
|| Computer Music Composition with RTcmix ||

Jerod Sommerfeldt

|| copyright - Jerod Sommerfeldt, 2015 ||

This book is dedicated to all past, current, and especially future users of RTcmix.

|| Table of Contents ||

Foreword……………………………………………………………….………………………………….…………………….…..……..5

Prelude: A brief history of RTcmix………………………………………………………………….…………………………….9

Sonata I: Downloading and installing RTcmix………….………….………….…………………………….….……………12

Interlude I: Basic UNIX for the RTcmixer……………………………………………………………….………….…………28

Sonata II: The anatomy of an RTcmix score file………………………….….…………….…….………………………….37

Interlude II: Exploring maketable()…………………………………………………………………………………….…….…48

Sonata III: Elements of C, with arrays and conditionals………………….…………………………………….………..56

Interlude III: RTcmix and Python…………………………………..……………………………………………………………71

Sonata IV: Adding various effects to your scripts…………….………………………………….………………………….82

Interlude IV: A detailed look at bus_config() and connections…………………………….………………………….89

Sonata V: Using RTcmix the “wrong” way……..………………………………………………………………………….…100

Interlude V: More synthesis and modulation………………………………………………………………………………..116

Sonata VI: Randomness and algorithms……………………………………….………………………………..……………132

Interlude VI: Pitch transformations……………………..……………………………………………………………………..143

Sonata VII: RTcmix in Pure Data and Max/MSP…………….………..………….…………….………………….……158

Interlude VII: Interactivity………………………………………………………………………………….……………………..174

Postlude: Customization……….189

Appendix: 100 Progressive Score Files………………………………………………………………………………….………199

Afterword…………………………………..…………………………………………………………………….………………………256

Useful links in the world of RTcmix…………………………………………………………………………………………….261

Index of score file commands and instruments………………………………………………………………………………264

�4

|| Foreword ||

 In today's fast-paced world of digital technology, composers interested in creating

digital music finds themselves very far from a shortage of tools to assist them in the

realization of their art. As a student, I recall very clearly during a lesson with Mara

Helmuth, my teacher at CCM, that I was fast becoming frustrated with the sheer

volume of software suites — both free and proprietary — at my disposal. Prior to my

arrival in Cincinnati for my DMA, I had already been introduced to electroacoustic and

computer music while privately studying composition with Christopher Burns at the

University of Wisconsin-Milwaukee: I had taken a number of classes using the graphical

programming language Pure Data, a seminar on algorithmic composition using Scheme

and Common Music LISP, and spent two years making music on my laptop with the

Milwaukee Laptop Orchestra. With regard to digital audio workstations, I’d taken

classes on Digital Performer, owned my own copy of Pro Tools, was working in a studio

that used Logic, and was at the time enrolled in a class that used Audacity! With so

many options, I was becoming confused about how I could better streamline my work,

stop worrying about the idiosyncrasies of each individual tool, and begin focusing solely

on the music at hand.

 Eventually, I found that I wanted to write music that would allow me to express

myself in a sound world limited only by my imagination, would afford me the chance to

explore and study the basic tenets of digital signal processing, and would provide me the

opportunity to feel as if I was working with my computer at a deeper level than big-box,

proprietary software — with its graphical user interfaces and point-and-click

methodology — would allow.

 Enter RTcmix.

 Here was a program — well, more of a “language” (but more on that later) —

that took the text I typed into my computer and processed the sounds by way of a bash

shell! (More on that later, too.) All of a sudden, I was using my Mac OS X Terminal,

�5

learning some cool UNIX commands, constructing for() loops, setting up arrays…all of

the things that I yearned for as a budding computer musician who admittedly has zero

computer science background. I was finally “under the hood”, tinkering with the engine,

creating exciting sounds and understanding not only how I made them, but what I could

do with them.

 Moreover, I was using a language that shares a lineage to the very genesis of

computer music and has been utilized by some of the pioneers in the field. RTcmix’s

authors continue to maintain, update, and expand the program so that it can now be

integrated into iPhone and Android applications or Pure Data and Max/MSP. With a

supportive community of like-minded musicians and developers, questions about using

RTcmix are never more than an email away. In short, RTcmix is a dynamic, exciting tool

for anyone interested in creating digital music, be it interactive, electroacoustic,

installation work, fixed media, or music that is playable on mobile platforms.

 So, why this book?

Outside of the terrific tutorials and documentation on its website — as well as

course notes from its authors — RTcmix lacks a concise, all-in-one introductory text

that is especially useful for those being introduced to the program for the first time. The

pages that follow fill these needs, serving as a comprehensive introduction to the world

of RTcmix. The language is approached methodologically and takes the reader through

the basics of installation, explains some very useful commands in UNIX, demonstrates

how to write score files and play them back, carefully explains various RTcmix

instruments and commands, and finally delves into more advanced topics, such as

running RTcmix in a variety of platforms, in conjunction with the Python programming

language, and designing your own RTcmix instruments.

The mantra of this book is musical creation and is divided into a series of sonatas

and interludes. Following a brief prelude that surveys the history of RTcmix, each sonata

focuses on a specific task in RTcmix that culminates in a set of suggested directions for

composing the reader’s own, brief work. Interludes will cover topics introduced in each

�6

sonata and seek to explain those concepts in greater detail. 1

Nothing is assumed w/r/t prior experience in the world of computer science or

computer music. For most of my teaching life, I’ve had the absolute pleasure of working

with beginners who find great joy in learning about computer music using RTcmix (and

Pure Data) from the ground up. While topics such as synthesis, MIDI, visual

programming, and envelopes are discussed, those discussions are not at all

comprehensive and may hope is that with the wealth of access to information in our

digital world, you’ll find it rewarding to pause and further research any topic in this

book on your own. I can say without hesitation that that has been my biggest asset in

learning more about topics at hand in my own work and composition.

This book and its accompanying score files were all written using an Apple

MacBook Pro running the Macintosh Operating System 10.10 Yosemite. Thus, I will

refer the user to the Terminal utility and some useful, ancillary downloads and

applications that have been tested and used extensively on the Mac platform. Moreover,

I prefer using the free text editor TextWrangler for writing score files, although it is fun

to write in the Terminal using nano or pico. 2

And now, an apologia. I am not a computer programmer. While I enjoy writing

code and am still endlessly fascinated by the sound world I can achieve using lines of

text, I know very little about the world of computer science outside of the tiny space

I’ve cultivated for myself. I do know that I am first and foremost and will always be a

composer. I just happen to be a composer whose sonic palette and compositional world

is enriched by MINC, C, Python, RTcmix, Pure Data, Max, Processing, and others.

 I’ll also add that this book was used in my course “Computer Music Programming” at the Crane School 1

of Music and can be divided into the requisite 15-week semester, with the tasks at the end of each sonata
and interlude functioning as assignments. Meeting three times per week, we start with the Prelude and
Sonata I in the first week and finish up with the Postlude, supplementing each class with relevant
listening examples, for which the RTcmix Soundcloud group is an invaluable resource.

 Quick note about syntax. General writing is done in this hip serif font, but score file examples and UNIX 2

commands will always be in this font. Like, grep for example. Or sudo. Or WAVETABLE(0, 10,
20000, 440, 0.5).

�7

Furthermore, this book is not intended to be used as a complete manual for the

vast world of digital synthesis and computer music in general. My hope is that the

words that follow are written in an inviting, welcoming way for everyone, regardless of

prior knowledge or background. Where details in signal processing procedures are

glossed over, my hope is that this text — focusing solely on just a few of the many ways

to compositionally approach RTcmix — instills a reliance on self-research for the reader.

I often refer to RTcmix’s online documentation for further reading and often find it most

useful to work with that documentation in an open browser window for quick reference.

Moreover, there are far too many really, really great books written by far more capable

minds than mine to enlighten and enrich your experience with computer music: Miller

Puckette, Curtis Roads, and Charles Dodge come immediately to mind, and a listing of

their books and those by others are included at the end of this text.

If you’ve read this far, you probably know that some thank you’s are coming and

until I actually took the time to sit down and write a book, I never realized just how

important those thank you’s are to include. This book would not exist were it not for

the invaluable work of two of my teachers, who I am proud to call mentors and friends:

Mara Helmuth and Christopher Burns. Brad Garton and John Gibson are two of the

authors of RTcmix and their documentation, music, correspondence, and support and

encouragement are central to not only me, but to the RTcmix community at-large. Joel

Matthys and David McDonnell are two dear friends who share the love I have for this

program and our continued correspondence and sharing cool score files and answering

each others programming questions makes me endlessly happy and completely and

totally grateful. My wife Christi is amazingly supportive of the things that I do. Our

two kitties Emma and Oscar would often try desperately to add in their two cents by

walking over my keyboard, though they still leave the room when I start composing or

making noise.

�8

|| Prelude: A Brief History of RTcmix ||

 It’s impossible to discuss the history of any generative music language for the

computer without first introducing the work of Max Mathews. An engineer,

programmer, and musician, Mathews’ pioneering work in the digital synthesis of sound

began at Bell Laboratories in the 1950s. Interested in the musical possibilities of

emerging digital technology, he developed MUSIC I in 1957, a generative program that

was able to realize sound using a triangle wave at specified durations, amplitudes, and

frequencies. Further refining his series of programs (dubbed MUSIC-N), Mathews

completed MUSIC V in 1968, which was an efficient, universal release that met the

demands of the fast-evolving technology of computers. With each subsequent release of

MUSIC-N, by either Mathews or others in the field who were adapting it for their own

use, the notion of portability was being realized. While at first, synthesized sound and

computer music was only capable of being executed at Bell Labs, it was soon being

disseminated to Princeton, IRCAM, MIT, and Columbia (among others) and today finds

itself in the homes of anyone with interest and a computer or tablet device.

