is only a tiny part of the whole
movement of energy “on the planet’s surface”. The fundamental char-
acteristic of this general economy is the generosity of the sun, which
continuously provides with free energy. This, however, creates an
imbalance which must be attended to. The only instrument that humans
have to restore the balance is the sacrifice: only by means of an unpro-
ductive waste of resources can we maintain the equilibrium. His claim
goes even further: unproductive waste – destruction of goods – will
happen regardless of what we do, if we do not voluntarily destroy part
of the surplus, powerful (general) economic mechanisms will take care
of that – for instance in the form of wars. Perhaps we may assume that
the atrocities of WWII had an influence in his thoughts (Hegarty 2000)
43 Am I perhaps using the word ‘sacrifice’ for a too broad set of activ-
ities? It is hard to know, but I admit that labelling any uneconomic
expenditure as ‘sacrifice’ may be somewhat radical. On the other hand,
this is exactly what I am after: inspired by Bataille, I want to distinguish
between the investment and the waste, and signify the importance of
uneconomic behaviour in activities as ‘dry’ and ‘technological’ as pro-
gramming. As Sahlins argues in his seminal Stone Age Economics,
economy includes production, exchanges and consumption uncon-
cerned by profit (Sahlins 1972)

x
Programming as Symbolic Action

It is time to draw some conclusions, and in this chapter
the argument is reviewed as an attempt at presenting pro-
gramming as symbolic action. Writing a program is not
only solving a computational problem (constructing a
virtual machine that carries the intended function), it is
also a process by which programmers create, reaffirm
and communicate their world view and their place in it
(through aesthetic preferences and instrumental beliefs,
for instance); it is a way of expressing oneself. In this
sense, choosing emacs instead of vi (see chapter 5) is not
(only) the result of rational considerations but (also) a
symbol of one’s identity as a programmer. Writing soft-
ware looks, from this perspective, more like practising a
religion than like calculating.

287

We have seen how computing problems can be solved in
a variety of ways, with different styles, and how the pro-
grammer can (must) make personal, i.e. non-calculable,
choices. This characteristic of programming (which is by
no means unique to it) makes of it something more than
just an instrumental activity, namely a symbolic activity.

It is incorrect to think of instrumental actions as
opposed to symbolic actions, these are simply two differ-
ent perspectives on an action (there are others, such
as the moral perspective). This does not mean that the
study of any action from a symbolic perspective is going
to be fruitful. For instance, putting some water to boil
in order to make pasta and eat lunch needs not carry any
symbolic meaning, in which case we may say it is a pure-
ly instrumental action. When I say that programming is
also a symbolic action I mean that it also can be fruitful-
ly studied from a symbolic perspective. In other words,
that code, as the result of programming, carries a sym-
bolic meaning: it is a symbol of, for instance, its author’s
aesthetic preferences and instrumental beliefs.

From an instrumental perspective, programming is
the manipulation of commands (which are indeed sym-
bols, but of a mechanical nature) in order to make the
computer carry out the desired calculations. From a sym-
bolic perspective, programming is the manipulation of
symbols in order to create and communicate one’s pro-
gramming identity. This is, as we saw in the introduction,
the aspect of programming that is ignored when it is
equated with ‘solving computing problems’.

In the previous chapters we have come in contact
with different symbolic possibilities. Some of them were
fairly simplistic, particularly those used to introduce the
subject in the chapter on coding styles (variable names,
commenting); some others were richer in nuance, such as
the different aesthetic ideals and the question of prior
design. In this chapter I shall round up this discussion,

289

presenting one more alternative open for programmers
to express themselves, namely the programming lan-
guages. The idea is not to go into each program’s techni-
cal details but to present how programmers relate to the
choice of a programming language. We shall see that,
even if they explain this choice with technical details,
what really makes them prefer one language to another
cannot be justified only with technical data.

Choosing a programming language is only a very
coarse way of expressing oneself, since it does not allow
for much nuance, on the one hand because there are a
limited number of options and on the other because any
programming language allows many different kinds of
programming styles. However, it is a choice that gives the
program a general feeling, and working with C is not
really quite the same as working with Pascal, let alone
with assembler. Besides, each programming language has
its history and its reputation: certain people use certain
languages, and would dislike working with other ones.
The intensity of these feelings varies of course from pro-
grammer to programmer, but, once again, we are not
pursuing a comprehensive classification but an example
of what the personal relationship between programmers
and code looks like.

At any rate, programming languages are not only
tools but also symbols, and programmers can use the
choice of language to express their identity, making of it
a decision in which more than just technical details come
into play. But let us first have a look at how programmers
on Slashdot discuss programming languages.

290

the issue of programming
languages

Programming languages are one of the most important
tools when writing software. As in the case with normal
speaking languages, the commands (words, more or less)
available and the kind of grammar that it is based on
strongly influence what can be done and how. Conse-
quently, the choice of language has a deep impact on the
programming project: the look of the code, the sort of
documents that can be produced, the speed with which
some elements might be coded, the control over the actu-
al actions of the processor, the type of access to data-
bases, to other computers in the network, the possibility
of programming parallel processes and many more.

At the same time, languages (at least the most com-
mon ones) are similar enough to pose problems when
deciding which one to choose. There are not many pro-
grams that can be written in C but not in C++, in Pascal,
in Fortran or Modula 2 (or 3) even if each language
implies a particular approach. For the untrained eye it
might be difficult to see the differences between code
written in, for instance, Pascal and Visual Basic; but it
might also be difficult for programmers working in a
hurry. Connell’s article, used as a reference in one of the
Slashdot discussions, contains some code snippets, exam-
ples of “superior” and “inferior” code...

Re: If you ask me... by Eric E. Coe
[...] what I noticed was that the "Good" code was in well structured
Pascal and the "Bad" code was is badly structured Basic. Do I detect
a built-in bias??

Re: If you ask me... by Anonymous Coward
No, it just means that you aren't familiar enough with Pascal to notice
that the article contains no Pascal code.

291

Re: If you ask me... by Eric E. Coe
My bad! You're right, I looked much too quickly at the first one, saw
the 'const' at the top, and said "Pascal" - if I had looked more closely,
I would have noticed the lack of semicolons, and the fact that the sec-
ond example uses 'const' also.
Not familiar with Pascal? No. While it's been years since I've used
Pascal, and I never liked it, the real problem was that I am not familiar
with recent versions of Basic, Visual or otherwise (I stopped paying
attention back in the GWBasic days).

Apart from the interesting detail that Eric E. Coe mis-
took Visual Basic for Pascal, we can also notice how he
“never liked” Pascal, not because it could not achieve
what rival languages could but because he does not want
to be associated with the particular identity represented
by the Pascal programming language. The fact that pro-
grammers like or dislike a particular programming lan-
guage is a quite extended phenomenon, and generally
they try to avoid working with the ones they dislike. This
is not always possible, as SillyWiz explains:

Re:What a complicated question! by SillyWiz (#2256022)
I once arrived at a (fortunately) short project to find the specification
/consisted/ of:
1) The project will use Microsoft Access, because the client has already
bought enough copies of that.
2) The project will cost UKP 2000 or less.
3) The developer will not speak to the end users: they're too busy doing
real work.
4) Whatever gets delivered gets vetted by the client management. Before
any money is paid.
I did about 2Ks worth of what we guessed would be useful software
and bailed. The users were /intransigent/ about not changing their
working practices (which consisted of /RETYPING/ Word documents
with minor changes in each draft), utterly unable to make decisions,
and utterly unable to understand that there are some things Access is
not a good choice for.
I have no idea what the hell happened at the end, I'm just glad I didn't
stick around to find out.
It's not the first time a project has been like that, it's just an extreme
case. And yet all these users are surprised by the software that results...

292

SillyWiz was clearly not impressed with the choice of
programming language

44
that was forced on the develop-

ers on that occasion. Access is a Microsoft product,
which, as we have seen earlier, does not make it particu-
larly popular in Slashdot. The discussion about Software
Aesthetics, one of the two that we have been analysing
more closely, contains several manifestations of this aver-
sion, the one I have chosen to present here being perhaps
the most obvious. In order to understand the messages
that will follow, you need to know that the article writ-
ten by Charles Connell (Software Stinks!) about the gen-
eral lack of quality of software included a couple of
examples. They were simple programs only meant to
illustrate that the same function can be written in differ-
ent ways:

It is possible to have two different versions of a software program that
function in exactly the same way, and have the same internal design and
construction from a technical perspective, but which are vastly differ-
ent in their human readability. Consider these examples.

293

Const MIN_AGE = 0

Const MAX_AGE = 120

Const RETIREMENT_AGE = 65

Dim AgeString As String

Dim AgeNumber As Integer, YearsToRetirement As Integer

EnterAge:

AgeString = Inputbox$("Please enter your age.", "Age?", "")

AgeNumber = Cint(AgeString)

If AgeNumber < MIN_AGE Or AgeNumber > MAX_AGE Then

Msgbox "Are you sure you entered the right age? It should be between "_

& MIN_AGE & " and " & MAX_AGE & "."

Goto EnterAge

End If

If AgeNumber < RETIREMENT_AGE Then

YearsToRetirement = RETIREMENT_AGE - AgeNumber

Else

YearsToRetirement = 0

End If

code fragment a

These two code fragments are perhaps a bit simplistic but
to be fair one cannot offer an example of proper code
within the scope of an article. It would take too much
place (my examples in the section about coding styles
were also quite unelaborated). Connell’s point was just
to urge all programmers to a quest for beautiful soft-
ware, not to give a comprehensive illustration of what he
was talking about. But it seems many readers stopped the
reading the article when they got to the examples: they
were written in Visual Basic, a Microsoft product.
Besides, Connell’s company’s website, where the article
was published (the discussion on Slashdot only included
a few lines of the article, with a link to the article itself),
was designed with Frontpage, another MS product.
Some slashdotters were clearly not impressed:

Re: And the quality HTML award goes to... by Anonymous Coward
(#2253181)
HTML ala frontpage, code in VB.. and he's telling us about lousy soft-
ware, what an ass.

ACK VB!! by Anonymous Coward (#2252854)
The article has code fragments. Just now I noticed it was VB!
Why not show C++, C, or Java? That way you can really show the dif-
ference of a bad written program compaired to a good written one...

294

Const xyz=0

Dim x As String,A2 As Integer,Y As Integer

Const m =120

Const A=65

L47: x=Inputbox$("Please enter your age.", "Age?", "")

A2=Cint(x)

If A2<xyz Or A2>m Then

Msgbox "Are you sure you entered the right age? It should be between " _

& xyz & " and " & m & "."

Goto L47

End If

If A2<A Then

Y= A-A2

Else

Y=0

End If

code fragment b

stinking code by spektr (#2253494)
Software aesthetics? Just look at the crappy HTML-code of this article:

<p class="DefaultText" style="text-indent: 0.5in;

line-height: 150%; margin-left: 0in">

?

Cooperation</p>

What should be a is emulated with CSS and windings 8-bit char-
acters (bullets, I suppose - they don't display on my system, because I'm
not using windows!). A Frontpage-Consultant confesses his secret love
for goto's and teaches us software-aesthetics using VB-examples.
Strange times.

And the quality HTML award goes to... by Brazilian (#2252846)
... Charles Connell, for creating more "lousy" software. Call me crazy,
but I would think that if you wanted to rant about "lousy" software
you'd have the presence of mind to write decent-enough HTML so that
the character " didn't show up as ? and bullets didn't show up as the
character Y.

Wonderful-Comparisons between software and bridges by sudog
(#2253016) [...] Large software systems are so completely different
from real-world systems that comparing them is silly. (And is that
Visual Basic I see there to try to prove your case with?)

um, is it just me ... by codecowboy (#2253388)
... or does anyone else find it is funny that the article discusses software
aesthetics using Visual Basic code examples ...

Did anyone notice... by The Slashdolt (#2253023)
That in the revision history that this is the 3rd version of this paper in
almost 3 years?
So it takes him almost 3 years to write a 10 paragraph essay with some
VB code mixed in, and he is telling us we need to do better? Nice exam-
ple Mr. Author.

A better look by Lumpish Scholar (#2253026)
The cited article doesn't say anything profound. (I got particularly wor-
ried when he said, "global variables and GOTO statements ... may be
exactly what the software needs to marry form with function," and
when his example of beautiful software turned out to be a fragment of
Visual Basic. "It is practically impossible to teach good programming
to students that have had a prior exposure to BASIC: as potential pro-

295

grammers they are mentally mutilated beyond hope of regeneration."
[virginia.edu] --said, tongue at most partly in cheek, by Edsger W.
Dijkstra, in "How do we tell truths that might hurt?") [...]

Is VB such a lousy programming language that anything
written in it must be bad? I doubt it, but this is not the
point. What matters is that some programmers strongly
dislike it and would chose not to listen to anyone that
uses it to give examples. For them, using it is a sign of
poor programming judgement, regardless of what one
may be capable of writing with it. It is, furthermore, not
only a sign of one’s technical identity, it is also a sign of
one’s political convictions, particularly in an opensource-
focused environment like Slashdot.

Microsoft products are not the only languages that
are attacked. And the issue of programming languages
does not only concern young angry programmers who
dislike monopolies. In the chapter about community we
saw how participants in a software-teaching conference
made ironic remarks about some programming languages.
We also saw how senior respectable programmers, even
those with professorships, have their preferences. Donald
E. Knuth, previously introduced, has this to say about
Pascal, which he used as the programming language of
the “WEB system”, a sort of programming environment:

[...] I chose PASCAL as the programming language because it has received
such widespread support from educational institutions all over the world;
it is not my favorite language for system programming, but it has
become a “second language” for so many programmers that it provides
an exceptionally effective medium of communication. (Knuth 1983)

He is far more discrete than slashdotters but it seems
quite clear that he does not like PASCAL. It would seem
every programmer, regardless of age and position, has
either a favourite language, or a most-hated language.
Lumpish Scholar quotes Dijkstra (see above) – another
venerable programmer – in one of the preceding com-

296

ments about VB. Dijkstra wrote a short and light-heart-
ed article about some of “truths that might hurt”, among
which I have selected these (about languages):

FORTRAN --"the infantile disorder"--, by now nearly 20 years old, is
hopelessly inadequate for whatever computer application you have in
mind today: it is now too clumsy, too risky, and too expensive to use.
PL/I --"the fatal disease"-- belongs more to the problem set than to the
solution set.
It is practically impossible to teach good programming to students that
have had a prior exposure to BASIC: as potential programmers they are
mentally mutilated beyond hope of regeneration.
The use of COBOL cripples the mind; its teaching should, therefore, be
regarded as a criminal offence.
APL is a mistake, carried through to perfection. It is the language of the
future for the programming techniques of the past: it creates a new gen-
eration of coding bums.

Since not everyone’s favourite language is the same, and,
in some cases, one’s pet is another’s language of hatred,
disputes inevitably follow. These can deal with languages
in general or with some particular feature of them.

One of the more controversial programming ele-
ments is the GOTO statement, a command that makes
the processor jump from one place of the program to
another (the command tells the processor to Go To a
particular line in the program). Its detractors, among
them Dijkstra, complain that “The go to statement as it
stands is just too primitive; it is too much an invitation
to make a mess of one's program” (Dijkstra 1968), its
adherents counter that GOTO is very functional and
effective. Dijkstra’s quote can be found in an article
titled Go To Statements Considered Harmful, and at one
moment, the dispute was so generalised that it seems
every programmer had an opinion on the matter.
Including D. E. Knuth, who wrote an article titled
Structured Programming with go to Statements with the
following introduction (Knuth 1974b):
Before beginning a more technical discussion. I should confess that the

297

title of this article was chosen primarily to generate attention. There are
doubtless some readers who are convinced that abolition of go to state-
ments is merely a fad. and they may see this title and think, "Aha!
Knuth is rehabilitating the go to statement, and we can go back to our
old ways of programming again." Another class of readers will see the
heretical title and think, "When are die hards like Knuth going to get
with it?" I hope that both classes of people will read on and discover that
what I am really doing is striving for a reasonably well balanced view-
point about the proper role of go to statements. I argue for the elimi-
nation of go to's in certain cases, and for their introduction in others.