 Throughout the 1980s, Paul Lansky was at Princeton, working on refining a

program he called MIX, which was written using Fortran. Music composed with MIX

was realized using punch cards and magnetic tape, and MIX was capable of mixing

together various sound files. Lansky decided to add libraries of C functions to the

program and make it capable of running on UNIX machines, eventually dubbing his

work CMIX. With the versatility of C, users were able to create dynamic scripts that

contained loops and conditional tests to further sculpt and refine their sounds. 3

Moreover, CMIX contained powerful instruments written by Lansky, including linear

predictive coding.

 CMIX was being further developed as the decade moved along and was ported to

 CMIX didn’t use C verbatim, and neither does RTcmix. They use a parser called MINC, which stands 3

for “MINC is not C.” This language is easy to use and understand, was written by Lars Graf, and borrows
many of the strong features of C, but not all of them.

�9

a variety of personal computers, including NeXT systems. As computers became more

and more portable and powerful, it was becoming of interest to utilize CMIX and other

languages in the moment. In 1995, NeXT computers failed, and Brad Garton and Dave

Topper — two major contributors to the development of CMIX — began work on a

version of the program for the Silicon Graphics platform and eventually Linux. Their

work uncovered something quite cool: Following their successful porting to the new

platforms, many CMIX instruments were capable of being processed in real-time. They

were able to find a solution that directly connected the synthesis engine of CMIX to the

powerful digital-to-analog converters that were intrinsic to the new machines of the

time. Thus, it was possible to process live sound and manipulate data on-the-fly.

 RTcmix was born.

 As the 1990s and 2000s moved along to the present, many new contributors came

on board for the RTcmix project. Thanks to the efforts of John Gibson and Doug Scott,

instruments could be chained together, several new instruments were added to the

RTcmix library, scores could be written in Perl or Python, and a body of documentation

became available for everyone to peruse online. Mara Helmuth added not only powerful

probability functions, but also a stochastic granular synthesis instrument. Running on

the command-line, RTcmix was distributed to and maintained by a community of users,

who continually added to and tweaked the program for their use. As graphical

programming environments began to gain popularity among the computer music

community, Luke DuBois and Brad Garton developed an [rtcmix~] object for Max/MSP

and Joel Matthys wrote the object for Pure Data, further widening RTcmix’s audience.

In fact, RTcmix and its gorgeous array of sounds can also be used as the audio engine

for both iPhone and Android apps.

 With its versatility and portability, RTcmix exists as a powerful program

designed for composing highly customizable computer music in any of a variety of

platforms. At its heart lies the work of Paul Lansky’s MIX and CMIX programs and to

an extent Max Mathews’ MUSIC-N languages, thus giving RTcmix a branch on the

�10

MUSIC-N tree shared by CSound and SuperCollider.

 Because of its long and rich history of flexibility, there is no reason to suspect

that RTcmix will suddenly become irrelevant as the next-greatest-iDevice or platform

hits the market. In fact, I’m already imagining a world where I can be eating dinner and

coding RTcmix scores using my retinas and stealth mind control in my Apple Glasses or,

who knows, DSP microchip implant…

�11

|| Sonata I: Downloading and Installing RTcmix ||

An ongoing theme in this book is the notion that RTcmix exists in various guises

and that this flexibility is part of its appeal. The heart of RTcmix lies in its score files,

or scripts. The suite of instruments, commands, and the anatomy of the score file will

remain the same whether you decide to use RTcmix on the command line, in the

standalone application, with Pure Data or Max/MSP, or on your iOS or Android device.

In this first sonata, we’re going to explore three ways to begin using RTcmix: Within its

standalone application, a so-called “front end,” and on the command line.

 Not to oversimplify the process, but when it comes to purchasing a home, the

buyer is more or less left with two choices: Would they rather have a “turn key” or

something customizable? There are advantages to both, of course. The turn key

property affords the buyer the opportunity to merely move in furniture, hang pictures,

and start grilling. You’ve probably heard of houses with “good bones” or something that

needs a little TLC , but the general idea is that the buyer can do some custom work to 4

help make their new purchase look and feel exactly to their tastes.

With the standalone application in RTcmix, we essentially have a “turn key” that

is ready to go. It’s the easiest to download and allows us to start making music right

away, which is important. We’re going to start by downloading the application,

exploring its features, and testing out a basic score file to get some sound out of our

machines.

Brad Garton is one of the founders of RTcmix and is not only an author of

several of the instruments that we’ll be using, but also created the standalone version

that we’re going to explore first. Downloading the program is as simple as visiting the

following URL: http://music.columbia.edu/~brad/rtcmix-standalone

You’ll find a link to download a file called “rtcmix-standalone.app.zip” and will

 Not that RTcmix is some antiquated program that needs fixing!4

�12

http://music.columbia.edu/~brad/rtcmix-standalone

likely be saved to your /Downloads folder. 5

Double-click on that .zip file and watch as your computer briefly unpacks the .zip

contents into a neat and tidy, purple icon called rtcmix-standalone. If you’d like, feel free

to drag that icon to both your /Applications folder and also to your Dock to create a

shortcut.

Opening RTcmix in this way for the first time will create two windows, shown in

Figure 1.

�

 If you’re wondering about the slash in front of “Documents” above, let me quickly interject. As we begin 5

working with RTcmix on the command line, we’re going to start talking about various directories on your
computer. When I save a file to my /Documents folder on my computer, it may look, for example, like I’m
dragging a .doc file, or something similar, to my Documents folder icon, but in reality, I’ve created a new
directory, or path, on my computer. If the document was called mygreatdocument.doc, then the new path
will be /Users/jerod_s/Documents/mygreatdocument.doc. Obviously, your computer isn’t named
jerod_s, so it’s common in texts like this to see /Users/yourcomputer/mygreatdocument.doc, where
“yourcomputer" stands in as a placeholder for whatever name you’ve given to your machine. Moreover,
when discussing long paths to files, as you’ll see in many examples of the RTcmix documentation, it’s
common to see /path/to/your/file.sco as a generic address.

�13

 The window on the left is the graphical user interface for the program. A

graphical user interface, or GUI (“gooey”), is a carefully designed canvas that allows us

to quickly navigate our software intuitively. Right away, we see boxes to click, comments

that tell us what to do with those boxes, and even a shiny RTcmix icon at the top. The

window on the right (called “Max ”) is going to speak directly to us, letting us know if 6

we have any errors, if our scripts were saved properly, what egregious things we’ve done

to the program, etc.

 Let’s start by making some sound. Go ahead and click on the purple button

marked “start rendering audio” and listen to the awesome result! What you heard was an

RTcmix script written by Brad Garton himself! To see this script, click on “edit

scorefile.” A new window opens with a lines of text that for now might seem a little

daunting. However, this is the score file, or script, that helps create the sounds we just

heard. Rather than customize this script, we’re going to make our own and briefly

discuss each step in creating our own score files, knowing that another sonata in this

book is dedicated to a more detailed explanation of an RTcmix score file’s constituent

parts. 7

 Clicking command-a will select all of the text in the window and from there, go

 Second interruption, but an important one. This RTcmix application was created using Max/MSP, which 6

I’m guessing many of you reading this have heard of or used in some way before. For those who don’t
know, we’ll be exploring Max/MSP later on in this book, but for now, just know that it is another,
separate, powerful application that is used to graphically program digital music and video, among many
other applications. Max/MSP is proprietary software, created by Miller Puckette and named after Max
Mathews, the godfather of computer music. (If you don’t know who Max Mathews is and are interested
after hearing his name both here and in the Prelude, I won’t be offended if you place your bookmark here
and spend a great deal of time researching who he was, what he did, and why he is so important, because
you’ll find that none of what we are discussing in this book would be possible without his groundbreaking
work.) Max/MSP has a closely related twin, called Pure Data, which we’ll also explore in the book
because both of these programs can be used in conjunction with RTcmix.

 Script is to score file as score file is to script. Apologies in advance for the interchangeability of these two 7

concepts, but please know that in each case I’m referring to the text you are currently engaging in the
“script_0” window. It’s commonplace to say either “write an RTcmix score file” or “email a few RTcmix
scripts.”

�14

ahead and delete it, leaving us with a blank canvas, so to speak. Now, type the following

into the window, being careful to write it exactly as I’m about to type it below.

rtsetparams(44100, 2)
load(“WAVETABLE”)

 Thus far, we’ve accomplished two critical tasks. First, we’ve told RTcmix that

we’ll be working with the standard, CD-quality audio sampling rate of 44,100 samples/

second or 44.1 kHz and we’ve also stated that we’ll be working with two channels of

audio output. This is the raison d’être of rtsetparams, which stands for “real time set

parameters.” Later on, we’ll be tweaking a few more things using rtsetparams(), but

please note that this will be the standard header on every score file that you’ll write.

 We’ve also loaded the WAVETABLE() instrument, which is a powerful

wavetable oscillator that we’ll encounter several times in this book. If you didn’t include

the quotations in load(“WAVETABLE”) or perhaps didn’t include the capitalization,

you’re going to notice that your script won’t work, so it’s important to get in the habit

of understanding the proper syntax. Like Ron Burgundy, RTcmix interprets text very

literally, and all of the quotes, caps, commas, and parentheses need to be exact in order

to run. After setting the parameters for your script, your next step will always be to

load the instruments that you’d like to use, so this whole load() business will become

second hand in no time.

 Hit return twice to give yourself a double space and type in the following:

WAVETABLE(start = 0, duration = 5, amplitude = 20000, frequency = 500, pan = 0.5)

 Each time you call on WAVETABLE() to execute a command, you need to tell it

what to do, in the form of its parameters or “p-fields”. In essence, you’ve told it to start

making sound right away, make a sound for five seconds, at an amplitude of 20000 and a

frequency of 500 Hz, directly in the middle of the stereo field. Again, we’ll get into much

�15

more detail in the next chapter, but for now, we just want to hear some sound!

 In sum, your score file should look like this...

rtsetparams(44100, 2)
load(“WAVETABLE”)

WAVETABLE(start = 0, duration = 5, amplitude = 20000, frequency = 500, pan = 0.5)

Score file 1: Simple sine wave 8

 ...and now you’re ready to close the score file window, click “start rendering

audio,” and bask in the warm sonic bath of a 500Hz sine wave oscillator.

 Congratulations on your first sound in RTcmix! Such beauty!

 If you’d like to save this watershed moment of digital music and show it off to

your family at Thanksgiving, please click on “write scorefile,” which will open a save

panel dialog box. Call it sinewave.sco — or something of your choice — and save it to

your preferred location. You might want to create a folder on your /Desktop to save all

of your score files into, so that you can quickly find them later.

 The remaining features of the RTcmix application are pretty self explanatory,

thanks to the comments that Brad has left us next to each purple icon. However, a brief

summary of each feature, from top down is explained here:

1. [load scorefile] - Load a previously saved .sco scorefile for playback and editing

2. [edit scorefile] - Open a new window to further manipulate the current scorefile

3. [write scorefile] - Save the current scorefile to your preferred location

4. [start rendering audio] - Listen to the scorefile

5. The number box below [start rendering audio] changes the total duration that your

scorefile will play. You can double click on this box and type in a number, or hover over

 All of the example score files are included online for downloading, though it’s highly recommended to 8

copy them out line by line rather than copying and pasting.

�16

it with your arrow, click and hold, then scroll up or down to change the durations.

6. [show audio] - Open a new window displaying the current scorefile waveform

7. [normalize audio] - Perform audio normalization, which expands the peak amplitude

of the current waveform and applies a constant shift in gain to maintain the integrity of

the original.8. [write audio file] - Save the current scorefile’s audio waveform as an audio

file

9. [play audio] - Playback for the current waveform

Neil Thornock is the author of CMixRun, a front-end application that includes all

of RTcmix in another easy to use, graphical interface. You can download the application

from his site on Sourceforge: http://sourceforge.net/projects/cmixrun/files/?

source=navbar and navigate to the link for his “CMixRun.pkg” file, which contains

everything that you’ll need.

Once you’ve downloaded it, double click on the icon to begin the installation

process. This will automatically place the CMixRun application into your Applications

folder.

Go ahead and open the program, which has by far the coolest Dock icon you’ll

find. When the program opens, you’ll find a really useful interface with a series of

windows.

�17

The leftmost window includes all of the tools that you’ll need to either open new

tabs for working on multiple score files at once, create a new window, prompt your

Finder to search and open .sco files, save files to disk, as well as play, stop, and save

scripts as audio files. Your main window will serve as your scripting window and

includes line numbers and text highlighting to better view the commands and

instrument calls that we’ll be utilizing in our work. To the upper right, you’ll find a

series of tutorials written by Neil, which I highly encourage you to scour while working

on this text. The window to the lower right will let you know if your score files have run

successfully or if they have any errors.

Go ahead and double-click on “0. Introduction” and the script will open in your

main window. Follow Neil’s instructions and you’ll hear one of his score files in action!

As we saw with the RTcmix standalone application and CMixRun, our operating

system has a wonderful set of tools to streamline the process of downloading and

installing software to your computer. Moreover, Apple currently boasts an App Store

which serves as a one stop shop for all of your software needs and generally requires

little more than a simple point-and-click to initiate and execute your download. Because

RTcmix isn’t proprietary software (meaning that you don’t have to pay for it) and is

open source (meaning that you’ll be able to alter the program itself in any way you

�18

wish), we won’t find it in the App Store. Instead, we will have to download the program

from its website and execute the installation manually, which is more fun, anyway.

 We will be running our installation of RTcmix from the command line using

UNIX. This is a powerful computer programming language that is integral to the

Macintosh OS. In fact, using UNIX is a central part of our work with RTcmix and we’ll

be exploring and utilizing UNIX with a utility on your Mac called Terminal, which can

be found at /Users/User/Applications/Utilities/Terminal.app. Here’s an example of the 9

default Terminal window, which is black with green lettering, though you can change

your window’s appearance in Terminal’s preferences.

We’ll also be compiling RTcmix manually, so there are a few steps we’ll need to

complete in order to get us started, to wit:

1. Download XCode

2. Download the RTcmix package

3. Install RTcmix from the Terminal Utility

 My Terminal Utility is on the directory /Users/jerod_s/Applications/Utilities/Terminal.app. We’ll be 9

getting around on our Mac using UNIX and Terminal in a bit, so for now of course you’d want to simply
click on your Applications folder and find Utilities from there.

�19

 Our first task is to head to the aforementioned App Store and search for the

program XCode.

 We will be downloading this powerful program designed to facilitate — among

many tasks — the building of both OSX software and iOS apps using a variety of

computer programming languages. We’re not targeting those tasks quite yet (RTcmix

has a number of useful tutorials for building iPhone apps using RTcmix as your audio

engine), but we are for now interested in a component of XCode, called the Developer

Tools Library. 10

 While XCode is downloading (which is going to take a bit of time as the size of

the program is over 2GB) let’s explore exactly what it is that we are adding to our

machines.

 The instrument libraries, scorefile functions, and other intrinsic components that

make up the RTcmix program were all written in the C and C++ computer

programming languages. Because RTcmix is distributed freely and open-source, you (the

user) will be able to take a look at all of this code that went into designing the program

itself. However, C and C++ are examples of so-called high-level programming languages,

meaning they borrow terms and syntax from our spoken language in order to help create

a somewhat intuitive programming experience. As mentioned in the Prelude, RTcmix

scripts are written in a high-level language called MINC, which stands for “MINC-is-not-

C.” Once we delve into the details that constitute the anatomy of an RTcmix scorefile,

we’ll be able to better differentiate MINC and C, but for now it’s important to

 Alternatively, you can open a Terminal window and type gcc. You’ll receive a note that you don’t have 10

these tools, but hit enter and a dialog box will appear in your Finder, prompting you to download them
directly. It is nice, however, to have XCode for other projects, including using RTcmix in iOS.

�20

understand their relationship to low-level languages.

Also referred to as assembly-language or machine code, low-level languages

correspond and interact closely to the computer’s unique hardware architecture. An

incredibly detailed sequence of instructions, these assembly-languages get at the heart of

the machine: Streams of binary data. Represented as the decimals 0 and 1, these strings

of numbers assist with complex tasks that your computer executes each time you put it

to use. However, because of the level of detail and level of foreignness to our written and

spoken languages, it is useful for us to have a translator, which we refer to as the

compiler.

Within the Developer Tools Library exists an important compiler, GCC. The

GCC compiler serves as the bridge between the code that built RTcmix (C and C++)

and the machine-language that supports and executes commands in the Macintosh

Operating System. So, in order to install RTcmix on our OS, we need the GCC

compilers to help our machine understand what it is that RTcmix will be asking of it.

What follows are the steps to take in order to make that process happen.

Open your preferred internet browser and navigate to the RTcmix website at

http://www.rtcmix.org. From the home page, you’ll be able to find the link for the

“Standalone” version. 11

Once you click on that link, you’ll be taken to another page that gives you two

options for downloading RTcmix from the GitHub website. Choose the first option.

 I know, this is probably confusing. All this time was spent installing and playing around with the 11

“standalone” application, and now here on the RTcmix page is yet (another?) “standalone” version. In this
instance, the authors of RTcmix are referring to RTcmix’s ability to be used on the command line,
without any GUI interface or front end application to assist you while using it. To alleviate confusion, I’ll
be referring to this version of RTcmix as “command line” or more generally, the version that uses the Mac
Terminal.

�21

http://www.rtcmix.org

Once you are on RTcmix’s GitHub site, click on the link that will download the

source code .zip file.

 RTcmix most likely downloaded to your /Downloads directory, and although you

are welcome to leave the “RTcmix-master” folder named as-is, I’ve always gotten into the

habit of renaming it something much more concise, and simply “RTcmix” works well for

me.

 Once you have RTcmix in /Applications, open a Terminal window and type

cd /Applications

and hit enter. At this point, your Terminal should have three lines on it, which look

something like this:

Last login: Fri Aug 30 11:34:10 on ttys000
localhost:~ mycomputer$ cd/Applications
localhost:Applications mycomputer$

 Congratulations again! You just executed your first UNIX command! Do you feel

like Neo from the Matrix yet? Now, type in 12

 I remember the first time that I successfully executed a UNIX command and while at the time I was 12

furiously keeping up with the in-class example I never really did stop and ask myself, “OK this is cool, but
what exactly did I just do? cd? What does that even mean?” As alluded to earlier, our next chapter will
detail UNIX in much greater detail (in a way that is designed specifically for the RTcmix user) but it’s
also important to know that the cd command stands for “change directory.” More on that later.

�22

cd /RTcmix

provided that you changed the name of the RTcmix download folder to something

simple, in which case you’d put in the original name after the cd command.

 At this point, you are now working inside the RTcmix folder and have access to

all of the items within it. This is important, because now we’re going to use those GCC

compilers to build the program. To get that process going, type

./configure

and watch what happens. Your Terminal window should now be scrolling through line

after line after line of syntax, which details the play-by-play of the build process. This is

the internal workings of your computer that many don’t ever see when installing

software from a Setup Wizard or other GUI download assistant. Depending on the speed

of your machine, this might take a minute, so hang tight.

 Once the process is complete, your Terminal readout should look something like

this.