The differences have not yet been settled, even if the dis-
putes are not as heated, as the existence of websites like
The Conversation Forum for the GOTO Statement

45

prove. While this website has nothing to do with Slash-
dot, we are familiar with the tone of the discussion,
which is perfectly natural as this site is also a place where
programmers meet to talk about programming. The fol-
lowing is an example of the kind of exchanges one can
find there:

Subject: In some languages, such as BASIC & Qbasic...
Posted May 7, 2001 by Sage
GOTO is faster then calling a sub-routine. I dont see anything wrong
with using GOTO, unless you over use it; but isn't that true for any-
thing?

Subject: In some languages, such as BASIC & Qbasic...
Posted May 8, 2001 by SchrEck Inc.
HI Sage, the keyword in this context is... modularization. You couldn't
do independent subroutines, callable from everywhere, with GOTO
because you couldn't automatically return to the place of calling.
GOTO and GOSUB are completely different concepts and normally
not interchangeable. And on modern computers with modern develop-
ment tools, the performance of certain constructs or program instruc-
tions doesn't really matter in 99 percent of your code.

Subject: In some languages, such as BASIC & Qbasic...
Posted May 15, 2001 by Kodiak
While the use of a GOTO statement can be useful at times; I've found
using them to be like a marble tower toy that I had when I was a boy.
You could insert a marble into it from different points and the gods
only knew where it would come out. The precise point of exit actually

298

was based on how you stacked the layers of the toy. However, more often
than not, the marble either dropped out somewhere I didn't expect or
worse... got stuck inside and I'd have to take the whole thing apart.
If you are going to use GOTO's in a program, I would suggest using
interesting labels for your exit points. GOTO BORNEO, GOTO BOB-
SPLACE, or the classic GOTO (a Judeo-Christian place of eternal
flaming punishment) add color to your program for those who come
along later to maintain it, or to fix the mess you've made of your pro-
gram through the overuse of GOTOs.

Subject: In some languages, such as BASIC & Qbasic...
Posted Aug 14, 2001 by xyroth (rash enough to tackle intelligence)
you seem to forget that almost all languages tend to end up with the
goto statement in them somehow, due to its inherent usefullness.
if your language is extensible, you can easily cut down on the number
of goto's you need (and if you don't believe me, try reading any large
bbcbasic program)
if you can comment properly, most of those problems with ending up
where you didn't expect to disappear as well.

There is clearly no agreement as to which way to go.
As Knuth says in his above mentioned article, the solu-
tion lies in a “reasonably well balanced viewpoint about
the proper role of go to statements.” This is an opinion
also shared by Dijkstra. He is quoted in Knuth’s article:
“Please don't fall into the trap of believing that I am
terribly dogmatical about [the go to statement]. I have
the uncomfortable feeling that others are making a reli-
gion out of it, as if the conceptual problems of program-
ming could be solved by a single trick, by a simple form
of coding discipline!”

It is noteworthy that Knuth and Dijkstra, both of
them known for carefully considering things before
speaking about them, chose to use religious terms in their
references to GOTO. For instance, while Knuth used the
word ‘heretical’ in his citation a few lines earlier, Dijkstra
opted for the words ‘dogmatical’ and ‘religion’. The
observation that the use of religious terms is rather com-
monplace among programmers is something I will devel-
op later on in the discussion.

299

Disputes deal also with languages in their totality, for
instance, with Perl, a language which is often the subject
of both hard attacks and faithful support. This exchange
comes from a newsgroup created in order to debate mat-
ters that concern a programming contest that the com-
pany Google had set up. Here follow the postings of
some participants that became embroiled in a debate

46

about which languages should be allowed.

From: Christopher R. Wedman
address that here. Although it blows my mind why you would use
object orientation with a project like this anyway.
Perhaps Google is looking for developers who can code OO, and one's
ability to write _good_ OO code can be (best?) observed by examining
C++, Java, and Python source - Not some Perl hack! (I mean 'hack' in
the best sense of the word.)
I for one would not look forward to judging a programming contest
involving Perl, unless it was some sort of obfuscation contest. It's too
easy to write awful code. I think limiting the choices to C++, Java and
Python would make judging easier, and the entries more relevant/
appropriate for Googles purposes.

From: Solhell (solhell@bigfoot.com)
It is always funny to read comments about perl from people who does-
n't know perl. [...]
1) [...] It is easier to make stupid mistakes such as infinite loops and
meaningless iterations in C and same code will be 1000 times slower in
C than perl.
2) Perl is faster than C in some cases (in most cases related to this con-
test), and C is faster in some cases [...] It is crap to say that prototype
in perl and then code in C++. That's stupid assumption in most cases.
C++ is not going to bring you any advantages in most cases.

From: GMK (madflythug@hotmail.com)
Perl the best HAH! its a script not a real service can you imagine google
using perl? every single person who searches creates a instance of the
script yeah thats real efficeint, COBOL is better at parsing text than
perl why cant we use that?

From: Jonty (jt@iterunet.com)
Come all you google whackers chanting insanely "perl. perl. perl!" [...]

From: Joseph Ryan (ryan.311@osu.edu)
Oh, darn... thats right, Perl doesn't have OO. Man, thats a real drag...

300

Oh, what's that you say? That was back in Perl 4? Perl 5 has been out
for over 8 years now? So Perl has had OO for over 8 years you say...
wow, who'da thunk it? [...]

Discussions, as we see, are not about temperate displays
of evidence. On the contrary, they are full of sarcastic com-
mentaries. Obviously, there is something more at stake
than just presenting technical reasons for one’s choices of
languages. This was most evident when slashdotters
expressed their contempt for Microsoft’s VB. It would seem
that some of them must present themselves as having noth-
ing to do with it. There is a telling posting by Procrasti:

Java is inefficient by Procrasti (#2253348)
Even Java works squarely against the goal of "efficient". Give me C++
any day.
I've done projects in C, VB (im not proud), C++ (yep MFC et al, 5
years) and Java (1.5 years now), and I question the statement that java
isn't efficient.
The poster is clearly at pains to set himself apart from VB. There is a
palpable sense from this that there is a lot to be said about the contempt
for MS, its connections to moral values, to economic situations and to
group behaviour. Also there is a very interesting study to be made of
languages that fare better than VB: a genealogy of the languages’ sym-
bolic value, so to speak. However, I shall break these discussions here,
not without first inviting the reader to look at the annexe Java vs. C,
which features a longish but worthwhile discussion between propo-
nents of Java and C.

vanity and holy wars

The existence of choices that define one’s (programming)
identity makes of programming a symbolic activity and
a personal matter. The openly offensive and defensive
attitudes towards programming languages are manifesta-
tions of this. These attitudes can in some occasions esca-
late to what some programmers call ‘holy wars’, a phrase
I shall return to. First, a few words on one little detail
from conversations at Slashdot.

301

Although rather insignificant, it illustrates well how pro-
grammers can identify with a piece of code. In the cod-
ing styles chapter we saw how quartz had an “irresistible
urge” to write one-liners like: “join(" ", map {ucfirst}
split(/ /, shift))” and how he could not help himself

47
.

fishbowl reacted to quartz suggestion that such a one-
liner was unreadable: “But there's nothing in this exam-
ple that should be a problem for even a beginning perl
coder, in my opinion. You've used a common perl idiom
in a very efficient, clear, understandable way”

48
. It might

be a case of a bit of bragging, from both sides. quartz
wants to show his/her abilities in writing one-liners and
fishbowl that s/he has no problem responding to them…
suggesting that even “a beginning perl coder” could.
fishbowl indeed proposes an improvement to quartz’
one-liner: “If I were maintaining your code, I'd probably
do away with your use of the $_, or at least, explicitly use
$_ instead of implying it.” quartz’ answer to that sug-
gestion is quite telling:

Re:Beautiful software by quartz (#2254206)
OK, OK, you got me. The $_ was actually there when I pasted the code
from the Emacs window, but just before I submitted I decided to take
it out for added effect, as I know many non-Perl coders have, um,
strong opinions about implicit variables. Vanity, I guess. But hey, it
does work with strict and -w!:) [my emphasis]

It is not usual to see vanity explicitly mentioned, but I
think we may assume that such a feeling underlies many
of the comments we have seen throughout the thesis.
Another good example of that are the commentaries that
Connell’s use of VB triggered.

The issue of ‘holy wars’ is definitely related to that of
vanity, as are all manifestations of the private aspects of
programming.

‘Holy war’ is an expression that programmers use
sometimes to denote particularly virulent discussions

302

about programming issues. The expression is in occa-
sions changed to “religious war” and sometimes to just
“war”. It is difficult to say what percentage of program-
mers actually use these expressions, but it seems clear
that the great majority, if not all, of the English speaking
programmers are familiar with them.

One of those stormy discussions concerns the use of
the GOTO statement, which we dealt with in a previous
section. This is how TowelMaster from The Conver-
sation Forum for the GOTO Statement remembers the
days when the dispute was at its peak:

Subject: The h2g2 association for the abolition of gotos...
Posted Aug 28, 2001 by TowelMaster(ACE OMFC member of SATS)
Hello SchrEck Inc.
Well as long as it's not a democratic process you can be the vice-presi-
dent....
How about lots of stories about impossibly stupid ways in which gotos
were used ? Or, if we may expand a bit, we could reenact the 1980-s
Structured Programming Wars. I must admit that I am more into that
than into Gotos because I learned the programming-trade in the early
80-ies. When the wars were most fiercely fought... And I am one of
those b****ds who has never used a goto in my life. And in those days
men were real men, women were real women, and nerdy-looking pro-
grammers on coffee and coke were real nerdy-looking programmers on
coffee and coke. [....]
TM.
P.S. I always did like the jokes you could program with gotos. Like
"goto the-loo" et al. I know, I know, I was young... [my emphasis]

Other disputes that attain the status of holy wars are
those that concern operative systems, programming lan-
guages (of which we also have seen a few examples) and
editors (which we dealt with in the chapter on coding
styles). Holy wars are often about technical issues, and
they are seldom, if ever, settled. For instance, some peo-
ple hated the GOTO statement and others claimed that
it was efficient. And there is no way to prove anyone
wrong, these are just matters of personal preferences.
Dijkstra went as far as mathematically proving that any-

303

thing that could be written with a GOTO could also be
written without it (Dijkstra 1968), but that, of course,
does not prove anything about its convenience. As we
saw earlier, Knuth later wrote an article defending the
(careful) use of GOTO.

Holy wars may make it difficult for programmers to
collaborate, especially when the disputes become more
entrenched. Exactly how difficult it will be to collaborate
is impossible to quantify, it is, of course, valid to assume
that some programmers will set their personal prefer-
ences aside for the common good. The point is not
whether they stick steadfastly to their preferences but the
fact that they exist, and are strong enough to generate
heated discussions. rho seems to have had some difficult
experiences:

Re: complexity by rho (#2254113)
[...] However, if you get more than 2 programmers in a room, they'll
end up in some stupid religious war over editors or indentation style
(or, God forbid, operating systems). Why? Because a lot of program-
mers are arrogant (most without reason), and will refuse to compro-
mise their own "standards".

Programming disputes that deal with matters of taste
(and not with calculable problems) share some of the
characteristics of religious wars… and most of the dis-
putes are indeed matters of taste; since disagreements
about issues that can be solved through calculations are
generally easy to settle. Programmers, however, use ‘holy
wars’ sparsely and mainly to characterise arguments that
have become intractable: anyone presenting any opinion
on the matter can count on a smaller explosion. This sus-
ceptibility can be exploited in programming fora by par-
ticipants who, I imagine, enjoy watching the turmoil. In
Slashdot, those entries are often labelled “flamebait”

49
by

the moderators, and there is an option that allows regis-
tered users (free service) to filter them away.

304

At other times, participants themselves understand that
their opinions might hurt and chose to avoid sparking off
a holy battle. Participant a!b!c! writes a message in
which s/he gives his/her opinion on the subject of com-
ments in the code, finishing with the following sentences:
“Before I get flamed, I should include the disclaimer that
simpler is not always better. There are times when you did
need to use a clever chunk in order to improve perfor-
mance, then it might be worthwhile to explain in greater
detail as to whats going on. But for the most part, keep
it simple.”

50
The following one is a good example too

(remember that Perl is a rather controversial language):

Perl Obfuscation by SlipJig (#483248)
For an example of how NOT to code, why not check out some Perl
Obfuscation? I think it's a great thing to look at, even though (or espe-
cially because) I really don't like Perl as a language (heresy! heresy!
Don't flame me please, I've heard the arguments).

“heresy! heresy!”… Time to look at the last point: is it
fruitful to analyse programming from a religion-
metaphor?

the religion-metaphor

Any attempt to speak without speaking any particular language is not
more hopeless than the attempt to have a religion that shall be no reli-
gion in particular.... Thus every living and healthy religion has a
marked idiosyncrasy. Its power consists in its special and surprising
message and in the bias which that revelation gives to life. The vistas it
opens and the mysteries it propounds are another world to live in; and
another world to live in – whether we expect ever to pass wholly over
into it or no – is what we mean by having a religion. (Santayana quot-
ed in (Geertz 1973) :112)

Programming is not a kind of religion, for a number of
rather obvious reasons. Programmers, however, use
expressions like “holy war”, as we have seen, and they

305

sometimes refer to someone’s attitude towards a particu-
lar programming methodology as “evangelism” or
“extremism”. SlipJig, in the last quote, used “heresy!
heresy!”, and this sort of religious terms appear occa-
sionally in their conversations. But such expressions are
not used systematically and programmers do not seem to
think of programming as a religion in any deeper sense.
For instance, programmers express themselves often in
terms of opinions, and opinions and religion do not real-
ly go well together

51
:

The aim, in my opinion, is for self-documenting code. This is impossi-
ble in assembler. It's very difficult in C. But once you migrate to C++,
then if you have a good design and good names you need very few com-
ments. Most short methods don't require any comments at all, and
adding superfluous comments is worse IMHO

52
than having none - they

get out of sync with the code. (#483318)

Still, I think it might be useful to consider programming
from the perspective of a religion-metaphor, since this
perspective forces us to concentrate on the private
aspects of programming. We have described this private
sphere, to call it something, throughout the thesis, and
we have seen that part of their behaviour looks more reli-
gious than deductive. For instance, programmers who
prefer Perl do so based on personal conviction, not as a
result of objective calculations. This kind of personal
convictions may originate in the programmers’ educa-
tion, in their professional experience, in the conversa-
tions with other programmers, at work, in their political
opinions, etc.; at any rate it does not originate in scien-
tific measurements and comparisons.

We have examined different kinds of disputes about
programming issues and also the existence and nature of
aesthetic preferences in software. At the heart of all these
phenomena lie those personal convictions, which could
perhaps also be called beliefs. Those beliefs are not the

306

same as the instrumental beliefs that have been discussed
in previous chapters. It is, so to speak, more elemental.
It could be said that instrumental beliefs are a tangible
manifestation of the primary personal convictions. But
what exactly do I mean by “personal convictions”?
Is there actually some special kind of feeling inside pro-
grammers? I have written this thesis with the firm deter-
mination of not straying too far from the empirical data,
so I am not going to discuss internal feelings of pro-
grammers. I nevertheless get the impression that the
argument has veered in that direction, so I may as well
bring it up explicitly.