Summary...
 Building 64-bit binaries
 Build with multi-threaded support.................. : false
 Build with Perl support............................ : false
 Build with Python support.......................... : false
 Build with ALSA support............................ : false
 Build with JACK support............................ : false
 Build with NetPlay support..........................: false
 Build with FFTW support............................ : false
 Build with OSC support............................. : false

This is RTcmix’s way of letting you know that the process was successful and

complete. However, we didn’t install any of the ancillary components of the program,

�23

such as the ability to send OSC data or write our score files using the Python

programming language. If, for example, you are more comfortable working in Python or

Perl, you can choose these options during the configuration process by typing the

following into Terminal:

./configure --with-perl --with-python

 You are of course able to select as many options as you’d like, though you’ll also

need some ancillary downloads that will be explored later on. For now, there is no need

to to configure with anything else, thus allowing us to make music right away using the

standard MINC parser.

 Now that RTcmix has been configured, we need to “make” all of the instruments

and scorefile commands in its library. This is a simple process that only involves typing

make

and hitting enter. This process should take longer than configuration, so hang tight for a

bit. Once that is done, the last step is to actually install those instruments and

commands onto your computer, by typing in

make install

and voila! RTcmix is now installed on your machine!

 We are interested in an executable file found in RTcmix’s /bin folder called

CMIX. To verify that the entire installation process worked correctly, execute the

following in your Terminal, hitting [enter] after each command:

cd bin
CMIX

�24

 You’ll know that RTcmix successfully installed if after having typed in CMIX,

your Terminal prints out the following:

--------> RTcmix 4.0.1 (CMIX) <--------

 All of our installation work went into ensuring that this executable command is

working properly, which allows us to have our MINC score files interpreted by our

computer and realized as actual sounds. Type control-c to “interrupt” the executable and

return to your working Terminal window.

 Use your preferred method of searching for files on your machine and look for 13

any .sco files that you now have. RTcmix comes with a variety of help files, useful

documentation, and examples to draw from, which you’ll find in the RTcmix folder.

More specifically, they can be found in /Users/yourcomputer/Applications/RTcmix/

docs/sample_scores.

 Any score file will work for now, so don’t worry if you don’t know what it is or

what it does at this point. If you want to hear a score file similar to the one we sampled

in the standalone application, check out the STRUM() library of sounds. When you

have a file in mind, double-click to open it, most likely by way of your TextEdit

application.

 Provided that you are still working in the RTcmix/bin directory and have access

to the CMIX command, type

CMIX <

 Some prefer the Spotlight magnifying glass on the top right corner of your screen and others might 13

prefer to open a Finder window to search your folder, files, and directories. In the next interlude, we’re
going to do it the stealth, UNIX-y way by using find and grep.

�25

in your Terminal window. The < sign acts as a pointer to the score file that you’d like

to execute. Your TextEdit window should have an icon with the .sco file’s name seated

above the text window with all of the MINC code. By clicking on that icon and holding

it down, you’ll be able to move it across your screen, much like you would do if you

wanted to open a file with an application found in your dock. This is a shortcut to tell

RTcmix (or any application on your computer, really) in which directory to find the 14

file that you are attempting to open. By dragging that /.sco icon in TextEdit to your

Terminal window, you’ll see a green “plus” icon appear, which indicates that you can

release your click and have Terminal understand the directory of the file in question. For

example, if I wanted to open Brad Garton’s STRUM1.sco file, I would open it in

TextEdit, drag its icon to Terminal, and see the following in my window:

CMIX < /Users/jerod_s/Applications/RTcmix/docs/sample_scores/STRUM1.sco

 Provided that your window reads something similar, you can now hit [enter] and

RTcmix will play the script!

 Because we don’t want to always change directories into our RTcmix folder and

the /bin directory, we need to be able to access the CMIX from anywhere. Luckily, there

is a root /bin directory on your machine, which houses all of the fun commands we’ve

been working with thus far, like cd, and others that we’ll see, such as pwd, ls, and sudo.

 Never one to get into the habit of shameless plugs, I can’t help but introduce TextWrangler, from Bare 14

Bones Software. You can find the download link at http://www.barebones.com/products/textwrangler/
which will take you through an automatic installation process. I like TextWrangler because it, like
RTcmix, is free software, and is highly customizable. I recommend viewing your .sco files in TextWrangler
with the line numbers (which show up on the left-hand side of the application). When we inevitably have
a syntax error while writing our MINC scores, RTcmix will tell us (in the Terminal) that we have an error
at “line X.” These errors can be maddening to seek out in TextEdit, but much easier in TextWrangler.
Moreover, Joel Matthys created a brilliant syntax highlighter for RTcmix and TextWrangler (https://
github.com/jwmatthys/rtcmix-mode-textwrangler) which will display native scorefile commands and
instrument names in beautiful, wonderful colors. This too is a great way to seek out specific elements in
your MINC code with minimum strain and parsing through line after line of mundane black on white.

�26

http://www.barebones.com/products/textwrangler/
https://github.com/jwmatthys/rtcmix-mode-textwrangler

We’re going to make a copy of the CMIX executable file and place it with all of the

others, thus allowing us to use it and play scripts wherever we happen to be working

while on the Terminal. Typing

sudo cp CMIX /bin/CMIX

is a quick way to complete this task, but it will ask you to enter the password that you

use to log into your machine. sudo is one of my favorite UNIX commands as it allows

you to execute commands as a super user. In this case, we need to ask an administrator

(you) if it is okay to add commands to your root directory. 15

 If everything up to this point has worked smoothly and your computer is

executing CMIX and making wonderful sounds, then we’ve completed the installation

process and this, our first sonata. Later on, we’ll explore a variety of ancillary downloads

to further enhance your RTcmix experience - such as viewing sets of data in actual

graphs or using your mouse or trackpad to change variables in real time - but for now,

we have all the tools that we need to make music and start exploring the details of the

program.

Sonata I: Successful installation

 In a text file, write down a set of directions (in your own words) that will assist

you — or others that you might someday show — in the RTcmix installation process

from the Terminal. Then, see if you are able to install RTcmix on another machine, or

have a friend install RTcmix on their machine from your set of directions.

 I highly encourage you to visit the following xkcd comic, which explains this concept brilliantly: http://15

xkcd.com/149/.

�27

http://xkcd.com/149/

|| Interlude I: Basic UNIX for the RTcmixer ||

 Each time we sit down to work on an RTcmix score, we’ll first head to our

Applications folder, search for Utilities, and open Terminal, a small, unassuming

window, that allows you to type in a variety of commands and have them executed on

your operating system, hence why it is often referred to as the “command line.” The 16

purpose of this interlude is not to explore every feature of the Terminal at our 17

disposal, but to get a quick feel for the types of commands that you’ll be using each

time you use RTcmix. While going over all of the intricate details and walking the entire

labyrinth of UNIX isn’t exactly our goal here either, getting some useful, basic

information from UNIX will greatly enhance not only our experience with RTcmix, but

also our experience in working with our computers.

 At the heart of the Macintosh Operating System (OSX) lies UNIX, a capable

operating system that often goes unnoticed in your day-to-day computer business,

because Apple has lovingly created OSX with a gorgeous user interface. For example, if

you were to create a new folder on your Desktop (by going to your top menu and

selecting File -> New Folder) you might not be aware that it is possible to accomplish

the same task in Terminal, by typing the command mkdir. You are probably familiar

with iCal (now called Calendar), Apple’s native calendar application. UNIX has its own,

albeit spartan, calendar and can be accessed by opening up Terminal and typing

cal

As another tidbit of commonplace terminology, you’ll often hear the phrase “RTcmix on the command 16

line.” This refers to our using RTcmix with the Terminal, rather than with the standalone application,
Pure Data, Max/MSP, or other front-end applications that are able to execute CMIX commands. This is,
to borrow a phrase from Kirk McElhearn, our way to use our computers “under the hood” and without
any reliance on the graphical user interface.

Okay, so let me officially plug a beautiful book by Kirk here. If you’re like me and you like to have a lot 17

of books on your bookshelf for quick reference or you just want to have the best source of learning UNIX
on Mac OSX for beginners, please, please check out The Mac OS X Command Line: UNIX Under the
Hood. It is a brilliant, easy to follow introduction to the variety of tasks that you can accomplish from the
Terminal window.

�28

 Your window should give you a view of the calendar for the current month. You

can also check to see what the calendar looked like for the month and year that you

were born. For example, if I wanted to know what it looked like in December of 1982, I

would need to type:

cal -m -y 12 1982

 In order to change the view of our calendar, we had to use a few so-called flags.

In this case, we wanted to view a particular month in the future (or past), so we needed

to let the Terminal know that we would be specifying the month, as well as the year,

with the flags -m and -y, with a space between each individual flag. After that, we

wrote, in order, the month and year in question. For some, the configuration process

while installing RTcmix was done with flags, especially if you chose or will be choosing

to write your score files in the Python programming language, in which case you

wrote ./configure --with-python.

 Each UNIX command (like cal) contains its own help file, which is a great way to

learn more about the processes that you are executing. For example, type the following

into your Terminal and read the corresponding printout.

man cd

 You just prompted your Terminal to give you some more information about the

command that allows you to change directories, cd. When you are done reading, type

the letter “q” and you’ll exit the help menu. As mentioned in the section on downloading

and installing RTcmix, it’s important to remember that as you navigate around your

computer — moving from your Applications to Documents to your Downloads and back

— you could move in the same way using cd. Now if you installed RTcmix into your

�29

Applications folder, take a moment to practice navigating your way there. It might 18

help to type pwd in order to print your working directory, or see where you are currently

working. Calling cd all by itself will send you back to your home directory and if you

want to be super stealth, try typing two periods like this

cd ..

and after doing another pwd you’ll notice that you’ll find yourself up one level, back

where you came from.

 While it’s all well and good to navigate around directories, we need some

commands that will be useful for us in conjunction with RTcmix. For example, navigate

to your RTcmix folder and type in the following:

ls

You should see a number of items listed in your Terminal window, which should look

something like this:

Macintosh:~ jerod_s$ cd /Applications/RTcmix/
Macintosh:RTcmix jerod_s$ ls
AUTHORS config.h.in lib
ChangeLog config.log liblo-0.27
INSTALL config.status makefile.conf
LICENSE config.sub makefile.conf.in
Makefile configure pkg
NEWS configure.ac pkg-config
README defs.conf scores
THANKS defs.conf.in shlib
aclocal.m4 docs site.conf

 Now, you might need to add a slash in front of applications, so you’ll be typing cd /Applications for 18

this particular example. This can be confusing, as you don’t need the same slash for Desktop or
Documents. If you have a long list of things to get through — such as the sample_scores folder in RTcmix
— you’ll want to take advantage of the “tab complete” feature in Terminal. Just start typing the first two
or three letters of the directory that you are trying to move to and UNIX will do its best to complete the
rest of the typing for you. How cool!

�30

apps genlib snd
bin include src
config.guess install-sh test
config.h insts utils

We’ve listed all of the items in our directory and for now many of them might be

confusing. You can probably guess what the AUTHORS or NEWS, or README, or

THANKS files are all about, but there are certainly a few listed in here that while now 19

seem at first blush vague and perhaps cryptic, are going to be of interest to us, to wit:

1. /docs contains all of the sample scores and sample code for RTcmix

2. /lib houses the source code for RTcmix’s instruments, written by its authors

3. /snd contains sound files for you to sample and please listen to Looch

4. /bin has the CMIX executable, as well as PYCMIX for Python, etc.

5. /src keeps all of RTcmix’s source files and source code 20

 Take a moment to navigate to /docs/sample_scores and type in an ls command

to view all of the sample scores that are available to you right out of the box. Each one

of these scores are there for you to alter, explore, and utilize in creating your own music.

Moreover, each one was created by one of RTcmix’s authors, which is a great way for

you to see how they write their code. As you move along in the program, you’ll find

syntactical tendencies with your own coding and will quickly notice that despite the

If you’re curious, go ahead and type in open THANKS (or any of the others) and your TextEdit 19

application should open up and display their contents. For those especially curious, now is a good time to
read the AUTHORS file and google (still can’t believe that that is a noun) their names. You’ll find a
wealth of fantastic music written by all of them and know that all of our work in the program wouldn’t be
possible without their time, care, and efforts.

 For those who plan to alter/change the program in some way, this will be a place for you to check out. 20

While the scope of this book is to use RTcmix as a compositional tool, its always a joy to scour through
the work of others’ often thankless efforts in creating such great digital tools, which is a unique and
wonderful task when working with open source software.

�31

program itself not really changing in any way, many different users will have very

different approaches to coding their music in RTcmix.

 Using cd .., find your way back to your home folder for RTcmix and navigate to /

insts. When you list the contents, you should see something like this on your screen:

Makefile bgg joel std
stk base jg maxmsp std-04
vccm

Within this folder are more example score files and documentation for RTcmix, straight

from the authors who created each respective instrument. For example, you can navigate

to John Gibson’s instrument folder, Brad Garton’s, Joel Matthys’, or the standard

RTcmix instruments, those in the synthesis tool kit, or those that can be used in

conjunction with Max/MSP (which we’ll cover a bit later.)

 As we move along and create many, many new score files, we’ll definitely want to

be able to search for certain commands that we’ve previously used so that we can recall

it later. For example, let’s say that we are trying to make some sounds using granular

synthesis, and we want to use a previously coded Hanning window for our grain

envelope. Although we know we used it, we can’t quite remember the exact score file

that it was utilized within. This is where some UNIX search tools will come in handy,

including the powerful grep command.

 Navigate your way into the /RTcmix/docs/sample_scores directory and type the

following into your Terminal window:

grep hanning *

and you’ll see a readout that looks like this:

Macintosh:sample_scores jerod_s$ grep hanning *
CONVOLVE1_2.sco:src_env = maketable("window", 1000, "hanning")
CONVOLVE1_2.sco:window = maketable("window", 1000, "hanning")

�32

GRANSYNTH1.sco:envtab = maketable("window", 2000, "hanning")
GRANSYNTH2.sco:granenv = maketable("window", 2000, "hanning")
GRANSYNTH3.sco:envtab = maketable("window", 2000, "hanning")
GRANULATE1.sco:envtab = maketable("window", 1000, "hanning")
GRANULATE2.sco:envtab = maketable("window", 1000, "hanning")
GRANULATE3.sco:envtab = maketable("window", 1000, "hanning")
GRANULATE4.sco:envtab = maketable("window", 1000, "hanning")
JCHOR1.sco:grainenv = maketable("window", 1000, "hanning")
JCHOR2.sco:grainenv = maketable("window", 1000, "hanning")
JCHOR_8chan.sco:grainenv = maketable("window", 1000, "hanning")
JGRAN1.sco:genv = maketable("window", 1000, "hanning")
JGRAN2.sco:genv = maketable("window", 10000, "hanning")
JGRAN3.sco:genv = maketable("window", 10000, "hanning")
JGRAN4.sco:genv = maketable("window", 1000, "hanning")
JGRAN_FLANGE_REVERBIT.sco:genv = maketable("window", 10000, "hanning")
JGRAN_JDELAY.sco:genv = maketable("window", 10000, "hanning")
JGRAN_REVERBIT.sco:genv = maketable("window", 10000, "hanning")
SHAPE1.sco:indexguide = maketable("window", 1000, "hanning") // bell curve
STEREO3.sco:env = maketable("window", 10000, "hanning")
grep: disk-based: Is a directory

 We’ve just queried our directory to seek out and return all of the instances where

the string “hanning” is located. So, within all of the score files, it managed to find quite

a few instances of the Hanning window! Looking at the first returned line, we can see

that the string “hanning” was used in the CONVOLVE1_2.sco score file, where it was

used to declare the variable src_env (presumably the audio “source” envelope shape in

convolution) and was utilized in a maketable command (which we’ll use A LOT) and its

requisite variables ("window", 1000, "hanning"). You’re probably wondering why we

used the * character for our search: This is a so-called “wild card” that can be used in

the grep command. In this case, we’re using our wild card to search only in the /

sample_scores directory. 21

 While the world of UNIX is in and of itself varied and exciting and well worth

exploring in more detail, we’re now equipped with most of the basics that we’ll be using

 For more on wild cards, you might want to refer to UNIX Under the Hood or run a quick online search. 21

Suffice it to say, typing in grep without that wild card will take a long, long time, as our entire computer
will be searched.

�33

in conjunction with our work in RTcmix. Here and there we might come across a few

new UNIX commands, but with this Interlude, we should be ready to make some music!

Interlude I: Scavenger hunt

Using the Terminal and your new UNIX wizardry, locate and open a file called

randfuncs.c on your computer. Once open, see how much of the code you might be able

to understand and how it relates to use with RTcmix and then rewrite one of the

functions in a new TextWrangler window.

�34

|| Sonata II: The Anatomy of an RTcmix Score File ||

 While certainly daunting at first blush to look at a score file that contains

hundreds of lines of code, each RTcmix script begins in exactly the same way, calls

instruments just like any other, and sets up routines for your computer to execute.

We’re going to start small and bit by bit construct something fun, all the while gaining

a good understanding of what exactly goes into an RTcmix score file.

 As mentioned earlier, each script will intrinsically begin by setting up our audio

sound card and loading instruments. In a new TextWrangler window type in the 22 23

following text:

rtsetparams(44100, 2)
load(“WAVETABLE”)

 Again, we are setting our sampling rate to 44,100 samples per second and

utilizing two channels of audio output. If, say, we have a super fancy new FireWire

sound card that we’d like to try out and we know that it can sample at much higher

rates, we could declare 96,000 or something even higher, if it is supported. Moreover,

let’s say we’re working in a studio that boasts eight channel surround sound, in which

case we could opt to declare eight channels of output.

 One feature that we will start using now and is highly, highly recommended for

your work is the comment. By placing two slashes in front of any text, RTcmix will leave

that bit out during execution. So, I can comment the code we’ve written to help me

remember what each line does. If you have lots of text that you’d like to use as a

comment, you can use block comments instead.

rtsetparams(44100, 2) //set parameters, rtsetparams(samplerate, channels)

 Unless, that is, you are running your scripts in Pure Data or Max/MSP, in which case you don’t need 22

to do any of the steps to set parameters or load instruments.

 Or if you’d like to keep things in Terminal, don’t forget about pico or nano.23

�35

load(“WAVETABLE”) //load the WAVETABLE instrument

/*
A slash and then a star will make a block comment.
Anything inside of those characters

will be

commented out.

Use a star then slash to finish the block comment.
*/

Were we to omit those slashes after rtsetparams(), we’d get an error in our Terminal

readout, which would look something like this:

Macintosh:~ jerod_s$ cmix < /Users/jerod_s/Desktop/mygreatfile.sco
--------> RTcmix 4.0.1 (cmix) <--------
============================
rtsetparams: 44100 2
Audio set: 44100 sampling rate, 2 channels

*** ERROR [parser-yyerror]: near line 1: syntax error

Looking back, we’d find our way to line 1 and make note of our error, in this case the

fact that we forgot to include our slashes for the comments.

 WAVETABLE() is a great instrument to use when starting out with RTcmix, as

it is able to synthesize all of the standard waveforms (sine, sawtooth, triangle, square)

and when used in conjunction with maketable(), gives the user the ability to create

custom waveforms, subtract and add respective partials and adjust the amplitudes of

those partials, or even make some fun, grainy speaker clicks to use as textural material.