For instance, as a summary of previous descriptions,
I think it plausible to say that some programmers believe
in Perl. With this I mean not only that they hold the
instrumental belief that applications written in Perl are
better (more useful, for example), but also that they relate
to that programming language – in the conversations
with other programmers, in his/her choices and prefer-
ences – as if writing programs with Perl was the right
thing to do. At any rate, the only thing they want to do.

This ‘believing’ comes in many versions, and is man-
ifested in different ways. Also, programmers that
“believe” in Perl do so with varying levels of intensity.
From those who have just discovered it and think it is
cool, to those who master it, who have a long experience
with it, who would rather not use anything else… well,
who love it. The focus in those personal convictions
shifts from the instrumental kind of belief (Perl produces
better software) to a personal relationship with the lan-
guage (tool), in which the importance of instrumental
considerations slightly fades away. Perl, for the true
believers, forms part of their attitude towards program-
ming, of their identities. Hence, their belief in Perl is not
based so much on facts as on subjective preferences.
In other words, it originates in and is reaffirmed through

307

their choices and their attitudes and not through the
wielding of concrete proofs. For instance, they might
very well know that Java, for instance, is also a good
programming language with very interesting applica-
tions, but this knowledge, as well as comparisons of tech-
nical characteristics, leaves them unmoved.

However, the question of instrumental goodness is
always present in an activity as instrumental as pro-
gramming, and some programmers use it regularly to
legitimise their convictions. Their arguments are seldom,
if ever, the result of scientific studies, even if they are
sometimes used as if they were based on universally valid
facts. The following exchange is an interesting case of
instrumental defence and critique of XP, a programming
methodology:

XP! by Proud Geek (#2252936)
That is why we have advanced software engineering techniques like
eXtreme Programming. Through it's constant refactoring it makes sure
that code is always the best it can be for the task at hand, and con-
stantly improving.
The only reason that so much code is ugly is that most people do not
know about and adopt XP. XP closely resembles the reality of Open
Source programming in its implement-now mentality and constant
addition of features. If everyone used XP, the software world would be
a better place!

Re:XP! by Lumpish Scholar (#2253069)
The only reason that so much code is ugly is that most people do not
know about and adopt XP.
Extreme Programming (still abbreviated XP, despite Microsoft's
attempt to dilute the abbreviation) may have a lot to offer many soft-
ware development projects. But Kent Beck and Ward Cunningham and
Ron Jeffries were capable of writing beautiful software before XP was
codified, and programmers in XP projects are capable of writing ugly
software.
Refactoring backed by unit tests (two XP practices) can help reduce
software entropy, and keep software from becoming ugly; granted. But
XP extremism helps no one.

308

Re:XP! by Anonymous Coward (#2253185)
programmers in XP projects are capable of writing ugly software.
Yes, and XP works anyway.

oh, that sounds like by Anonymous Coward (#2253280)
>> programmers in XP projects are capable of writing ugly software.
> Yes, and XP works anyway.
hmm..
yes it does, no it doesnt. Yes it does, no it doesnt. Yes it does, no it
doesnt. Yes it does, no it doesnt...

XP didn't work for us by GlenRaphael (#2254697)
[…] At a previous job at a company which shall remain nameless, we
tried to adopt XP. Hired a couple guys who were into it. Sent all the
programmers to official XP seminars. The plan was to do our next-
generation server using Smalltalk, replacing an existing system written
in C.
It didn't work. After many delays and much miscommunication it
became clear it was going to take too long to produce a product solid
enough to replace what we had, if that ever happened at all. Eventually
the company abandoned the whole project and went back to the old
ways of doing things, fired all the XP guys.
XP is not a panacea. It, too, can fail.

Re:XP didn't work for us by acroyear (#2255455)
[…] Also, there's enough missing in your description of this that would
lead me to think that the company is blaming XP for a true LACK of
design. [...] Since XP requires extreme levels of communication and
feedback, and the company was not achieving communication ade-
quately, then its easily concluded that the company never really used
XP, and therefore XP is not to blame.

XP? by Anonymous Brave Guy (#2253862)
This is typical XP evangelism, and as usual, it's supported by precious
few facts.
XP has its good points, certainly. However, it's not nearly as clever as
it thinks it is. "Test first!" they claim. Where do these tests come from?
The requirements, of course. What do they do? They lead you to imple-
ment code that systematically meets the requirements. S'funny, I coul-
da sworn that was what this "design" thingy was all about.
And no, the fact that they UseIrritatingStyle for their
LongWindedNamesForThings does not make them clever, either.
[…] So, by all means highlight the strengths of XP. But let's leave the
"Everyone should adopt it, because it's great, so there!" out, OK?

309

What is the authenticity of these apparent convictions?
Do programmers like Proud Geek and acroyear really
believe that using XP results, everything else equal, in
better software? Or are they just pretending? This is a
difficult question, and one that I cannot answer. I imag-
ine that there are all kinds of attitudes, from the cynical
to the sincere one. Ervin Goffman brings this issue up in
his study of identity performances (Goffman 1990),
restraining himself from drawing any conclusions. Yes,
some people act cynically and some others act sincerely
(and everything in-between) but this is not the issue.
The point, he says, is that they act. My point is similar:
some programmers do believe that using XP results
in better software and some others simply say so (they
may instead believe, for instance, that the choice of
formal methodology plays a minor role). The point is
not whether they really believe in the instrumental supe-
riority of XP, the point is that they argue as if they did,
and that they will defend this superiority against those
who do not agree with (or should we say believe in) it.

As mentioned earlier, arguing for the instrumental
goodness of the preferred language, or methodology, is
only a way of manifesting one’s programming convic-
tions. These can also be held without much instrumental
legitimising and programmers may simply prefer one edi-
tor to another, or an operative system to another, or a
coding style to another, regardless of its perceived influ-
ence in the final result. In interviews, some programmers
maintain that they refuse to use vi, or to indent with
spaces, without presenting instrumental arguments but
simply because “it’s ugly”, or “it’s wrong.” Not using vi
is a part of their front (Goffman 1990), and it is not sub-
ject to careful objective comparisons.

From this perspective, the discussions about pro-
gramming rituals and sacrifices that we have seen in the
previous chapters may be reconsidered. But I would

310

not like to sound as if programming is actually some-
thing religious, the terms ‘sacrifice’ and ‘rituals’ are used
only in a metaphorical way. For instance, I think that
to suggest that certain aspects of programming are sacred
confuses more than it clarifies. In fact, taking the
religion-metaphor too far would create a problem: what
is this ‘religion’ that we are comparing programming to?
The concept of religion is, despite a voluminous body
of literature on the subject (or should I say, due to), hard-
ly much clearer than that of programming. Therefore,
I use it only in a superficial sense, as I imagine the read-
er has understood. My goal is not a detailed comparison
between two very complex sets of activities but to offer
insights into the nature of programming.

For instance, I mean that programming can be
understood as a religion in the superficial sense that, in
both cases, there is little about convictions that can be
settled by discussions. What is there to be disputed about
between different religions? That one is wrong and the
other right? Similarly, If I ‘belief’ in C, I may agree that
Java is suitable enough language and that, in some occa-
sions, it might even be an interesting alternative, I may
even agree to work with it, but nothing beats C (see the
annexe Java vs. C). The disputes are not about what is
the best option in a particular case but about which is the
language of choice, in general. Ultimately, they are dis-
cussions about things that cannot be compared, and
writing software is the activity through which personal
convictions are expressed and generated.

311

312

44 Strictly speaking, MS Access is not a programming language but a
small database designing environment, but it can be considered as one
for the purpose of this argument
45 http://www.bbc.co.uk/dna/h2g2/alabaster/A354629
46 All the entries in the example are taken from the same thread in the
same newsgroup. The subject of the thread: “Google is only solving
10% of the problem” and the newsgroup’s address: google.public.pro-
gramming-contest
47 Slashdot message #2253179
48 Slashdot message #2253306
49 Flamebaits are, however, not only about programming issues, as we
saw in Slashdot’s description of the concept (see chapter on method).
50 Slashdot message #483208
51 Wittgenstein says: “This is partly why one would be reluctant to
say: ‘These people rigorously hold the opinion (or view) that there is
a Last Judgement’. ‘Opinion’ sounds queer.” (Wittgenstein 1966:57)
52 IMHO appears often in Slashdot and it stands for In My Humble
Opinion

xi
Closing Reflections

Research in the management of software development,
and research in programming in general, should not
ignore the personal aspects of programming. Program-
ming managers, in turn, should not deal with them as
simply something to be suppressed. I hope this much is
clear after reading the thesis; but, given the picture of
programming we have witnessed, is there anything we
can say about other instrumental activities? Notably,
about management? And is there anything to be said
about technology at large?

315

My main concern in writing this thesis has been to pre-
sent a thick description and a careful analysis of some of
the private aspects of programming, i.e. of the personal
relationship that programmers establish with the code
they write. Originally, this concern war driven by curios-
ity, but the goal slowly became to devise a conceptual
toolkit that would adequately explain some program-
ming phenomena. Hopefully, the concepts will also
be useful for the identification and study of similar
phenomena in other instrumental activities (further on
in this chapter I consider this possibility more closely).

Many books and articles have been written about
software development, both from the managerial and the
technical perspective. In most of them programming is
treated as an activity whose sole goal should be to create
useful tools, regardless of their intrinsic qualities. For
these authors, the essence of code seems to lie in it being
the solution to computing problems. Their readings
imply that programming is about calculating, optimising,
recalculating, testing, and recalculating again, all with-
out a shadow of personal implication. As I have said ear-
lier on, there is, a priori, nothing wrong per se with such
an attitude: the pursuit of efficient software management
is a perfectly legitimate activity. My aim has been to
demonstrate that there is an important aspect that must
be taken into account if one wants to understand pro-
gramming, not that managers are wrong and program-
mers right. If the reader got this impression, it is proba-
bly because of my focus on the programmers’ voice.
Other voices in the software industry, notably the man-
agers’, are absent from the thesis (after all, the point was to
present an internal perspective to programming), and even
though I have tried to keep some critical distance from
the programmers’ arguments, their own opinions sound
more legitimate than the ones they assign to managers.
The point of this thesis is, once again, that a view of code

317

limited to its instrumental value cannot explain certain
phenomena that are an important part of programming.

By describing the private aspects of programming,
I hope to have shown in what ways code is more than its
instrumental value. By doing this I am following the steps
of previous ethnographic research in the work of engi-
neers, even if the case of programming has hardly been
dealt with. In any case, I am by no means the first to have
noticed that the creation of technology is not a matter of
pure calculation. For instance, Gideon Kunda (Kunda
1991) offers a thorough description of the impact of,
should I say, corporate aspects in the work of engineers.
His subjects – engineers of an (for anonymity reasons)
unspecified kind, although related with the IT industry –
are clearly aware that the effects of their decisions are
not limited to the technical realm, but that they are con-
nected in intricate ways with strategic, political and
organisational factors of their company. Technological
creation, from this perspective, is not only about design-
ing and constructing artefacts but also about making
statements about one’s affiliation.

Instead of the corporate, I have focused on the per-
sonal aspects, i.e. on the impact that the programmer’s
relationship to her own creation has on the activity of
programming. And I hope I have managed to convince
the reader that this relationship is a phenomenon rich in
nuances and, more importantly, that it has the crucial
consequence of turning programming (technical) deci-
sions, which ‘ought’ to be objective, into questions of
personal expression. I say that programming decisions
‘ought’ to be objective because, as I said earlier on, most
of the literature on the subject (from popular manage-
ment series to articles in scientific journals) seems to
assume that this is how it should be. Why those authors
should assume such a position is open to speculation.
Perhaps it is because programming is regarded as tech-

318

nology, hence applied Science, and they make some sort
of connection between both of them. Maybe they think
that, since software engineers receive comprehensive
training in mathematics and physics, the process of writ-
ing code should obey the strict methodological path of
Science. They seem to ignore that Feyerabend and the
Science Studies movement have proved (as much as these
things can be proved) that Science is not at all a straight-
forward process. I can only guess that they accept an
ideal view of Science as the ultimate rational effort, the
one area of human activity where logic and objectiveness
rule. According to their rationale, programming should
also be strictly logical, without personal implications.

Most likely, however, the assumption is more the
result of a methodology than a conscious decision. The
knowledge that those authors are after is of a particular
kind, its purpose being to make software projects more
plannable, more controllable, to make them run more
efficiently. Personal considerations are, from this point
of view, a nuisance. They write about how things ought
to be (in order to achieve efficiency), not about how
things are. The question this thesis asks is how realistic
is their vision, considering the realities of programming.

Whatever the reason, the fact is that personal aspects
of programming have been largely ignored. Although
they have not been totally invisible, they pop up in some,
otherwise quite normative, accounts of programmers’
activity. They also appear when discussing other ‘non-
objective’ aspects of engineering work. For instance, even
if Kunda (Kunda 1991) focuses on the implications of
corporate factors (internal political struggles, corporate
culture, salaries, responsibilities) in the work of engi-
neers, he also observes that

319

the prevalent image of engineers defines the nature of their identifi-
cation with work and the personal characteristics that accompany it.
Technology and its aesthetics are said to be the main concern of the
engineers, who are driven by a fascination with “neat things” or “bells
and whistles” – challenging features to design, interesting problems,
and sophisticated, state-of-the-art technology. “The prize for hard
work,” it is said, “is more hard work.” If these qualities are not avail-
able in regular work and assigned projects, they can be sought in “mid-
night projects” – the illicit projects that dedicated engineers are said to
take on their free time for the sheer interest or pleasure of work. (:39)

For Kunda, these “midnight projects” have organisation-
al consequences, for me, they are the traces of a specific
phenomenon: the engineers’ (or programmers’) personal
relationship with their creations, their concern for their
intrinsic value. Brooks’ classical The Mythical Man Month
(Brooks 1995) also contains allusions to the personal
aspects of programming, an activity that “gratifies
creative longings built deep within us and delights sensi-
bilities we have in common with all men”. But he too
leaves them aside to focus on other, also important,
aspects of software projects.

I wanted to pick that embryonic idea and develop it.
Like Kunda, spend the better part of a year carrying out
observations in situ, attending meetings, taking notes,
driving people around, asking permission to interview
engineers and managers, etc. In other words, to gather
empirical data through participant observation. I started
with some interviews with programmers, but before
I managed to obtain proper access to a programming
group, I came across those two on-line discussions at
Slashdot and my search for empirical material was more
or less over. In those discussions, plus the interviews, was
everything I needed.

I wanted to show that many of the technical deci-
sions that programmers must make in order to write
applications cannot be calculated. This last phrase means
in this case that there is no way to know which alterna-

320

tive is the right one, that, in fact, there is no right alter-
native to choose. All options are equally valid, and the
programmer must simply choose one. The key to this
thesis lies in the fact that these alternatives, even if they
are equally valid from the user’s perspective, are not
equal to the programmer. Hence, using long variable
names, for instance, is not the same as using short vari-
able names, choosing one alternative or the other will not
change the functionality of the application but it says
something about the programmer.

This is a very important point, I believe, because it
opens up the activity of programming to a world of non-
technical possibilities. Since code and function are not
univocally related, the same function can be written in
many different ways, giving rise to the possibility of self-
expression, of personal identification with one’s code.
This creates in its turn a whole array of phenomena that
are not usually related to technological efforts: vanity,
holy wars, aesthetic ideals, beliefs, etc. A set of phenom-
ena that had been largely ignored and to which this the-
sis is dedicated: they are the visible traces of that end that
I wanted to develop.

So this is finally the essence of this thesis: I have been
looking for the traces, analysing the bits and pieces and
presenting them in an orderly manner. I have been taking
short steps around a rather small spot (comprising mostly
two on-line discussions), in retrospect it feels as if I have
been going through the material with a finetooth comb.
When I now look up to see where I landed, I see that
there are a few things that may have been left behind.

Getting access as a researcher to an organisation is
seldom an easy task. So I started with the easy part of the
process, asking for interviews. But there was something
missing in both the questions and the answers, something
I could not quite put my finger on, but that became quite

321

clear once I came upon those on-line discussions. The
richness of these exchanges made me understand that it
is impossible (or very difficult) to gain an understanding
of the personal aspects of programming just by asking
related questions. What seemed to work was instead the
dynamics of mass-confrontation: programmers found then
occasion to choose sides, to criticise other’s opinions, to
endorse them, to give examples, to tell about their own
experiences, etc. But I still miss something in this thesis:
a proper (as opposed to virtual) ethnographical study of
a programming group. Not so much because this study is
incomplete without it but because I really would have
liked to do it. As it stands now, this will have to be stud-
ied in another project.

There are many positive aspects of virtual ethnogra-
phies (see the methodology chapter) but there is also one,
at least, negative aspect: it never finishes. This it shares
with normal ethnography, where the researcher finds her-
self taking notes of as much as possible (clothes, argu-
ments, agreements, coffee-machines, contracts, greetings,
etc.) but always missing things out. In her case, the prob-
lem is the obvious metaphysical impossibility of putting
down life on a piece of paper; in my case, it is the (per-
haps only material) impossibility of following all the
links in the internet. Participants in the discussions make
reference to other sites (personal homepages, corporate
sites, other on-line fora, open source code, etc.), which in
turn link to other places, which in turn… the on-going
discussion about the personal aspects of programming
condensed, so to speak, in those two Slashdot discus-
sions, but they are only the smallest tip of the greatest
iceberg. Programmers are engaged in a continuous
exchange (not only on-line) that forms the real backbone
of the programming community (chapter nine), and that
influences the form of the relationship between them and
their code. There are a hundred different aspects of this

322

exchange that have not been dealt with here, mostly due
to lack of space but also to allow for some kind of order.
So this study may very well be completed with other
studies that focus on other aspects and other forms of
exchange among programmers.

efficient programming

This thesis argues that programming is an activity that
does not obey a strict instrumental logic. Writing soft-
ware is a creative process, involving programmers in
personal ways. As we have seen throughout the book,
these do not simply calculate the solution to computing
problems, in fact, they perceive code as a creation that
represents them.

Some observers must wonder if this has to be so, if
programming cannot be reduced to an automatic – hence
cheaper and more reliable – process. I do not think so.
Granted, that does not mean that some phases of the
process can be, and have already been, automatised. For
instance, graphical programming environments allow
programmers to create data structures by simply drag-
ging and dropping elements into a window. The environ-
ment automatically transforms this window (some sort
of blueprint) into code. Not all programmers enjoy these
methods (which denies them total control of their code)
but the number and variety of graphical environments on
offer illustrates the concept’s popularity.

However, the only thing those environments can do
is to facilitate the coding. The code produced by them
represents only the most elementary structure, the rest
must be filled in by hand, so to speak. And what’s more
important, they create neither design nor specifications;
the two fundamentals of any program are still the fruit of
human creativity; they are truly manufactured (this is the

323

essence of the art of programming) following thus a
much richer rationality than strict logic. In other words,
the creation of specifications and design require a full
human approach.

It is certainly debatable whether this approach could
be made, if not totally automatic, then at least more con-
trollable. In other words, if it would not be possible to
eliminate from the approach clearly unscientific aspects
such as holy wars, aesthetic quests and other rituals and
sacrifices. In fact, a programming methodology is a set of
guidelines for improving efficiency. Such an improvement
is, in most cases, to be brought about by closer control of
the programming process. What exactly this ‘closer con-
trol’ involves varies a lot. In some cases it is based on a
detailed decription of the phases of a project (so that
progress can be better measured and monitored), in oth-
ers on a near collaboration with the users (so that pro-
grammers do just write according to their own prefer-
ences). In all cases, the goal is to put the instrumental
before the intrinsic value of code. Arguably, they are say-
ing that even if programming might not consist of ratio-
nal assessments, calculations and weighing of pros and
cons, it certainly should. I assume that the reason why
programming should be made more automatic is the
belief that code written according to strict methodologies
is not only cheaper but also better.

This, however, is only a belief. In an ideal world,
everything fits together, there is ample time for every-
thing and strict methodologies not only make sense but
will most likely result in cheaper and better software.
What are the characteristics of this ideal world? One
where the final users are absolutely taken by the idea
of using a software system, and are capable of analysing
their everyday work so as to transform it into abstract
data structures, and have the time to do it, and where
programmers are ready to listen to the users, and have

324

the patience of examining their jobs, and have the skills
necessary to write the code, and get well along with each
other, making collaboration swift; and where ‘managers’
do not make impossible delivery promises, and are more
interested in creating the code needed by the customer
than by their own careers.

But we only live in a real world, and strict method-
ologies that make programming more automatic and less
human may not be the best solution. The only thing
we know is that they are practically impossible to imple-
ment: humans are still only humans. If not even Science
progresses according to strict methodologies, how can
we expect such an order in the writing of a program,
which must not only attend to the regular complexity of
Nature but, in Brooks’ words, also to “arbitrary complex-
ity, forced without rhyme or reason by the many human
institutions and systems to which [the software’s] inter-
faces must conform.” (Brooks 1995) (:184).

Certainly it could be argued that programming would be
improved by eliminating one of the disturbing elements?
Would programming projects not become more foresee-
able if programmers stopped relating to their code in per-
sonal ways? After all, the phenomena presented in this
book (aesthetic considerations, holy wars, vanity, etc.) do
not have any positive effect on the productivity, do they?
It seems that, in the best of cases they do not interfere
with the swift progression of the programming project,
right? Well, I imagine that these private phenomena have
all kinds of effects on the swift progression of the project,
in some cases they may incite the programmers to work
harder, in others to sulk and drag, in some to big blun-
ders, in others to great insights. But the discussion is
merely hypothetical because the case is that these private
phenomena cannot be eliminated. Programming is not a
matter of calculation; regardless of the strictness of any

325

methodology, programming is always, at its most funda-
mental level, a creative effort. And this effort is always a
personal one, and will always give raise to issues such as
those we have considered in this book.

Therefore, any effort to eliminate the personal aspects
of programming will, in the best case, only have the effect
of relocating them: if variable names must all have three
letters, denying the programmers the possibility of using
long_winded_expressive words then they will find other
ways to put a personal touch on their variables. And if
that is denied too, they will come up with something else.
In the worst case, it will irritate programmers, who may
not see the efficiency gains that those measures promise,
and feel they are forced to follow stupid rules. Or even
worse, they might perceive those rules as a proof of lack
of respect for the art of programming, and work active-
ly against them and anyone who tries to impose them.

As I said, my concern has been with describing and
analysing the private aspects of programming, not with
constructing a management methodology. As far as I can
see, in fact, the only sensible recommendation to man-
agers that can be extracted here is “Bear in mind that
programmers see code as much more than just the solu-
tion to a computing problem.” What exactly is to be
done, i.e. how these words can be put into action, is a
matter best left to the managers themselves, who are
familiar with their particular circumstances. What I have
done is to describe the manifestations of the private
aspects of programming, so that anyone may recognise
them; I have also analysed them, suggesting a way
of interpreting them, so that anyone may not only recog-
nise them but also understand their role in the context
of creating software.

This thesis marks the boundary that delimits the
validity of a rational assumption of programming. By
showing the importance of the personal aspects of pro-

326

gramming, it sets a limit on what can be expected from
treating programming (both as a researcher and as a
manager) as a rationally driven activity. An example may
clarify this point.

In the chapter about coding styles I took up an arti-
cle written by two scholars (Oman and Cook 1990) that
dealt with the question of typography in code. They sug-
gested a particular kind of layout (book format model)
and proved, with the help of laboratory statistics, that
this layout increased the efficiency of programmers (by
allowing them to understand the code faster). One may
assume that, view that “professional programmers can
benefit from the book format model”, their implicit
recommendation is that programmers adopt it. But pro-
grammers, as we have seen, are not only worried about
understanding code, or making their code understand-
able. What they seek is to write code that they can be
proud of. Hence, they are more likely to adopt Knuth’s
methodology, even if not backed by any statistical
proofs, simply because they admire Knuth as a program-
mer, and are glad to see themselves associated with his
name. And will programmers, for instance, accept and
adopt the bug-detection systems that The Economist
speaks about (see the introduction)? Well, I hope it has
become clear that the answer depends on a number of
circumstances, only some of which have to do with
reduced costs and less buggy software.

management, instrumental action and
the rational nightmare

While programming has been the main focus of this the-
sis, we have also been looking at something broader:
instrumental action. The concept has been touched upon
in the thesis, when it was used to describe the public view

327

of programming: an activity carried out in order to
achieve a goal, not for its own worth. Now, there are a
number of other instrumental activities, notably manage-
ment, and the question here is whether the present work
may throw some light upon them as well.

The main finding, if we can call it so, of this thesis is
that programming has a value in itself, at least for those
in charge of doing it, and that therefore, studies that treat
it as if it were a perfectly objective activity cannot explain
an important number of (clearly existing) phenomena.
Programming is, therefore, not a purely instrumental
action, and researchers should not reduce it to one. Now,
does this also hold for ‘management’?

Management has been treated here (caricaturised,
one could say) from the perspective of programmers,
who use that figure as a straw man that personalises indif-
ference towards the intrinsic value of code. But is it pos-
sible to say that there exists such a thing as the intrinsic
value of management? And that it plays a role in man-
agement decisions?

Naturally, if I needed a whole book to explain what
the intrinsic values of programming are (and hence, what
programming is), I am not going to be able to explain
what management is in a few lines. Nevertheless, I think
it is possible to outline the concept of the private aspects
of managing, just to show how the ideas presented here
can be applied to that field.

Perhaps managing can be described as the art of mak-
ing things happen, or of getting things done. A manager
is a person in charge of a process, her responsibility is to
achieve a certain goal (for instance ‘to increase share-
holder value’, or ‘to produce a program within budget
and schedule’). A perfectly instrumental view of manage-
ment would hold that the means (management method-
ology) are not important, only the goal. In other words,
that management methodologies have no intrinsic valule,

328

they can only be examined according to the results they
provide. Exactly what should be included in those ‘results’
is not easy to determine; for instance, it is unclear in what
measure ethical considerations should be considered.

At any rate, the public (instrumental) view of man-
agement methodologies is that they are not implemented
for their own sake but for the results they can provide.
From a private perspective, on the other hand, manage-
ment methodologies have intrinsic value. In the same
way as a coding style spoke of a programmer, a manage-
ment style should speak of a manager. Now, if coding
styles manifested in the code (it is possible to read a
programmers’ style in her code), where do manage-
ment styles manifest? And, if holy wars, vanity and aes-
thetic ideals were some of the private phenomena of pro-
gramming, which are their management counterparts?

Answering these two questions would take a com-
plete new thesis, but we can at least point to some simi-
larities between programming and managing that suggest
the existence of private aspects in the latter as well.
For instance, we saw how the private aspects of pro-
gramming originated partly in the fact that the same
result (function) can be achieved with different codes.
In order to minimise the technical overhead, we only
looked at rather superficial examples – the possibilities
offered by a few coding alternatives –, but the message
was clear. If there is only one solution to a computing
problem, choice is annulated, and with it, the possibility
of expressing oneself with code.

The contrary is not necessarily true: we cannot logi-
cally deduce that the possibility of achieving the same
result in several different ways implies the existence of
private aspects. I can wash my hands in different ways
and I still have not seen any evidence of private phenom-
ena of washing hands. Perhaps there is a minimally-com-
plex-activity threshold that must be surpassed before

329

private aspects appear, but this is something that would
have to be considered more carefully.

At any rate, management does offer choice: any given
management problem can be solved (or avoided) in
different ways. The question is whether these choices
speak about the manager, and whether their intrinsic
qualities (regardless of their result) are ever considered.
And also whether this gives rise to aesthetic ideals of
some sort or not.

Another aspect that both activities have in common
is that there is as little to science of management as there
is to science of programming. And, before I get flamed,
I hasten to explain this statement. What I mean is that we
know as little about the concrete results a certain man-
agement methodology will poduce as we know about the
best way to solve a given computing problem. What for-
mulas do you apply in order to ascertain an increase of
share-holders value? There are none. There are strategies
and there are methodologies and there are financial tricks
but there is no general solution to this problem.
Managers must make decisions that cannot be backed by
a scientifically valid set of findings: should one focus on
the core business (and what is that?) or diversify?
increase margin or expand (and are they incompatible)?
should one take more or less risks? This also holds for
more concrete decisions: three of four departments?
What kind of salary / holiday / pension / etc. policy?
How many hierarchical levels? No-one knows categori-
cally, the best thing one can say is that “it depends”, but
on what exactly it depends is not so easy to specify. We
still do not have a working science of management com-
parable to the working science of wave propagation.
This lack of reliable formulas (lack of reliable forecast-
ing) gave raise, in the case of programming, to instru-
mental beliefs: some programmers believe it is better to
do so and so, and some other programmers believe the

330

contrary. Instrumental beliefs exist also in management
(and are sometimes called intuition), and strengthen the
case for the existence of private aspects.

It would seem that the personal choices that man-
agers face are wide and important enough to assume that
the private aspects of managing exist and play a role in
it. There is a lot of research that shows that management
is an activity rich in aspects and nuances and that it is
extremely unrewarding to think of it as a calculating
process (this is indeed commonplace nowadays). Man-
agers do not base their work on the computation of the
optimal way to achieve their goal (if there is one clearly
specified at all). The question is whether one can find
phenomena that can be best explained by assuming the
existence of an intrinsic value of management method-
ologies in the same way as we have here assumed the
existence of an intrinsic value of code.

Furthermore, one must find the places where such an
intrinsic value can be constituted, i.e. the places where it
can be discussed. Slashdot is a great example of a place
where the intrinsic value of code is constituted, and it is
not the only one. Probably, the origin of such a concept
is to be found in the classrooms where programming is
taught… but that is another story. I doubt the internet
will prove as fruitful in the case of management as it was
for programming, perhaps one should try MBA schools
instead. Existing research on managers, particularly that
with an ethnographical approach, may also offer inter-
esting observations: what do managers talk about when
they are not making deals, when they simply chat about
what it is to manage?

Last but not least, one must also find the objects
through which the managers’ express themselves. In the
case of programming, the most obvious example is the
code. Code not only is the immediate object where their
coding styles are articulated but also the place where one

331

can read design strategies, instrumental beliefs, skills, etc.
Code speaks about its creator. Now what speaks about a
manager? The organisational structure? The formulations
of strategies? The human resource policies? The mergers?
I am certain relevant phenomena have already been
unearthed, it may only be a matter of ordering the mate-
rial in this fashion. I think it will prove useful to explain it.