In short, it is a highly versatile instrument and one that we will utilize often while

working through the program.

 Earlier, we tested our installations of RTcmix by implementing a simple sine wave

at 500 Hz. Let’s rehash that, but keep it a bit more bare bones for now.

�36

rtsetparams(44100, 2) //set parameters, rtsetparams(samplerate, channels)
load(“WAVETABLE”) //load the WAVETABLE instrument

WAVETABLE(0, 5, 20000, 500, 0.5) //play a sine wave for 5 seconds

Score file 2: Simple sine wave with comments

 At this point, it is useful to introduce the notion of variables and how they can

be used in RTcmix, because as we can already see, housed within WAVETABLE()

parameters are a series of values separated by commas that for now are somewhat

meaningless to us. A variable is nothing more than a declaration inside of your script.

For those who are more familiar with C programming, we don’t need to specify whether

or not our variable will be an integer or a float or anything else, which is quite handy in

the MINC parser. As a simple example, I can create variables for integers to print to the

Terminal window by typing the following code:

x = 2
y = 3

sum = x + y
print(sum)

Score file 3: Print to Terminal window using variables

 In the case of our example using WAVETABLE(), it is going to be useful to

substitute variables in place of our integer values so that we better understand how they

function.

Each RTcmix instrument contains a series of parameters, or p-fields, which need

to be declared in order to properly execute sound. They are listed in order within the

parentheses and are separated by commas. In this case, WAVETABLE()’s p-fields are

�37

determine the following parameters : 24

 p0 = start time

 p1 = duration, in seconds

 p2 = amplitude, or loudness

 p3 = frequency

 p4 = placement of sound in the stereo field (optional p-field command)

 p5 = waveform specification (also optional)

 If you’re like me, you probably find it helpful to remember what these p-field

commands are, not necessarily by memorizing them, but by putting names or variable

names to them within your script. We can do this within the parentheses that call the

instrument, like so:

WAVETABLE(start = 0, duration = 5, amplitude = 20000, frequency = 500, pan = 0.5)

 However, its not always going to be the case that we want to localize those

variables so specifically . Once we add a number of other instruments and effects to our 25

scripts, we might want a global start time, or a duration that works for a variety of

different sounds. So, here is a nice looking script that first specifies our p-field

parameters as variables and then puts those variables into the call to WAVETABLE().

rtsetparams(44100, 2)
load("WAVETABLE")

start = 0

 As we will encounter later on, many of the p-fields for RTcmix’s instruments can be updated in real-24

time, or through the use of tables, defined by the maketable() command. For now, we’re only interested
in understanding what exactly a p-field is, but it will always be clear in the documentation when you are
free to update those parameters can can be changed with tables or various connections.

 Once we get to Python, we won’t be able to do this at all.25

�38

duration = 5
amplitude = 20000
frequency = 500
pan = 0.5

WAVETABLE(start, duration, amplitude, frequency, pan)

Score file 4: Sine wave with variables

 You’ll notice that p4, panning, is one optional parameter for you to specify. Each

RTcmix instrument that you encounter will have some p-fields that are absolutely

necessary for their function and some p-fields that are optional. If we didn’t specify a

pan value (0.5 in the middle, 0 to the right, 1 to the left), RTcmix would send a default

0.5. Likewise, p5 is optional and defaults to a sine wave. If we want to utilize one of our

other available waveforms, we need to introduce the maketable() command. Try typing

this after the declaring the variable for pan:

waveform = maketable(“wave”, 1000, “saw”)

and include it in your WAVETABLE() parameters. You should have a line that now

looks like this,

WAVETABLE(start, duration, amplitude, frequency, pan, waveform)

and sounds the same 500 Hz wave as before, but instead of a sine wave, now plays a

sawtooth wave. Each time that you call on maketable(), you need to specify a few

parameters. First, you need to indicate the type of table that you need and put it in

quotations. Since we want to draw distinct waveforms, we need to write “wave.” The

�39

1000 indicates the number of points on the x-axis of the table that we are drawing. 26

1000 is a nice, easy number to remember, but that’s not to say that you can’t write

tables of 2000, 3000, or 4000. While a more detailed explanation of the various types of

maketable()s will follow in the next interlude (and there is another special section

dedicated to WAVETABLE() itself) note for now that “wave” can provide you with the

following waveforms:

"sine" -- sine wave 

"saw" -- sawtooth wave

"sawX" -- a sawtooth wave with X number of harmonics

"sawdown" -- sawtooth wave whose first curve moves downward

"sawup" -- sawtooth wave that goes upward

"square" -- square wave

"squareX" -- square wave with X harmonics 

"tri" -- triangle wave

"triX" -- triangle wave with X harmonics 

"buzz" -- pulse wave 

"buzzX" -- pulse wave with X harmonics

 Thus far, we’ve approached our score file from a fairly methodological angle. Our

goal was to make a simple sine wave, have it sound for a few seconds, then turn off.

What if, however, we wanted to start constructing scales and modes and impressing our

friends with endlessly rising whole-tone-scale-dream-sequence sounds? For that, we can

call a full gamut of WAVETABLE() instruments:

rtsetparams(44100, 2)

 If you have RTcmix’s plottable() command (it requires a separate download of two separate programs 26

called AquaTerm and gnuplot), you can see these tables for yourself by including, in this case,
plottable(waveform) in your script. A new window will then pop up with a graphic representation of your
table.

�40

load(“WAVETABLE”)

start = 0
duration = 5
amplitude = 10000
pan = 0.5
waveform = maketable(“wave”, 1000, “sine”)
WAVETABLE(start, duration, amplitude, cpslet(“C4”) , pan, waveform) 27

WAVETABLE(start+1, duration, amplitude, cpslet(“D4”), pan, waveform)
WAVETABLE(start+2, duration, amplitude, cpslet(“E4”), pan, waveform)
WAVETABLE(start+3, duration, amplitude, cpslet(“F#4”), pan, waveform)
WAVETABLE(start+4, duration, amplitude, cpslet(“G#4”), pan, waveform)
WAVETABLE(start+5, duration, amplitude, cpslet(“A#4”), pan, waveform)
WAVETABLE(start+6, duration, amplitude, cpslet(“C5”), pan, waveform)
WAVETABLE(start+7, duration, amplitude, cpslet(“D5”), pan, waveform)

Score file 5: Whole tone scale

which if you typed out in full and didn’t take advantage of at least copy and paste, can

get pretty maddening pretty quickly. The snippet of code above does in fact work: With

a new duration of one second, it plays C4, then after one second plays D4, then after

another second E4, and on and on and on. There really isn’t any limit to the number of

notes that you can play in sequence, but my hope is that its evident that we’re doing

more work than necessary. We’re on a computer after all, and computers are designed to

make routine tasks easier on us. For that, we’ll need to construct a loop.

 Loops give us the ability to repeat a number of tasks that we designate for

however many iterations we desire. These loops have a pretty detailed construction that

we’ll utilize quite a bit over the course of our work, so its best to just take the leap of

faith now, explain the concept, and commit it to memory.

 What kind of sorcery is this, you ask? Well, RTcmix doesn’t always need to represent pitch in terms of 27

frequency, or cycles per second. In fact, I can’t imagine a music theory class where notes were represented
in only Hz and nothing else! This cpslet() command translates note letter and octave designations to
cycles per second. You can literally read the call as “To cycles per second (cps) , translate note letter
names (let).” There are a variety of ways to represent pitches and notes and frequencies in RTcmix, which
we’ll of course explore in detail.

�41

rtsetparams(44100, 2)
load(“WAVETABLE”)

start = 0
duration = 1
amplitude = 10000
note = 60 //the MIDI note number for middle C, or C4
pan = 0.5
waveform = maketable(“wave”, 1000, “tri”)

for(start = 0; start < 7; start = start + 1){
WAVETABLE(start, duration, amplitude, cpsmidi(note) , pan, waveform) 28

note = note + 2 //increment by a whole step
 }

Score file 6: Whole tone scale from a loop

 Okay so here’s what we just accomplished. Our loop construction is literally

interpreting us saying, “Make the variable ‘start’ equal zero. Then, as long as start is less

than seven, increment start by one.” You’ll notice that because we also utilized “start” 29

in our call to WAVETABLE(), our first start will equal zero, then one, then two, then

three…, just like it did above when we had to physically write it over and over. Way

easier. Moreover, starting a loop will give us the chance to change variables within the

loop structure, as we did when we wrote that we wanted “note” to equal itself, but add 30

two. Thus, our variable “note” will first equal 60, then 62 (60+2), then 64 (62+2), then

66 (64+2), etc.

 Yet another way to designate pitch. MIDI note numbers are a great way to represent pitch and cpsmidi(28

) will do the translation for us. Think of this one as stating, “To cycles per second (cps), translate MIDI
note numbers (midi).”

 Readers who are super familiar with the C programming language are probably wondering why our 29

increment didn’t use start++ (Not to mention the absence of semicolons). MINC doesn’t include that
functionality and after all, MINC-is-not-C.

 That is, any commands and text that are placed within the curly braces { }. The indentation is a 30

matter of style and preference, in MINC. Indentations are super important in Python, however.