The question of the private aspects of programming (and
of management) is an essential part of the abstract con-
cept of instrumental action. And in this case, with
‘instrumental action’ I mean a negative kind of rational-
ity that has been blamed for the reduction of the human
condition. From Heidegger (and other earlier critics
of technology such as Mumford (Mumford 1952) and
Ellul (Ellul 1964)) to the contemporary (and less known)
Higgs, Light & Strong (Higgs, et al. 2000) (see also
(Feenberg 1999) and (Mitcham 1989)), the last century
has seen a number of critiques of the reducing effects
of approaching life with an instrumental attitude, some-
times known as ‘technological mode of thinking.’

Certainly, due to its economic power and its strive
for standardisation, technological thinking seems to have
an upsetting reductive effect on human nature. The
humanist perspective identifies the main reducing mech-
anism of technical thinking in its quest for efficiency,
which is based on a view of the world as raw material,
ready at hand to be optimised. This effort of constant
optimisation and, particularly, the idea that this optimi-
sation is possible and desirable (Wright 1994; Wright
2000), are identified as the main forces shaping our des-
tiny. This technological effort and conviction go hand in
hand with its scientific counterparts, whose goal is to
take off the veil that covers the mechanisms of nature,
and to express these in mathematical formulas. If this
objectifying view of the world was not bleak enough, we

332

have to add to it the economic conditions in which it
exists (and thrives). The general background of human
existence created by these two forces (the economical
and the technological) make some humanists rather pes-
simistic about the future.

I am also appalled by some of the outcomes of this
atmosphere of greed and technological possibilities, and
I too worry about nuclear disasters. But, and this is my
contribution to this debate, the technological mode of
thinking cannot be limited to a view of the world as raw
material, and more concretely of technological artefacts
as cold objects of optimisation. This is the view of the
world that results from (or in) the traditional philosophy
of science and its strict methodology, but neither the
scientific effort nor the technological development follow
any such reductive paths. As Feyerabend has noted
(Feyerabend 1987), (natural) sciences ‘advance’ in anar-
chic ways, and the technological development is, if pos-
sible, even more disordered (as we have seen here and as
can be seen in the work of Kunda, Latour, and in works
contributing to the STS movement).

Guillet de Monthoux’ work Dr Kant (Guillet de
Monthoux 1981), that studies a particular kind of tech-
nological thinking (the one found in technical standardi-
sation committees) may serve to illustrate the point.
His is a sharp and critical work that exposes the artificial
nature of standards, the incorrectness of the economic
assumptions that lie behind their adoption and the reduc-
tive effect they have on human creation. Guillet de Mon-
thoux studies the work of standardisation committees:
their configuration, their organisation, their agendas,
their composition, the success of their conclusions, etc.
coming up with an image of the standardisation process
as a rather disordered procedure whose legitimising dis-
course is full of logical holes. Standards, he observes, are
not created according to a well defined methodology but

333

instead constructed in the corridors, in-between meetings
and around coffee machines. So, Guillet de Monthoux
detects the phenomenon that we have studied here, but
stops in front of it, being more interested in a reflection
on the normative quality of standards than in the nature
of the deliberations held by the members of the commit-
tees. According to the findings of this thesis, one would
expect these deliberations to involve all kinds of human
faculties, not only economic, mechanical and political
rationality; and one would expect to find traces of the
phenomena associated with those ‘other’ human faculties
(pride, aesthetic pleasure, vanity, fantasy, disdain). These
would not invalidate Guillet de Montoux’ critique of the
artificial nature of standards, or of their economic
assumptions, but they might rebuff the general notion
that the creation of standards is a process devoid of
any form of intrinsic qualities, that it does not allow per-
sonal expression.

But more important than the process of creation of
standards is the idea that standards, themselves, reduce
the possibilities of human action. On one hand, this reduc-
tion is a clear effect of standards: once they have been
accepted, and adopted, you cannot simply start con-
structing artefacts that do not comply, either because it is
illegal or because it is not, a priori, economically sound.
In this sense, it is also clear that the existence of stan-
dards may make life easier for the consumer. Both these
ideas are clearly stated in Dr Kant, and are both applic-
able, on a certain level, to programming: every program-
ming language can be considered as a set of standards
that define what can be done with the microprocessor
(itself standardised). But this is where Dr Kant stops, and
where I began: in the study of how standards are actual-
ly used, or, in other words, how human creativity and
fantasy flourish even in the most strictly standardised of
environments (computers and programming languages).

334

As we have seen in the previous pages, when we study
the private aspects of programming we discover how the
creation of software engages all kinds of human faculties.
It is a mistake to reduce the technological effort to a
quest for the most efficient solution, unless one is ready
to widen the concept ‘efficiency’ beyond recognition. In
this thesis we have seen programmers relating to soft-
ware, both their own and others’, in ways that cannot
really be described as ‘optimising’, and also how the the-
oretically fearsome ‘efficiency’ loses much of its edge
when it comes in contact with, as Feyerabend would say,
the abundance of life.

From close up, programmers seem unable to agree
on what ‘efficiency’ means in every concrete case. Yes,
they all know that it is a measure of output to input but
there are diverging opinions as to what the input and
output are, and as to how they should be measured.
Instead of maintaining an emotionless optimising atti-
tude to the world (object), they end up having quarrels
about which are the most beautiful programs, which are
the best programming languages and who is entitled to
have a say in those discussions. In other words, the pes-
simistic approach to instrumental actions (rational atti-
tude to life) assumes a condition, illustrated in the figure
below, that does not exist:

335

The disorder to the left represents the richness of human
activity in absence of the technological mode of thinking.
When this latter takes over, though, it strives towards
one point of standard reduction, of efficient production.
Here our possibilities have been limited by standards and,
above all, by the focus on the result of the action, instead
of on the action itself. The limitation is made more restric-
tive by the power of economic efficiency, which seems to
accelerate the whole movement.

Now, do not misunderstand me, this is happening, in
a way. Standards, as Guillet de Monthoux shows, do
appear. Their very goal is to put limits to our alternatives
of action (of creation), and their profitability makes them
extremely successful. And this double efficiency (techno-
logical and economic) has given them an influential role
in our society.

What this thesis shows, however, is that our inventive-
ness knows no limits. At any rate, the creation of stan-
dards does not limit our practical freedom. In a world as

336

chaos, abundance of life

point of standard
reduction

economic acceleration

te
c

h
n

o
lo

g
y

’s
 r

e-

 d
u

c
in

g
 m

o
v

em
en

t

figure, The Rational Nightmare

strictly standardised as that of programming (in which
computers do not accept the least deviation from a
predefined vocabulary and grammar) we find heated dis-
putes about the best way to create. Instead of an acceler-
ating straight path towards the optimal solution we find
programmers taking all kinds of deviations, and this does
not happen mainly as a rebellious reaction but as the
necessary result of the abundance of life. There simply
isn’t a unique optimal solution, the strict standard rules
of programming languages forms the base from which
to create a new world, as the following figure illustrates:

To sum up, standards organise and put limits to the situ-
ation from which they arise (represented in the figure
with the point of standard reduction), but to the subse-
quent situations (the future), they are simply the points
of departure for renewed chaos. The situation is well
known for all of us that have had to learn to use person-
al computers: a word processor creates standards of
many different kinds, reducing the alternatives of action

337

chaos, abundance of life
continues to reign

figure, The Abundance of Life

but, from the other side, so to speak, it is the platform
from which our inventiveness is re-launched.

Furthermore, the chaos of human industry cannot be
bridled by applying strict methodologies – as the afore-
mentioned Dr Kant shows – on the contrary, only the
anarchy of inventiveness, forgetfulness, pride, stupidity
and other human resources can bring about new points
of standard reduction (Feyerabend 1978; Feyerabend
1987). The theoretical description of a technological
mode of thinking may be devoid of humanity but, as
the philosopher Ortega y Gasset may have put it (Ortega
y Gasset 1996), the real technological effort is a very
human enterprise indeed.

338

i
Annexe

java vs. c

341

Programming languages are a dear subject to many pro-
grammers. They do not appreciate their preferred lan-
guage being criticised and there are a few instructive and
entertaining exchanges about this. Excerpts from this
appear in the text, but it is interesting enough to be tran-
scribed in its entirety in this annexe. It deals with the dif-
ferent excellencies of C and Java. It starts almost by acci-
dent: participant Telek sends in an entry in which he/she
blames economic thinking (“once you have money enter-
ing the picture, and/or time, then the first thing to go is
code quality”) for the existence of so much poor quality
software (“I can't tell you how many software packages
I've looked at that are ABSOLUTELY HIDEOUS on the
inside”)

53
and rants mostly against Microsoft’s Visual

Basic but manages to comment upon Java as well:

And How!!! by Telek (SW)
[....] Unfortunately, in the land of "80% complete is good enough" and
where "as long as it works" is a good philosophy, and in a land where
"visual basic" is a professional programming language, we're not going
to see this improve any time soon. Even Java works squarely against
the goal of "efficient". Give me C++ any day.

That mention of Java as a, what should we say, perhaps-
not-so-great language sets off a thread (Java is inefficient)
of 10 postings of which I have selected the following.
Please watch how even if they fence with technical argu-
ments, and they do bring up a few, they do not leave mat-
ters settled: they finish without final objective conclu-
sions. You would say they are just working on the build-
ing, and expression, of their identity.

Java is inefficient by Procrasti
> Even Java works squarely against the goal of "efficient". Give me
C++ any day.
I've done projects in C, VB (im not proud), C++ (yep MFC et al, 5
years) and Java (1.5 years now), and I question the statement that java
isn't efficient.I guess the gripe I have with this statement is your

343

definition of efficiency. I won't argue that Java executes slower than an
equivelent C++ program, after all it runs on a virtual machine that does
have to do an amount of work to translate java byte code to native exe-
cutable code, however, Moore's law applies here - machines and JIT
(Just in Time) compilers will always get faster, as well as implementa-
tions of Swing and other graphics libraries.However, I also like to think
of efficiency in terms of developer hours, support and maintainence.
Java outshines C++ in its ability to clearly express your ideas in a way
a machine can understand. It frees the programmer and maintainer of
the details of memory management. Not that a developer doesn't have
to understand memory management and the implications of holding
references to objects, but that allocation and freeing of memory isn't a
constant requirement. Every C++ program of sufficient complexity has
to be tested and debugged for memory leaks - someone always forgets to
add a destroy call somewhere. I won't even mention buffer overflow prob-
lems While I'm on the subject, and although I seem to be praising Java
a lot here, there are always places for each language. I don't think Java
would be a good choice of language to build a kernel in, for example.
[...] To sum up, Java is generally a more elegent language than C++, this
leads to code with quicker times to market, less bugs and less cost
in support and maintenance - efficiency isn't everything, afterall, "pre-
mature optimisation is the root of all evil" -- Donald Knuth, and
how much more premature can you get than in choosing the imple-
mentation language?

Re: Java is inefficient by Telek
> I guess the gripe I have with this statement is your definition of
efficiency
Fair enough. I meant fast. And Javascript is even worse.
> Java outshines C++ in its ability to clearly express your ideas in a way
a machine can understand
How so, more than C++ OOP? Java is so very close to C++ OOP that
I'm not sure what you mean.I will agree that Java has a lot of ADD IN
LIBRARIES that come standard, however this is part of the packaging,
not the language.I want to make a linked list in Java. Ooops, no point-
ers, sorry. I want to pass a variable to a function and have it modify it,
oops, no pointers. I want to write a program that takes as little mem-
ory as possible, or reuse memory, or optimize it to use common options
of the processor, oops, no memory management, no assembler. I would
really like to see a pseudo assembler in Java, I think that'd be kickass.
You can write a platform independant assembler (I did for my last job,
well, it translated into a few different assembly languages).
Java gets ease where it says "uhh, no, shut up, sit down, I'll do that for
you (and BTW, you can't do that".
> allocation and freeing of memory isn't a constant requirement
I never did understand this gripe. Whenever I put a malloc, I immedi-
ately put a free. Whenever I do a new, I immediately put the destroy

344

somewhere. And there are umpteen packages that do both source-code
level and runtime level checking for memory problems.
> I won't even mention buffer overflow problems
In light of the recent IIS problems, I don't blame you. However there
are packages that can scan for and test these things. And those prob-
lems are generally the result of sloppy programming in the first place,
but I guess that's what the whole article is about. Yes, however, it is
nice to know that you can't have that happen in a Java program.
> there are always places for each language
Absolutely. Java is easy, quick and dirty. You can RAD things with
great ease. If development time is an issue, and you don't have the need-
ed libraries in C, then Java is a great language. Just as long as you don't
need speed or to get to the nuts-and-bolts of things. [...] Damnit, I want
a programming language that gives me access to the freeking carry flag!
=). I've done math routines a lot, and the code is literally 10x faster
when you can optimize it by hand in assembly. I love assembly for small
things that you want speed for. Itanium assembly is amazing for that
task too (but much much more complicated). I guess that my gripe
is because I'm coming mainly from a C background where you
can do things like memory management, pointer management, and
inline assembly. I am a big one for code efficiency and speed. When
you're writing something that needs to run fast (i.e. a server), it
pains me great to hear the execs go "well, we are going to have to
buy some more servers so other expenditures are going to have to
be curtailed a bit", knowing full well that if they weren't running
on Java, or if they gave us the time to optimize the code base, you
could run everything we have on half the amount of hardware that
we have currently.

Re: Java is inefficient by Turing Machine
> I want to make a linked list in Java. Ooops, no pointers, sorry.
So? It's trivial to code a linked list in Java. The "no pointers" FUD is
just that, FUD. References to objects in Java can be used for just about
anything you'd use a pointer for in C++.

Re: Java is inefficient by Procrasti
> I want to make a linked list in Java. Ooops, no pointers, sorry. I want
to pass a variable to a function and have it modify it, oops, no point-
ers. I want to write a program that takes as little memory as possible,
or reuse memory, or optimize it to use common options of the proces-
sor, oops, no memory management, no assembler. I would really like to
see a pseudo assembler in Java, I think that'd be kickass. You can write
a platform independant assembler (I did for my last job, well, it trans-
lated into a few different assembly languages).
Well, everything in Java is passed by reference. From a C++ program-
mer's point of view, rather than thinking, Java has no pointers, its best
to think, everything is a pointer. Its far easier to program a linked list

345

class in Java than it is in C++. I've done both. If you pass an object to
a method, that method can modify the object.
The only thing that it won't do as well is type safe linked lists, because
Java has no templates, but have you ever taken a C++ template and
tried to compile it in VC++, Borland C++ and gcc, #ifdef everywhere to
get this to work.
> I never did understand this gripe. Whenever I put a malloc, I imme-
diately put a free. Whenever I do a new, I immediately put the destroy
somewhere. And there are umpteen packages that do both source-code
level and runtime level checking for memory problems.
Yeah, except when the server creates an object, and the client has to
free it, or someone else quickly adds a member variable to a class and
forgets to clean it up in the destructor. The fact that you even have to
do this in the first place is the problem.
> Absolutely. Java is easy, quick and dirty. You can RAD things with
great ease. If development time is an issue, and you don't have the
needed libraries in C, then Java is a great language. Just as long as you
don't need speed or to get to the nuts-and-bolts of things
No, my point is that Java is a cleaner language. Packages instead of
ugly namespacing. If you really need the speed, you can link C shared
libraries directly to your Java code through JNI (Java Native Interface)
for that 5-10% of code that really does need to be fast, or bit twidling.

Re:Java is inefficient by Merk
"And Javascript is even worse." Javascript really has nothing to do
with Java. It's an untyped, interpreted language with a syntax vaguely
similar to Java. But there are things you can do with Javascript that
you can't do in C. Lambda forms: "new Function("x", "x+6")", run-
time modification of objects, etc.
"I want to pass a variable to a function and have it modify it, oops,
no pointers." Objects in Java are passed by reference, built-in types
aren't, but it's trivial to wrap them in an object if you want a function
to modify them.
Re garbage collection: "I never did understand this gripe. Whenever I
put a malloc, I immediately put a free. Whenever I do a new, I imme-
diately put the destroy somewhere." Ok, but what about when the
memory is allocated by a 3rd party library you're using? What if it is
badly documented and doesn't explain which functions allocate mem-
ory and which don't? What about exceptions and errors? Sometimes
knowing when/where to delete memory is a very complex process, and
really, is this something the average programmer should be doing, or
something a compiler/runtime/vm should be doing?
Maybe I'm just lazy but I prefer to design a system rather than worry
about memory. I've done tight C/C++ code (on the Palm Pilot among
other things), and I've done Java. To me, Java is just less frustrating,
and places fewer barriers in my way.
C/C++ is really C/C++/preprocessor. When I include a file I don't want

346

to care if it has already been included, but C/C++ requires that every
header file be protected with ifdefs. Why can't the system take care of
that for me? What about changing functions? In Java I change it one
place, in C/C++ I have to change the header and the source. Why can't
the system take care of that for me? I guess I'm just lazy but to me
those things are minutia that I don't want to have to bother with.
I realize that Java handcuffs me, and I would never choose it for some-
thing that had to be highly optimized or really small. At the same time,
I'm glad it handcuffs other less skilled developers. If nobody can use
pointers, goto statements, global variables, and other messy things, it
makes maintaining code so much nicer.
My biggest problem with Java is with the implementation, not the lan-
guage. If it were designed from the start to be platform-independant
code, but code that had to be recompiled for each platform, that would
be great. That would fix most of the speed issues, except for the
garbage collection.
About beauty: Generally inline assembly, preprocessor junk, goto state-
ments, pointer arithmetic, etc. are ugly code. Sometimes they have
their place, but unless they're well documented they're really nasty.
Because of this I think it's much easier to write beautiful code in Java.

Java language misconceptions by yerricde
>I want to make a linked list in Java. Ooops, no pointers, sorry.
As Procrasti mentioned, every variable in the Java language not of
primitive type (int, etc.) acts as a pointer. Just because you don't see a
* doesn't mean it isn't a pointer.
> I want to pass a variable to a function and have it modify it, oops, no
pointers.
So pass a reference. If you're passing an object, don't clone() the object
before you pass it. If you're passing a primitive, wrap it in an object (i.e.
int foo; ... Integer bar = new Integer(foo);).
> I want to write a program that takes as little memory as possible, or
reuse memory, or optimize it to use common options of the processor,
oops, no memory management, no assembler.
Reuse memory by calling System.gc(). Write assembly language either
with Jasmin [nyu.edu] (an assembler for JVM bytecode) or JNI (a way
to link in unsafe native code).
[...]
> Damnit, I want a programming language that gives me access to the
freeking carry flag! =). I've done math routines a lot, and the code
is literally 10x faster when you can optimize it by hand in assembly.
Then design a language that does such a thing. GCC is free software;
you can start from that. And if you don't like the quality of optimiza-
tions that GCC does on your code, contribute a better optimizer.

''inefficient'' languages by Tom7
Right on. I'll gladly take a safe memory-managed language like Java to

347

write my efficient code, since it means I can spend more time optimiz-
ing things which really matter (algorithms).By the way, there exist lan-
guages with the same abstraction qualities as java (safety, garbage col-
lection, portability, etc.) which aren't slow in the sense that the original
poster meant. Check out O'Caml, for instance. It's got a lot more inter-
esting features than Java, and runs as fast as C.

A long but very enlightening discussion, I think, particu-
larly for those who believed that since programming is a
technical matter, it should be possible to agree on what is
‘better’ and settle this sort of discussions once and for all.

348

349

53 #2252862, emphasis in the original

ii
Annexe

line break printing

351

The exchange presented here is interesting mainly
because it shows how questions of code elegance can be
dealt with by programmers. But also as a proof of the
kind of help (and the speed of it) you may expect to
receive from total strangers, people with whom you only
share one thing: writing code in a particular prorgam-
ming language (in this case, Perl). (From the site
www.perlmonks.org)

breaking a line on printing by hotshot on Mar 18, 2002 at 21:41
hotshot has asked for the wisdom of the Perl Monks concerning the fol-
lowing question:
I'm sure someone has answered this already (I couldn't find it in the his-
tory), but here goes (a stupid one i'm sure):
How do I use the print command in a way that my code will be more
organized, for example:If i want to print a long (more then a row) sen-
tence then my code looks ugly, something like this:

print "Once upon a time there was a little programmer that asked to ma
+ny questions.\nToday his question was realy a stupd one.\nand so on an
+d on...";
if ($bla eq 'test') {

....;
}

and you can see this looks ugly. is there a line seperator or something
else to handle these situation of long lines of code (actually not only in
print command)?Thanks

Re: breaking a line on printing by Biker on Mar 18, 2002 at 21:51
What you're really asking for is a way to define a quoted string on sev-
eral lines.As far as I'm aware there is no direct way of doing this. (Like
in VB or some such.) You could take a different approach:

print
"This is a long string\n".
"on more than one\n".
"line\n";

This implies that perl will have to do the concatenation, which 'feels
wrong'. But the Perl interpreter will optimize this during the compila-
tion phase and create one long string to be printed.

353

Re: breaking a line on printing by Tyke on Mar 18, 2002 at 22:06
Have you looked at the 'heredoc' notation?

#!/usr/bin/perl
use strict;
use warnings;
print <<_END_;
Once upon a time there was a little programmer that asked too many que
+stions.
Today his question wasn't realy a stupid one.
And so on and on..
END

Not a perfect solution with regards to code indentation, but still very
useful

Re: breaking a line on printing by demerphq on Mar 18, 2002 at 22:12
There are a few variations of Bikers answer
Set $, to be a newline (or use join explicitly as suits your taste and
style), also set $\ to a newline.

{ # setting $, $\ should be done in a block with local
local $\="\n";
{

local $,="\n";
print "These",

"Are",
"Seperate",
"lines";

}
print join ("\n",

"As",
"Are",
"These");

}

Use a here doc. (Consult the docs, here docs can be a bit tricky.)

print <<END_OF_TEXT;
These
are
seperate
lines
END_OF_TEXT

Yves / DeMerphq

354

Re: breaking a line on printing by tachyon on Mar 18, 2002 at 22:14
You can do any of these:

using a heredoc
print <<TEXT;
Once upon a time there was a little programmer that asked to many ques
+tions.
Today his question was realy a stupd one.
and so on and on...
TEXT

using literal newlines in the text
print 'Once upon a time there was a little programmer that asked to ma
+ny questions.
Today his question was realy a stupd one.
and so on and on...
';

using the comma operator
print "Once upon a time there was a little programmer that asked to ma
+ny questions.\n",

"Today his question was realy a stupd one\n",
"and so on and on...\n";

using the concatenation operator
print "Once upon a time there was a little programmer that asked to ma
+ny questions.\n" .

"Today his question was realy a stupd one\n" .
"and so on and on...\n";

using a custom sub. declare prototype so we can use it as
a bareword. We use ^\n to mark our line wraps and remove
the leading whitespace on the next line. We use a regex
to remove these and presto.....
sub wrap;
print wrap "Once upon a time there was a little programmer ^

that asked to many questions.\nToday his question ^
was realy a stupd one\nand so on and on...\n";

sub wrap {
$text = shift;
$text =~ s/\^\n\s*//g;

return $text;
}

Update
You can even define your own custom print function that does the
(un)wrap bit for you:

sub printw;
$interpolate = "Interpolate this\n";
$comma = "We can use the comma operator\n";
@ary = qw (this_ is_ an_ array);
printw "Once upon a time there was a little programmer ^

that asked to many questions.\nToday his question ^
was realy a stupd one\nand so on and on...\n^
$interpolate^
", $comma, @ary;

sub printw {
my @text = @_;
s/\^\n\s*//g, print for @text;

}

cheerstachyon

355

Re: breaking a line on printing by webadept on Mar 18, 2002 at 23:59
All of the above are great.. I didn't notice anyone using my favorite

print qq` This is text and I want to
print this text on many lines as I can with "quotes and without quotes
+" ..
`;

I use that for a lot of HTML stuff and such things. That's not a single
quote or apostorphe there.. is the .. heck I don't really know what its
called.. its on the same key as the ~ is but I believe you can use just
about anything as long as that something is not inside the text you are
using. Oh.. and it holds formating.. so watch your line breaks. Try it
out, you'll see what I mean.
hope that helps
Glenn H.

Re: Re: breaking a line on printing by friedo on Mar 19, 2002 at 01:22
That's a backtick.

Re: Re: Re: breaking a line on printing by mt2k on Mar 19, 2002 at 02:25
a backtick?? Oh no! I hate ticks, burn it off, burn it off!! And as for
webadept's answer, that is also one of my favorites. I generally use
something like

#!/usr/bin/perl -w
use strict;
print qq|Content-type: text/html\n
<html>
<head>
<title>Yeah Yeah</title>
</head>
<!-- More HTML stuff here, etc... -->
Oh looky here, a whatever this character is called \|
|;

As long as you backslash any |'s in the text you'll be fine (and I don't
think your output contains many if any of these...)
If you are outputting strings that contain a lot of strange characters, I'd
definitely suggest use heredocs, especially if you are outputting very
long HTML documents. For example:

print <<'YayIAmDone';
look at this text. lots of non-alphanumeric characters in this print s
+tatement! 8)^404`76`5`65^%!^%^@éA¿º¿ªÑñç_ and we don't even have to lo
+ok for anything to backslash! !$#!#!1~!````~!~!~21&$3(&6(*7_*(+|}|]{]{
+]":':?,,?<
YayIAmDone
exit;

Re: breaking a line on printing by code_drifter on Mar 19, 2002 at
02:17
I just hit Enter rather than using the "\n". Perl will use the literal key-
stroke of the enter key.

356

Re: breaking a line on printing by abaxaba on Mar 19, 2002 at 05:12
There have been some good suggestions here, but no one has men-
tioned my particular favorite, which I use especially with html output.
I push everything onto an array, then just dump the array. This seems
to work for me for a couple of reasons: Format whitespace, easier read-
ability.
Pass array ref around to different subs, to build up output string in
a modular format, without worrying about return values:

#!perl
main();
sub main
{

my @output;
push (@output, "Here is something to print out\n",

"Here is yet another line\n");
extra(\@output);
print @output;

}
sub extra
{

my $resRef = shift;
push (@$resRef, "Here is an extra line\n");

}
exit 0;

Re: breaking a line on printing by ellem on Mar 19, 2002 at 05:28
You can do all of the wonderful things everyone has already suggested
BUT if I read you question correctly you are concerned that your code
is ugly... (strange for a Perl programmer.. but OK =))

print "I want this on one line
I want this on another line
and finally put this here on yeat another line.\n"

It's practically WYSIWYG. Just hit enter at the end of what you're
doing.

Re: Re: breaking a line on printing by MAXOMENOS on Mar 19,
2002 at 11:29
I'm surprised more people haven't suggested this approach. I see peo-
ple do this all the time, without ill effects. Has anyone seen this *not*
work?

357

iii
Annexe

the most beautiful piece of code

359

The following thread is one of the longets in the discus-
sion, it was started by mduell, who suggested a very sim-
ple program. But despite its straightforwardness, the pro-
gram triggered all kinds of reactions. The last messages
in the thread are written by assembler fans, i.e. people
who prefer to write code without the help of (high level)
programming languages, but it would seem one of them
was only pretending…

The most beautiful piece of code... by mduell (#483118)

#include <stdio.h>
int main(void)

{
printf("Hello world!");
}

Mark Duell

Re:The most beautiful piece of code... by Anonymous Coward
(#482974)
Tsk tsk. You forgot the "return(0);". And you didn't indent. AND you
didn't check the return value of printf() (forgiveable, everyone forgets
that). Is this what beauty's about? That particular snippet is ugly
enough to warrent a warning in most compilers, but slashdot seems to
think its worth a +1...

Re:The most beautiful piece of code... by Girf (#483160)
•Actually, I find that piece ugly. If I were wanting a beautiful 'Hello
World' I would:
•Lose the '!'. Exclaimation marks are lame; there isn't really much to
get excited about.
•Tabs, need I say more?
•Use a '\n'. I really hate when a program makes my console look like
Hello world![james@jimbob ~]. Any code/coder that doesn't use line
breaks should be whipped and beaten then sent back to Visual Basic
where they belong.

Re:The most beautiful piece of code... by thelaw (#483159)
> sent back to Visual Basic where they belong.
or tcl.
jon

361

Re:The most beautiful piece of code... by nycsubway (#483127)
its beautiful, but aren't you missing the return value? since main is an int...

Re:The most beautiful piece of code... by RoninM (#483167)
How about:

#include <stdio.h>
int main(void)
{

(void)printf("Hello, world!\n");
}

?

Re:The most beautiful piece of code... by maw (#483068)
You shouldn't use tabs in code. (The exception that makes the rule is
that Makefiles require tabs.)
It's better, in a cross-platform portability way, to use individual spaces.
If somebody is using an editor which can't automatically change the
number of spaces, too bad for him.
Obviously, indentation is important.

Re:The most beautiful piece of code... by Tassach (#483209)
You shouldn't use tabs in code. (The exception that makes the rule is
that Makefiles require tabs.)
Ah, yet another holy war, right up there with vi vs emacs. Personally,
I hate working on code indented with spaces. I'll admit that it's annoy-
ing to edit tabbed code on a broken editor; but the way to solve that
problem is to fix the editor, not the code.

Re:The most beautiful piece of code... by maw (#483069)
Ah, yet another holy war, right up there with vi vs emacs.
No, I maintain that it is not a holy war: holy wars always concern per-
sonal preference; the tabs vs spaces debate is one of technical interop-
erability.

...but the way to solve that problem is to fix the editor, not the code.
I disagree, and rather than repeat the arguments myself, I point you
here.

Re:The most beautiful piece of code... by joto (#483199)
No, it's not beautyful.
1. It is not even legal ISO (or ANSI) C, because main should return a
value!
2. It is stupid to cast the return value from printf(). It introduces more
visual clutter, and serves no purpose.
3. I think you could afford a line of whitespace between the preproces-
sor directive and the main function.
4. It does nothing useful.

362

Re:The most beautiful piece of code... by RoninM (#483171)
2. It is stupid to cast the return value from printf().
That's not true. printf() returns an int. Casting it to void is more cor-
rect than silently throwing away the return value.
3. I think you could afford a line of whitespace...
Good for you. That's a matter of style. The program is not more or less
beautiful or elegant because of it.
But, point taken on 1. My oversight.

Re:The most beautiful piece of code... by joto (#483203)
That's not true. printf() returns an int. Casting it to void is more cor-
rect than silently throwing away the return value.
No. It is not "more" correct. In fact, both options are legal ISO C, and
therefore equally "correct". It is, however, a stylistic issue.
And when it comes to style, opinions sometimes differ. I agree that
there might theoretically exist situations were a void-cast could theo-
retically improve some readers understanding of a program, but I have
yet to see that in practice. Anyone knows that printf() is called mainly
for a side-effect. And side-effecting functions should not be a foreign
concept to C programmers, as C is not exactly what I would call a pure
functional language.
Anyway, I think any C-programmer on the planet knows that printf()
is called mainly for a side-effect. You do not need to tell them that with
a void-cast, as little as you need to tell them that with a comment. Do
you really think there is even a single programmer on the planet that
think it is easier to understand your programs because you put in lots
of redundant unnesseceary casts?
Good for you. That's a matter of style. The program is not more or less
beautiful or elegant because of it.
Beautyful? Yes, Elegant? No

Re:The most beautiful piece of code... by agentZ (#483278)
4.It does nothing useful.
Nonsense! It tells you that the compiler works.

int main() {
return (printf("hello world\n"));

}

Re:The most beautiful piece of code... by naasking (#483145)
No, it's not beautyful. It is not even legal ISO (or ANSI) C, because
main should return a value!
bzzzt! wrong! Checking out my trusty ANSI C book, the simple pro-
gram "Hello World!" (or any other program for that matter) does
NOT require you to return a value at the end of main to indicate suc-
cess(though some older compilers require it). If you get to the end
of the main block, that is assumed to be grounds for correct correct

363

program termination(so the compiler will helpullfy insert the return
statement for you).