�42

 We’re incrementing by one each time through the loop and all of our durations

are also equal to one. Thus, we’re getting fairly clear, articulated notes, but what if we

wanted to overlap those a bit? Try changing your value for duration to 1.5 or even 2 or

3 and listen to the result. If you find the sound is starting to sound distorted as more

and more waveforms pile on one another, try turning your amplitude down from 20000.

rtsetparams(44100, 2)
load(“WAVETABLE”)

start = 0
duration = 3
amplitude = 10000
note = 48
pan = 0.5
waveform = maketable(“wave”, 1000, “buzz”)

//two octave whole tone scale
for(start = 0; start < 14; start = start + 1){

WAVETABLE(start, duration, amplitude, cpsmidi(note), pan, waveform)
note = note + 2
}

Score file 7: Whole tone scale with overlapping notes

 Each of the previous two scores contains a slight click, or pop, at the onset of

each note, and another at the point where the note stops playing. This is due to the fact

that we’re literally asking RTcmix to generate a pitch with robust amplitude and one

that is without any semblance of shape, or envelope. For example, a piano is unable to

gradually fade into a note (unless each string inside the instrument is bowed) due to the

sheer mechanics of the hammer striking the strings each time we depress a key on the

keyboard. RTcmix is more or less acting in the same way for us right now. Unlike a

piano, RTcmix is able to sculpt sounds using various envelope shapes. If each sound has,

according to the ADSR envelope, a particular attack, decay, sustain, and release time,

we will be able to manipulate our sounds using RTcmix and its maketable() command.

�43

 We’ll start by having each individual note rise to its peak amplitude over a

gradual amount of time, rather than start with full amplitude right away, and fade out.

Let’s do this in the shape of a triangle, so that our sound will fade in half way through

its total duration (since we’re using 3, it will fade in over 1.5 seconds) and immediately

fade out over the remainder.We can think of this in terms of a graph, with the x-axis

representing time and the y-axis designating amplitude, from 0.0 to 1.0. 3132

 To draw our envelope using maketable(), use the following code, which specifies

a graph using line point segments:

envelope = maketable(“line”, 1000, 0,0, 0.5,1.0, 1.0,0)

 You’ll note that we’re creating a variable called “envelope” with 1000 points.

Instead of designating “wave” as we did before, we’ll use “line” to give us the line

segment graph. What follows are pairs of numbers, in this case 0,0, 0.5,1.0, 1.0,0. I

deliberately added spaces between each pair of numbers, which is a stylistic trait that

isn’t necessary to use, but one that I hope you’ll also adopt for line graphs, as it makes

 Let’s pause for a second and talk about amplitude in more detail. By now, you know that when we refer 31

to amplitude we’re discussing volume or loudness, but you’ve seen it referenced as a number like 20000
(which we call absolute amplitude) and now on a scale from 0.0 to 1.0 (called relative amplitude). Without
diving too far into the theory of digital audio signals, think about a Cartesian coordinate plane (x,y)
graph where the x-axis is time and the y-axis is amplitude . Now, we can represent amplitude relatively,
with points -1 to 0 to 1 on the y-axis (knowing that signals [waveforms for example] have points of
positive energy transfer called compression and negative energy transfer called rarefaction), or we can
think of it absolutely, with 65536 points on the y-axis (-32768 to 0 to 32767). Why 65536? Maybe you’ve
heard of bit depth, which for standard CD quality audio is 16 bit and determines how accurately (think y-
axis again) we can represent amplitude values in the digital domain. 162 = 32,768, which is the standard
formula for determining those integer values.

 Note 31 was quite a handful. Again, this text isn’t meant to fill the purpose of an all-in-one digital 32

audio composition text, but some explanations are unavoidable and my hope is to introduce some of these
heavier topics in a super conversational and as basic a way as possible. If you’re interested, you might seek
out Computer Music: Synthesis, Composition, and Performance by Charles Dodge and Thomas Jerse,
which is, while older, pretty much a go-to and can be found on almost any electronic musician’s bookshelf.
Not for the faint of heart (but you’re total encyclopedia) would be The Computer Music Tutorial by
Curtis Roads.

�44

understanding the segments that we are using much clearer. In essence, I’m stating that

at the beginning of my graph, point 0, use a value of 0. Then, half way through the

graph at point 0.5, declare a value of 1.0 (full amplitude). Finally, at the end of the

graph, point 1.0, use 0, which is no amplitude, thus no sound.

 Something seems fishy with this, however. Although I am using 1000 points in my

graph, I’m using points 0, 0.5, and 1.0. Wouldn’t it make sense to use points 0, 500, and

1000? Unless you use a special designation for maketable(“line”) called “nonorm”,

RTcmix will always normalize your values to something between 0.0 and 1.0. So, even if

we did use 500 and 1000, the program will still interpret that as 0.5 and 1000. While it

might be confusing at first, I find this pretty useful, especially when using graphs that

have a large number of points. Here is our whole tone scale, which uses a graph for

sculpting our notes using the standard ADSR envelope:

�45

rtsetparams(44100, 2)
load(“WAVETABLE”)

start = 0
duration = 3
amplitude = 10000
envelope = maketable(“line”, 1000, 0,0, 0.3,1.0, 0.5,0.5, 0.8,0.5, 1.0,0)
note = 48
pan = 0.5
waveform = maketable(“wave”, 1000, “sawup”)

for(start = 0; start < 14; start = start + 1){
WAVETABLE(start, duration, amplitude*envelope, cpsmidi(note), pan, waveform)
note = note + 2
}

Score file 8: Adding an ADSR envelope

 In just a few scripts, we’ve covered quite a bit of ground. Intrinsically, RTcmix —

when used on the command line — requires that we set our parameters for sampling

rate and the number of channels for audio output. From there, we load our instruments

in question and have the chance to declare variables to fill in the respective instruments’

p-field values. Most p-field parameters are absolutely necessary, while others are

optional. By using the WAVETABLE() instrument, we were able to use a variety of

waveforms through the maketable(“wave”) command. Further, when put into a loop

structure, we were able to repeat commands, thus only calling on WAVETABLE() once

in our score file, but also incrementing pitch values - which can be represented in any of

a variety of ways - as we moved along. Lastly, we sculpted our individual pitches with

the ADSR envelope, utilizing maketable(“line”).

 Here is one final score file that introduces a bit of randomness to our palette and

you are encouraged to research the commands that might be unfamiliar to you and

�46

understand how they are working in the script. 33

rtsetparams(44100, 2)
load(“WAVETABLE”)

amplitude = 10000
envelope = maketable(“line”, 1000, 0,0, 0.1,1.0, 0.8,1.0, 1.0,0)

increment = 1.0
for(start = 0; start < 50; start += increment){
 duration = irand(4,10)
 note = trand(60,72)
 pan = random()
 WAVETABLE(start, duration, amplitude*envelope, cpsmidi(note), pan)
 increment = irand(0.25,4.0)
 }

Score file 9: Chromatic sine wave bath

Sonata II: Random pitch melody

Create a 30 second etude that uses at least two different graph shapes for envelopes, as

well as two different ways to represent pitch. Then, randomly select pitches for the

melodic material inside of a loop. Don’t feel constrained to only use WAVETABLE(),

but scour the documentation in order to find a new instrument to use in this sonata,

should you choose to do so.

 The RTcmix website’s documentation is a great place to start seeking out this information. You’ll note 33

that in this script, I’m using a variable for our increment value, which will change inside of the loop. You
might also see that instead of stating start = start + increment, I decided to use start += increment,
which is exactly the same command. I prefer the latter since it is shorter and still easy to understand.

�47

|| Interlude II: Exploring maketable() ||

 As we’ve already seen, maketable() is very useful in the sculpting and refinement

of our sounds and compositions. It has the ability to generate waveforms, graph line

segments or curves, import data from text files, create tables from weighted, randomly

distributed numbers, and window functions, among other useful possibilities. We’ll be

exploring most, but not all, of the maketable() commands in detail here, but the

documentation found in the index will always be your best guide to utilizing any of

them in the future.

 Filling a graph with line segments is a quick, easy to understand, and helpful way

to manipulate data in your scripts. In score file 8, we were manipulating amplitude data,

creating a standard ADSR envelope. When we consider that the outgoing amplitude of

our MAKETABLE() had a peak of 10000, it’s easy to understand that if we wanted to

have no amplitude, or 0, we would multiply 10000 * 0. By subjecting our peak

amplitude to the strictures of the ADSR envelope, we are able to generate streams of

numbers that altered our volume during playback. We’ll find later on, especially when

used in conjunction with Pure Data or Max/MSP, that we can further manipulate

amplitude in real-time (perhaps even with your iDevice…), but it’s important for now to

understand that maketable()’s versatility and easy to understand syntax will greatly

enhance your experience with RTcmix and the sounds you are generating.

 I can’t imagine a world where every detail is visually composed of straight line

segments and thankfully the world of maketable() isn’t limited to “line” either. Let’s

amend score file 8’s envelope shape from the standard ADSR envelope to a triangle

shape that has curved line segments in its place.

envelope = maketable(“curve”, 1000, 0,0,5.0, 0.5,1.0,-5.0, 1.0,0)

�48

 Rather than working with pairs of numbers, as we did when using “line”, we are

instead working with three sets of numbers for each plot, which as a syntactical

preference I’ve spaced accordingly in my list. What we have for each segment in “curve”

is a value for x, a value for y, and a curvature value. In essence, I’m asking for the same

0,0, 0.5,1.0, 1.0,0 sequence of points as before, but I’m adding curvature values, in this

case 5.0 and -0.5. You can think of it in this way:

graph = maketable(“curve”, 1000, x1,y1,curve1, x2,y2,curve2…, x,y)

noting that at the end of our series of numbers, we need only call on a single (x,y) pair

with no value for curve, thus the 1.0,0. In our example for the envelope, we used both

positive and negative values for the curvature: Negative values will generate convex

curves and positive values will create concave curves. The greater the values that you

use, the more pronounced your curves will be. Take the envelope example that we

generated and try playing around with the values, changing some from positive to

negative and back, adding more line segments, using 0 as a curve value (straight line), or

other transformations that will help you to better understand the possibilities that

“curve” will provide for you. Moreover, read through the documentation for “spline” and

see how it relates to “curve”, as well as how “linebrk” relates to “line”.