Re:The most beautiful piece of code... by joto (#483202)
bzzzt! wrong! Checking out my trusty ANSI C book
Maybe you need to check out another C book then. Let my guess, you
are using The Annotated ANSI C Standard, annotated by Herbert
Schildt? This is probably the worst book ever written on the ANSI C
standard. Or are you just using some other half-good book on C?
I doubt you are actually using the ANSI standard, because in that case
you have proven that you do not know how to read.
If you get to the end of the main block, that is assumed to be grounds
for correct correct program termination(so the compiler will helpullfy
insert the return statement for you).
No, that is not true ISO C. I think it might be true of C++, but then
again, that's a completely different language. Also, the fact that some
compilers will allow it, is not very interesting either, since compilers are
allowed to do what ever they want when it comes to undefined behav-
iour, which is what this is.

Re:The most beautiful piece of code... by naasking (#483147)
No, it was a decent ANSI C book as far as I know. "The C program-
ming Language" by Brian W. Kernighan and Dennis M. Ritchie.
Perhaps you've heard of it? ;-)

Re:The most beautiful piece of code... by mduell (#483119)
Ok, in my rush to post, I forgot to #include <stdlib.h> and add return
EXIT_SUCCESS to the end.
Mark Duell

Re:The most beautiful piece of code... by orangesquid (#483128)

if(!printf("Hi there.\n")) {
if(puts("printf() didn't print anything!")==EOF) {
perror("puts() didn't print \"printf() didn't print anything!\" because

your
screen ran out of space(?)...!");

/* doesn't return anything, so nothing to check... finally! */
}

}

Re:The most beautiful piece of code... by commanderfoxtrot (#483176)
The most elegant simple language was BBC BASIC, written by Acorn
and used for the official BBC computers. Very simple, yet could do
some amazing things, especially given it was written at the end of the
1970s. Here we go:

PRINT"Hello World."

That's it!

364

Re:The most beautiful piece of code... by Abreu (#483239)
Even easier:

#!/usr/bin/python
print "Hello World"

Remember to chant this over and over while you code:
Beautiful is better than ugly... Explicit is better than implicit... Simple is
better than complex...Complex is better than complicated... Flat is bet-
ter than nested... Sparse is better than dense... Readability counts...
Special cases aren't special enough to break the rules... Although prac-
ticality beats purity... Errors should never pass silently... Unless explic-
itly silenced... In the face of ambiguity, refuse the temptation to guess...
There should be one-- and preferably only one --obvious way to do it...
Although that way may not be obvious at first unless you're Dutch...
Now is better than never... Although never is often better than *right*
now... If the implementation is hard to explain, it's a bad idea... If the
implementation is easy to explain, it may be a good idea...

Re:The most beautiful piece of code... by domc (#483031)
#!/usr/bin/perl -w
print "Hello World\n";

Re:The most beautiful piece of code... by Bungie (#483253)
Two lines:

PRINT "Hello World"
END

Re:The most beautiful piece of code... by garett_spencley (#483256)
How about:

msg:
.string "Hello, world!\n"
.globl main

main:
pushl %ebp
movl %esp,%ebp
subl $8,%esp
addl $-4,%esp
pushl $14
pushl $msg
pushl $1
call write
addl $16,%esp
xorl %eax,%eax
jmp return
return:
movl %ebp,%esp
popl %ebp
ret

????
I know it's not indented... I tried... Darn html.. Oh well...
--
Garett

365

Re:The most beautiful piece of code... by StarDrifter (#483221)

subl $8,%esp
addl $-4,%esp

You cheated! This code was produced by gcc with slight modifications
to remove the obvious compiler generated names and directives. No
beautiful hand-coded asm program can have those two lines next to
each other in the source.

Re:The most beautiful piece of code... by lpontiac (#483241)
Try this:

msg:
.string "Hello, world!\n"
.global main
.type main,@function

main:
pushl $14
pushl $msg
pushl $1
call write
addl $12, %esp
movl $0, %eax
ret

You see, there's no *need* to save and restore ebp if you're nice to the
stack. Additionally, you could use a linux system call (via int 0x80)
instead of calling libc's write function, but the use of main kind of ties
us into a C infrastructure anyways and that would just break com-
patability on other x86 Unices.

366

Re:The most beautiful piece of code... by QZS4 (#483019)
Nah, try this:

.data
msg: .asciiz "Hello, world!\n"

.text
.globl main
.ent main

main:
subu sp,sp,4
sw ra,0(sp)
la a0,msg
jal printf
lw ra,0(sp)
addiu sp,sp,4
jr ra
.end main

Or, why not this:

.section ".rodata"
msg: .asciz "Hello, world!\n"
.section ".text"

.global main

.type main,#function
main:

save %sp,-112,%sp
sethi %hi(msg),%o0
or %o0,%lo(msg),%o0
call printf, 0
nop
ret
restore

But my Sparc assembly is a little rusty, so the last one might not be
entirely correct.

Re:The most beautiful piece of code... by neotek(maas) (#483292)
To hell with compatibility.

.globl _start
.type _start,@function

_start:
jmp 0xd
pushl $0x6f6c6c65
andb %dh,0x6f(%edi)
jb 0x6c
orb %fs:(%eax),%al
movl $0xc, %edx
movl $_start, %ecx
addl $2, %ecx
movl $0x1, %ebx
movl $0x4, %eax
int $0x80
xorl %ebx,%ebx
movl $0x1, %eax
int $0x80

Re:The most beautiful piece of code... by Deflatamouse! (#483195)
looks like a piece of $h!t to me

367

iv
Annexe

not this stupid
programming is art bs again

369

In this thread, participants argued about whether it is
correct to call programming an art. In the end, nothing
was clearly settled, even if it would seem that all agreed
that programming is, at least, a craft. This debate has
also been brought up in more academic texts (Bolter
1993; Dahlbom and Mathiassen 1993).

Not this stupid 'programming is art' BS again! by Flabdabb Hubbard
(#2252879)
to recognize the artistry involved in writing software
What pretentious bullshit. Software is NOT art. It can be closely com-
pared to bricklaying, or cabinet making, it is a CRAFT.
Try expressing an emotion in C++. It cannot be done. Please think
before repeating these banal opinions that software is art. It just isn't.
Deal with it, and if you want to be an artist, learn to paint.

Re:Not this stupid 'programming is art' BS again! by FortKnox
(#2252918)
Now now. Art can be seen in any type of medium, even coding.
You may not understand it, but only the artist needs to.
I can see art in some obfuscated code I've seen.
Who are you to tell me what is art and what isn't?

Re:Not this stupid 'programming is art' BS again! by servo8
(#2252939)
I think a problem here is getting to a common definition of art. If a
master craftsman pours his soul into a work, how is that not art? Just
because the emotions a work may convey cannot be easily categorized
and labelled does not mean they are not valid feelings. There are many
pieces of "craftsmanship" out there that evoke such feelings. I have felt
them myself. Would you deny me that?

Re:Not this stupid 'programming is art' BS again! by DCheesi
(#2253085)
Crafts are made *primarily* for practical use, often with aesthetics as
a major secondary consideration. Art is made primarily for art's sake,
to stimulate thought & emotion. The reason that the lines seem to blur
so often these days is that we have so many choices in products that we
often select them solely on the basis of aesthetic value, even though the
objects are ultimately meant to serve a practical purpose.
ObOnTopic: Software is indeed a craft, and can be approached from
many points of view. But the only code that is truly 'art' is that which
is written primarily for the appreciation of other programmers. Real-
world software doesn't, and shouldn't, fall into this category.

371

Re:Not this stupid 'programming is art' BS again! by Glock27
(#2253020)
What pretentious bullshit. Software is NOT art. It can be closely com-
pared to bricklaying, or cabinet making, it is a CRAFT.
Very perceptive...coding software is like crafting a cabinet. However,
designing a cabinet is art...and so is designing software.
Try expressing an emotion in C++. It cannot be done.

jesus->loves(you); // Sarcasm, for the humor impaired

Regardless, art doesn't just express emotion, it inspires emotion. And
trust me, I've had (mostly other people's) C++ code inspire some pret-
ty horrific emotions. ;-)
Good design and coding, on the other hand, can truly be things of
beauty, regardless of language.
Please think before repeating these banal opinions that software is art.
It just isn't. Deal with it, and if you want to be an artist, learn to paint.
Spoken like someone who just doesn't really comprehend software
design, or why one design might be more elegant than another. I sup-
pose you don't think mathematics is beautiful either...
186,282 mi/s...not just a good idea, its the law!

Re:Not this stupid 'programming is art' BS again! by Peyna
(#2254373)
Beauty and Art are two different things.
(i.e.) I think a Porsche would be beautiful in my garage, but that does-
n't mean a Porsche is a work of art.
I suppose if you were going to compare coding with art (literature),
coding would be non-fiction. Some of it is horribly written, but it's got
all the facts right. Some of it is written wrong and doesn't make any
sense. While the truly good works of non-fiction, even though they are
only telling you facts, are beautiful, fill your mind and heart with
thoughts and feelings, and are 100% accurate at the same time.
In that sense, yes it is art, and like with a non-fiction book, you can
copyright the finished product, but you can't copyright the facts that
make it up.

Re:Not this stupid painting is art' BS again! by Anonymous Coward
(#2254886)
Just because you can paint, doesnt mean you're an artist, I've known
lots of builders, painters and decorators, and none of them were artists!
When are they gonna grow up, and go out and buy a computer and
write some truely beautiful
code????
eh? eh? eh?
come on then!

372

Re:Not this stupid 'programming is art' BS again! by jeremyp
(#2255076)
Programming is not an art, cabinet designing is not an art, architecture
is not an art. I'm defining the term "artist" quite narrowly as some-
body who makes objects who's primary purpose is to inspire some sort
of emotional response from people. e.g. a Henry Moore sculpture has
no other purpose.
Software, cabinets and buildings have a different primary purpose and
subjugating that purpose to the goal of making it look nice often results
in less than optimum performance in the primary purpose. e.g. an
architect may decide to make his building entirely of glass for aesthet-
ic reasons, but that might make it too hot in sunny weather. Another
example would be the original design for Quicktime 4 which looked
great with its brushed metal graphics, but was terrible to use (review
here http://www.iarchitect.com/qtime.htm).

Re:Not this stupid 'programming is art' BS again! by chris_mahan
(#2255424)
[...] Now, I write code. I want to make the user feel a bond with a freak-
ing motherboard. If I succeed in making a grown man or woman
"enjoy the interaction" with a piece of plastic/metal/goo, and I have
done that on purpose, is that not art?
I contend that in the same way the common man does not recognize
Beethoven's 5th symphony by looking at the sheet music, likewise the
common man does not recognize great, beautiful, engaging, pleasing
software by looking at source code.
There are millions of programmers in the world who consider source
code to be art, to be speech. Who are non-programmers to say that it
isn't?

Re:Not this stupid 'programming is art' BS again! by Anonymous
Coward (#2255136)
Is coding by itself even a craft? It's really nothing more than translat-
ing an algorithm from one form to another. Under copyright law, I can
make a case that *coding* is nothing more than a work-for-hire.
I find the arguments against coding standards really lame. "It hurts my
creativity".
Buddy, if your creativity depends on the placement of braces and how
many spaces you use to indent, you're a real lamer.
Designing, on the other hand, *is* art.

Re:Not this stupid 'programming is art' BS again! by Anonymous
Coward (#2257073)
Actually, programming (like engineering, metallurgy and materials sci-
ences) is both an art and a science, when using classical definitions. The
"science" part comes in because if you repeat a set of actions, you get

373

the same results. The "art" part comes in when you select *which* set
of actions will produce the results you want, while balancing various
limited resources against each other. In fact, it can be a "black art"
when you don't know why a set of actions produce the results it does.
It is also a craft, in the classical sense. Just about anybody can learn
the basic rules (I can build a chair), but not many people can get really
good at it (I can't make an elaborate chair with inlays and carvings),
and only a few people can make works of greatness (how many people
can make a throne?).
Finally, don't forget that Univerities produce "Artists" every time a
person graduates with a BA or an MA (the 'A' stands for "of Arts").

You're an idiot. by Anonymous Coward (#2253105)
Well, you've obviously never designed or written software.
I would agree that bricklaying is not art, but how about architecture?
The bricklaying of programming is the actual typing.
I've expressed emotions in C++. Fuck, I've written outright poetry in perl.
To play devil's advocate:
What pretentious bullshit. Painting is NOT art. It can be closely com-
pared to putting dots of color on a piece of paper, it is a CRAFT.
Try expressing an emotion with dots of color on paper. It cannot be
done. Please think before repeating these banal opinions that painting
is art. It just isn't. Deal with it, and if you want to be an artist, learn
to hack perl.

Re:Not this stupid 'programming is art' BS again! by Anonymous
Coward (#2254438)
I can make the reader cry with one line of C:

void main(void)

I can make the reader angry with one line of most any language:

goto HELL

With code, one can make jokes, poems, mysteries, ironies, or
metaphors--not that these make good code. A creative person can use
any medium.

Re:Not this stupid 'programming is art' BS again! by big_hairy_mama
(#2254476)
IANACM (I'm not a cabinet maker), but I've seen some very beautiful
cabinets in my time... I would therefore say that it is definitely an art.
And I've also seen some very beautiful code in my time; in fact some
code I would readily compare to the Mona Lisa, while other code I
would compare to a pre-schooler's fingerpainting.

374

On a mundane level, coding is a craft. But if you treat it like an art (and
know what you are doing), then it is exactly that.

Re:I Can see the point... by matek (#2253008)
And so we come to the definition of ART.
Some would say that art is when someone expresses their feelings in
some form.
Other would say that art is when someone makes something that
looks/sounds/feels very nice..
Source code can be art-like. Sometimes, when you see some beatyfull
software design, the tears start to fall.. IMHO code can be a modern
form of art - just like bodypainting is an art...

Re:nice, but welcome back to the real world by jbum (#2252929)
> I need it to work, not look good.
Hear hear. Engineers with an over-developed aesthetic sense are writ-
ing their code for other engineers, not the end-user. Too many times in
my professional life have I seen inordinate amounts of time wasted on
issues which are invisible to the end-user, because some overly- aes-
thetically minded engineer couldn't sleep at night.
It's a craft, not an art; and if you can't sleep at night, try getting laid.

375

Bibliography

377

asplund, j. 1970 Om undran inför samhället, Lund:
Argos.
— 1987 Det sociala livets elementära former: Bokför-
laget Korpen.
association for computing machinery 1997
‘Papers presented at the seventh Workshop on Empirical
Studies of Programmers’, New York, NY: Association for
Computing Machinery.
bataille, g. 1988 The accursed share : an essay on gen-
eral economy, New York: Zone Books.
bentley, j. l. 1986 Programming pearls, Reading,
Mass: Addison-wesley.
bijker, w. e. and law, j. (eds) 1992 Shaping Technol-
ogy / Building Society: Studies in sociotechnical change:
Massachusetts Institute of Technology.
bolter, j. d. 1993 Turing’s Man - Western culture
in the computer age, Harmondsworth: Penguin Books.
brooks, f. p., jr. 1995 The Mythical Man-Month:
Essays on software engineering, Boston: Addison Wesley
Longman, Inc.
bryman, a. andnilsson, b. 2002 Samhällsvetenskap-
liga metoder, 1. uppl. Edition, Malmö: Liber ekonomi.
carrasco, d. 1999 City of Sacrifice: the aztec empire
and the role of violence in civilization, Boston: Beacon
Press.
cerruzi, p. e. 2000 A History of Modern Computing,
Cambridge, Massachusetts: MIT Press.
connell, c. h. 2001 ‘Software Stinks!’
www.chc-3.com/pub/beautifulsoftware.htm.
cook, c. r., scholtz, j. c. and spohrer, j. c. 1993
Empirical studies of programmers : fifth workshop :
papers presented at the Fifth Workshop on Empirical
Studies of Programmers, December 3-5, 1993, Palo Alto,
CA, Norwood, N.J.: Ablex Pub. Corp.
cooper, a. 1999 The Inmates are Running the Asylum,
Indianapolis: SAMS.

379

dahlbom, b. and mathiassen, L. 1993 Computers
in Context: The philosophy and practice of systems
design, Cambridge: NCC Blackwell.
dijkstra, e. w. 1968 ‘Go To Statement Considered
Harmful’, Communications of the ACM 11(3): 147-148.
— 1972 ‘The humble programmer’, Communications of
the ACM 15(10): 859-866.
elias, n. 2000 The Civilizing Process, Oxford:
Blackwell Publishing.
ellul, j. 1964 The Technological Society, New York:
Vintage Books.
feenberg, a. 1999 Questioning technology, London ;
New York: Routledge.
feyerabend, p. k. 1978 Against Method, London:
Verso Editions.
— 1987 Farewell to reason, London ; New York: Verso.
florman, s. c. 1994 The Existential Pleasures of Engi-
neering, New York: San Martin’s Griffin.
gabriel, r. p. 1996 Patterns of Software, Oxford:
Oxford University Press.
gabriel, r. p. and goldman, r. Mob Software: The
erotic life of software, OOPSLA 2000, Keynote.
gancarz, m. 1995 The UNIX philosophy, Boston:
Digital Press.
geertz, C. 1973 The interpretation of cultures; selected
essays, New York,: Basic Books.
— 1993 Local Knowledge, London: Fontana Press.
gelernter, d. h. 1998 The aesthetics of computing,
London: Weidenfeld & Nicholson.
goffman, e. 1990 The Presentation of Self in Everyday
Life, London: Penguin Books.
guillet de monthoux, P. 1981 Doktor Kant och den
oekonomiska rationaliseringen : om det normativas bety-
delse för företagens, industrins och teknologins ekonomi,
Göteborg: Korpen.
— 1998 Konsföretaget, Göteborg: Bokförlaget Korpen.

380

gustafsson, c. 1994 Produktion av allvar : om det
ekonomiska förnuftets metafysik, Stockholm: Nerenius
& Santérus.
— 2000 ‘Känslan av Zap’, Dialoger, Stockholm.
hegarty, p. 2000 Georges Bataille, London ; Thousand
Oaks, Calif.: Sage.
heidegger, m. and krell, D. F. 1993 Basic writings :
from Being and time (1927) to The task of thinking
(1964), Rev. and expanded Edition, San Francisco,
Calif.: HarperSanFrancisco.
higgs, e. s., light, a. and strong, d. 2000 Technol-
ogy and the good life?, Chicago: University of Chicago
Press.
himanen, p. 2001 The hacker ethic, and the spirit of
the information age, 1st Edition, New York: Random
House.
hoare, c. a. r. 1981 ‘The emperor’s old clothes’,
Communications of the ACM 24(2): 75--83.
hofstadter, a. and kuhns, r. 1976 The Philoso-
phies of Art and Beauty, Chicago: The University of
Chicago Press.
hubert, h. and mauss, m. 1964 Sacrifice: its nature
and functions, Chicago: University of Chicago Press.
huizinga, j. 1955 Homo Ludens: A study of the play
element in culture, Boston: Beacon Press.
hunt, a. and thomas, d. 2000 The pragmatic pro-
grammer : from journeyman to master, Reading, Mass.:
Addison-Wesley.
hyde, l. 1983 The gift : imagination and the erotic life
of property, 1st Vintage Books Edition, New York:
Vintage Books.
jeffries, r. e. 2001 ‘What is Extreme Programming?’
kant, i. 1957 The critique of judgement, Oxford:
Clarendon Pr.
kernighan, b. w. and pike, r. 1984 The Unix Pro-
gramming Environment: Prentice-Hall Software Series.

381

kidder, t. 1981 The soul of a new machine, Boston:
Little Brown.
knuth, D. E. 1974a ‘Computer programming as an art’,
Communications of the ACM 17(12): 667-673.
— 1974b ‘Structured Programming with go to State-
ments’, Computing Surveys 6(4).
— 1983 ‘Literate Programming’, The Computer Journal
(submitted to).
— 1992 Literate programming, Stanford, CA: Center for
the Study of Language and Information.
— 1997 The art of computer programming, 3rd Edition,
Reading, Mass.: Addison-Wesley.
— 1998 ‘Adventure’,
http:/www.literateprogramming.com/adventure.pdf.
kohanski, d. 2000 Moths in the Machine: the power
and perils of programming, New York: St. Martin’s
Griffin.
kunda, G. 1991 Engineering culture : control and com-
mitment in a high-tech corporation, Philadelphia:
Temple University Press.
langer, s. k. 1957 Philosophy in a New Key,
Cambridge: Harvard University Press.
latour, b. 1987 Science in action : how to follow
scientists and engineers through society, Cambridge,
Mass: Harvard University Press.
— 1996 Aramis, or, The love of technology, Cambridge,
Mass.: Harvard University Press.
levy, s. 1984 Hackers : heroes of the computer revolu-
tion, 1st Edition, Garden City, N.Y.: Anchor Press/
Doubleday.
lindblom, c. 1959 ‘The Science of Muddling
Through’, Public Administration Review 19: 79 -- 88.
lohr, s. 2002 GOTO - Software Superheroes, from
Fortran to the Internet Age, London: Profile Books Ltd.
macintyre, A. 1985 After Virtue: A study in moral
theory, London: Duckworth.

382

mauss, m. 1967 The gift : forms and functions of
exchange in archaic societies, New York: Norton.
mccann 2001 ‘Style Principle’.
mcconnell, S. 1996 Rapid Development: Taming
Wild Software Schedules, Redmond: Microsoft PRess.
miller, d. 1998 A Theory of Shopping, Cambridge:
Polity Press.
mitcham, c. 1989 ¿Qué es la filosofía de la tecnología?,
Barcelona: Editorial Anthropos.
moore, j. t. s. 2001 ‘Revolution OS’: Wonderview
Productions, LLC.
mumford, l. 1952 Art and technics, New York,:
Columbia University Press.
oman, p. w. and cook, c. r. 1990 ‘Typographic Style
is More than Cosmetic’, Communications of the ACM
33(5): 506 - 520.
ortega y Gasset, j. 1996 Meditación de la técnica y
otros ensayos sobre ciencia y filosofia, Madrid: Revista
de Occidente en Alianza Editorial.
paccagnella, l. 1997 ‘Getting the Seats of your Pants
Dirty: Strategies for ethnographic research on virtual
communities’, Journal of Computer Mediated Communi-
cation 3(1).
pargman, d. 2000 Code begets community : on social
and technical aspects of managing a virtual community,
1. Edition, Linköping: Tema Univ.
petroski, h. 1992 To Engineer is Human, First Vintage
Books Edition Edition, New York: Vintage Books -
Random House Inc.
pike, r. 1989 ‘Notes on Programming in C’, Vol. 2002.
plog, f. and bates, d. g. 1976 Cultural anthropology,
New York: Alfred A. Knopf, Inc.
raymond, e. s. 1998 ‘The Cathedral and the Bazaar’:
Firstmonday.
— 2000 ‘Homesteading the Noosphere’, Vol. 2003:
Firstmonday.

383

— (ed) 2003 The Jargon File, version 4.4.4:
http://catb.org/esr/jargon/html/go01.html.
rehn, a. 2001 Electronic Potlatch : a study of new tech-
nologies and primitive economic behavior, Stockholm:
KTH.
rice, P. 1996 An Engineer Imagines, London: ellipsis
london limitied.
sahlins, M. 1972 Stone Age Economics, New York:
Aldine de Gruyter.
— 2000 Culture in Practice - Selected Essays, New York:
Zone Books.
seaman, c. b. and basili, v. r. 1998 ‘Communication
and Organization: An Empirical Study of Discussion in
Inspection Meetings’, IEEE Transactions on Software
Engineering 24(6): 559-572.
sharp, h., robinson, h. and woodman, m. 2000
‘Software Engineering: community and culture’, IEEE
Software(January/February 2000).
sibley, f. 2001 Approach to Aesthetics, Collected papers
on Philosophical Aesthetics, Oxford: Clarendon Press.
simon, h. a. 1997 Administrative Behaviour, New
York: The Free Press.
sudweeks, f. and rafaeli, s. 1996 ‘How do you get
a hundred strangers to agree? Computer-mediated com-
munication and collaboration’, in T. M. Harrison and T.
D. Stephen (eds) Computer Networking and Scholarship
in the 21st Century University, New York: SUNY Press.
taylor, f. w. 1967 The principles of scientific manage-
ment, New York,: Norton.
taylor, p. a. 1999 Hackers, London: Routledge.
torvalds, l. and diamond, d. 2001 Just for fun :
the story of an accidental revolutionary, 1st Edition,
New York, NY: HarperBusiness.
townsend, d. 1997 An Introduction to Aesthetics,
Oxford: Blackwell Publishers.
turkle, s. 1997 Life on the Screen: Identity in the

384

Age of the Internet, New York: Simon & Schuster.
ullman, e. 1995 ‘Out of Time: Reflections on the
Programming Life’, in J. Brook and I. Boal (eds)
Resisting the Virtual Life: The Culture and Politics of
Information, San Francisco: City Lights Books.
— 1997 Close to the machine : technophilia and its
discontents, San Francisco: City Lights Books.
— 1998 ‘The dumbing-down of programming’,
Salon.com.
valverde, j. m. 1998 Breve historia y antología de la
estética, Barcelona: Editorial Ariel, S.A.
van maanen, j. 1979 ‘The Fact of Fiction in Organiza-
tional Ethnography’, Administrative Science Quarterly
24(4): 539 - 550.
veblen, t. 1990 The Instinct of Workmanship - and the
State of Industrial Arts, New Brunswick, New Jersey:
Transaction Publishers.
vigotskij, l. S. 1995 Fantasi och kreativitet i barn-
domen, Göteborg: Bokförlaget Daidalos AB.
weinberg, g. m. 1971 The Psychology of Computer
Programming, New York: Van Nostrand Reinhold
Company.
winograd, t. 1996 Bringing design to software, New
York, N.Y.: ACM Press ; Addison- Wesley.
wittgenstein, l. 1969 Preliminary studies for the
‘Philosophical investigations’, generally known as the
Blue and Brown books, 2nd Edition, Oxford,: Blackwell.
wittgenstein, l. and anscombe, g. e. m. 1997
Philosophical investigations, 2nd Edition, Oxford ;
Malden, Mass: Blackwell.
wittgenstein, l. and barrett, c. 1966 Lectures &
conversations on aesthetics, psychology, and religious
belief, Oxford: B. Blackwell.
wright, g. h. v. 1972 The Varieties of Goodness,
London: Routledge & Kegan Paul.
— 1994 Myten om framsteget : tankar 1987-1992 : med

385

en intellektuell självbiografi, Ny utg. Edition, Stockholm:
Bonnier.
— 2000 Vetenskapen och förnuftet : ett försök till orien-
tering, Ny utg. Edition, Stockholm: Bonnier.
Yourdon, E. 1997 Death March, Upper Saddle River,
New Jersey: Prentice Hall PTR.

386

389

“fields of flow”

Art & Business
Aesthetics, Technology & Management

The Fields of Flow research program is a unique joint
scholarly undertaking by three academic institutions.
The program is being carried out in close cooperation
with prominent institutions and organizations in the arts.
The ‘fields’ in focus are art and business. The notion of
‘flow’ presented in the title of the program draws atten-
tion to movement across disciplines and changes, there-
by referring to different points of contact and interaction
between the fields of art and business.

Art and business are basic building blocks in any social-
or social welfare deve-lopment. The two elements pre-
suppose, constitute, and help bring about change in one
another. The understanding of art requires an under-
standing of management – and vice versa. This rational-
ity of simultaneity and coexistence has for some time
been controversial – the logic of distinctiveness have
instead characterized most of the actions. In recent years,
however, there has occurred a reuniting of these fields.
We see such cross-fertilization – flows of experience and
knowledge – as an essential area of study in gaining new
insight into many changes going on in society.

Fields of Flow is being carried out by a core group of
about fifteen researchers at three universities, under the
leadership of Professor Sven-Erik Sjöstrand (Stockholm
School of Economics) together with Professor Pierre
Guillet de Monthoux (Stock-holm University) and
Professor Claes Gustafsson (Royal Institute of Techno-
logy). In addition to the core group, the program
involves many others – researchers as well as practition-

390

ers – foremost from the field of art. Extensive collabora-
tion has been established with national and internation-
al research teams, businesses and art institutions. An
Advisory Board comprising about fifteen prominent
leaders in the fields of business and the arts is also asso-
ciated to the program.

The Fields of Flow program builds on three main themes:
(1) Artistic and Cultural Production, (2) The Aesthetic
Dimensions of Management, Technology and Organiza-
tion, and (3) Art Meets Business. Business Meets Art.
The program includes close to twenty ‘semi-auto-
nomous’ research projects. They are all described at the
homepages of the three core institutions, i.e.) for Stock-
holm School of Econo-mics www.hhs.se (press Research
& Publications button and then the text ‘Management
and Organization’, for Stockholm University www.su.se
(look for Business administration and then ‘Research’),
and for the Royal Institute of Techno-logy www.kth.se
(press ‘Research’).

Erik Piñeiro
Royal Institute of Technology

Department of Industrial Management
Lindstedtsvägen 30, 100 44 Stockholm

Tel. 08 790 79 85, fax 08 790 76 17
www.indek.kth.se

Grafisk form: Gabor Palotai Design
Tryck: Kristianstads Boktyckeri AB, Kristianstad

Arvinius Förlag
Box 6040, 102 31 Stockholm

Tel. 08 32 00 15, fax 08 32 00 95
www.arvinius.se

issn 1100-7982
isbn 91-7283-614-8
trita - ieo - r 2003,15

isrn/kth/ieo/r-03/12--se

	Acknowledgements
	Contents
	I: Introduction
	II: Method and Empirical Material
	III: Programming
	IV: Instrumental, Semi-Instrumental and Intrinsic Goodness
	V: Coding Styles
	VI: Aesthetic Ideals
	VII: The Relationship between Instrumental and Intrinsic Goodness in Programming
	VIII: Instrumental Beliefs
	IX: Community
	X: Programming as Symbolic Action
	XI: Closing Reflections
	I: Annexe
	II: Annexe
	III: Annexe
	IV: Annexe
	Bibliography
	“Fields of flow”