 The graphs that we are generating aren’t limited for use with envelopes or

�49

transformations in amplitude. Because many of the p-field parameters for many RTcmix

instruments can be updated dynamically through tables, it stands to reason that we

could use maketable() for them as well. In the following score file, we’ll explore

frequency modulation through the FMINST() instrument, which performs FM synthesis

using a carrier frequency, modulator frequency, and index. Rather than perform the

most basic form of FM - in which we have static values for its requisite components,

we’ll update them using three different types of maketable()’s: “line”, “curve”, and

“expbrk”.

rtsetparams(44100, 2)
load("FMINST")

start = 0
duration = 30
amplitude = 10000
carrier = maketable("line", "nonorm", 100, 0,25.0, 0.25,100.0, 0.75,10000.0, 1.0,20.0)
modulator = maketable("curve", "nonorm", 10, 0,15.0,-5.0, 0.75,28.0,5.0, 1.0,0)
index_low = 1.0
index_high = 10.0
pan = 0.5
waveform = maketable("wave", 1000, "tri20")
index_envelope = maketable("expbrk", 250, 0,50, 0.75,150, 0.90,50, 1.0)

FMINST(start, duration, amplitude, carrier, modulator, index_low, index_high, pan,
waveform, index_envelope)

Score file 10: Dynamic updates for FM

 Thus far, we’ve kept one important parameter for our sounds quite vanilla.

Because our pan values have been set to 0.5, all of our sounds have been reaching us in

the middle of the stereo field at all times. RTcmix interprets panning using values of 0.0

(hard right) to 1.0 (hard left) and more often than not pan values can be dynamically

updated, so we can use maketable() to alter our sounds in time.

�50

 While any of the various types of maketable() commands will work for pan

values, one very nice feature of RTcmix is the makeLFO() command, which oscillates

between low and high input values in a way that mimics a low frequency oscillator. For

example, if we want to pan between 0.0 and 1.0, we would need to call on makeLFO(),

choose a waveform and a corresponding frequency , and our low value (0.0) and high 34

value (1.0).

pan = makeLFO(“sine”, 5.0, 0.0,1.0)

 One nice addition to makeLFO() is the fact that the p-field for frequency can be

dynamically updated! Thus, it’s possible to change how fast or how slow the low

frequency oscillator is causing our sounds to sweep across the stereo field. You might

even try dynamically updating the range of values that makeLFO() is sweeping

through?

pan_frequency = maketable(“line”, “nonorm”, 10, 0,5.0, 0.25,15.0, 0.625,2.5, 1.0,5.0)
pan = makeLFO(“tri”, pan_frequency, 0.0,1.0)

 While we teased the notion of randomness using random(), irand(), and

trand() earlier, there may be times when a table of random numbers is more desirable. 35

 In order for your oscillator to truly act as an LFO, specify a frequency that is less than 20 Hz, which is 34

the generally agreed-upon low range of human hearing. Anything greater than or equal to 20 Hz will start
to distort your sounds in a way that is akin to a ring modulator, which can also be quite interesting to
hear. As with anything discussed in the book, it’s always best to try things out and play with parameters
to not only sculpt and refine your music, but also to better understand how these instruments and
commands are functioning.

 Hopefully you were able to successfully uncover the workings of both of these random number 35

generators using the index or online documentation. If not, irand() returns random floating point
numbers, or those with decimal points, and trand() returns random integers, or whole numbers. Simply
using random() will return random floating point numbers between 0.0 and 1.0, which is super useful for
panning or relative amplitude. A detailed account of random distributions will be covered in time, but for
now understand that both of these commands evenly choose a random number between the range that
you specify.

�51

For example, rather than sticking with the standard set of waveforms available through

maketable(“wave”), we can can create our own waveforms that are constructed randomly.

 Because a waveform oscillates between moments of positive energy transfer

(compression) and negative energy transfer (rarefaction), we construct waves using both

positive and negative numbers between 1.0 and -1.0. 36

waveform = maketable(“random”, 10, “even”, -1.0,1.0)

 We need to declare the command maketable(“random”) with the following p-

fields: The number of points on the graph (10) , the type of distribution for those 37

random numbers (even), and both a low value and high value. The distributions are

particularly useful, which allow you to choose random numbers that are weighted. For

 If you’d like to bookmark this page and skip ahead to Interlude V, please feel free to do so. In that 36

interlude, waveforms and synthesis are explored in greater detail, but for now we’re only interested in the
constructs of waves within maketable(), especially this notion of -1.0 and 1.0 and how those values relate
to amplitude.

 Note that we’re only using ten points on this graph. The more and more points we use while 37

constructing random waveforms, the more noise we’ll introduce into our sound. White noise is a sound
that you’ve probably encountered before, either through TV static (Does that even exist any longer?) or
the whirring of a fan. In the digital realm, white noise exists as 44,100 random frequencies sampled each
second, which corresponds to the sampling rate. Thus, to get a waveform that acts similarly to white noise
(RTcmix also offers a NOISE() instrument), choose 44100 for the size of your table.

�52

example, if you wanted to choose random numbers between 0 and 11 (for a twelve tone

melody, perhaps?) but you wanted to choose more often from the lower numbers, you’d

specify “low”. Choosing “high” will pick randomly, but more often choose the higher

numbers.

 There are certain random distributions that have been proven to choose numbers

from interesting shapes and curves. You’ll find them by using “gaussian”, “cauchy”, or my

favorite, “triangle”. Each of these will favor numbers toward the middle of your range,

but in ways that look like a bell curve or, well, a triangle. If you are excited about these

random distributions or probability in general, Mara Helmuth created a particularly fun

“prob” option to use with maketable(“random”). In it, you specify minimum and

maximum values, as well as a midpoint. Then, a value for tightness will determine how

closely the random numbers are chosen near the midpoint value.

low_value = 0.0
high_value = 10.0
midpoint = 5.0
/*
The values for tightness work in this way:
0 = randomly choose between only the low value or the high value
1 = evenly choose between any number in the range specified
Using numbers greater than one (up to 100) will begin to “tighten” toward the
midpoint.
If 100 is used, almost all numbers will be at or very near your midpoint value
*/
tightness = 75

random_values = maketable(“random”, 100, “prob”, low_value,high_value,midpoint,
tightness)

 Each of our tables can be further transformed using the makefilter() command,

which is especially useful when utilizing one table to determine a variety of parameters

in your script. For example, we could choose to generate an array of amplitude and pan

values between 0.0 and 1.0, later transforming them to generate frequencies falling in a

�53

range of our choice.

amplitudes = maketable(“line”, 100, 0,0.0, 0.33,0.75, 0.66,1.0, 1.0,0)
pan = amplitudes
frequencies = makefilter(amplitudes, “fitrange”, 220,1530)

 In this instance, we need to call on makefilter(), first directing it to the table in

question (amplitudes), the type of transformation that we’d like to accomplish

(“fitrange”), and finally a range of values to utilize. Even though our original values fall

between 0.0 and 1.0 , “fitrange” is able to expand those numbers into a new range of 38

your choice. It is also possible to invert your values around a declared midpoint using

“invert”, or ensure that your values will stay within a specified range using “clip”.

 In all, RTcmix offers a variety of ways for you to create tables, lists of data, and

transformations of those tables or data to enhance your experience, by using maketable(

) and makefilter(). As a historical note, you might encounter documentation or example

scripts that utilize a system of table declarations called makegen(). This is an

antiquated system of creating tables that is no longer being actively updated for future

use. It’s not out of the realm of possibility that some older RTcmix instruments will still

rely upon makegen() as the sole way of creating tables, but for the most part, if you’d

like to do data transformations, use only maketable(). In fact, many of the older

instruments have recently been revised to use maketable(), so feel free to try it out. The

worst that can happen is an error and maybe you’ll be off to the mailing list to either

ask about an updated version of the instrument in question or maybe even try updating

it yourself? As with anything in this book, the best resource for finding information on

any RTcmix instrument, as well as a complete list of maketable() and makefilter()

commands is the documentation found online.

Interlude II: Graph constraints

 “fitrange” will also work with values between -1.0 and 1.0.38

�54

Compose a 30 second script that uses only one instrument, but every single p-field of

that instrument that can be updated using a maketable() must be updated. Choose at

least two types of maketable() and transform each of them using a makefilter().

�55

|| Sonata III: Elements of C with arrays and conditionals||

 Computers are able to execute routine tasks in ways that make our lives easier,

which includes our compositional work days. In score file 5, we constructed a whole tone

scale using separate calls to the WAVETABLE() instrument, later streamlining that

task into a for() loop. Using arrays, nested loops, and conditional tests, we can further

enhance our experience with RTcmix and the music we hope to make while utilizing it.

 Major and minor scales play a large role in the vocabulary of anyone undertaking

the serious study of western art music. For those who might be unfamiliar with the

constructs of a major scale, a piano is a great resource. When looking at the keyboard of

the piano, you’ll notice that it is divided into a series of black and white keys. The black

keys are further divided into groups of two and three. Find the grouping of two and play

the white note that rests just before the first black note in the two grouping. You are

playing the note C and any white note that falls in the same place along the keyboard

will always be the note C. Now, play only the white notes of the piano, ascending, 39

from your original C to the next one and then back down. This is a major scale in the

key of C.

 There are many, many ways to represent the note C. One is just, well, C, which is

a letter designation, useful for reading and writing music. Moreover, there is a special C,

called “middle C”, which has a frequency of about 261.62 cycles/second, or 261.62 Hz.

To further confuse the matter, when using the musical instrument digital interface

(MIDI), we represent that same middle C by the MIDI note 60. Not to be outdone,

middle C is also referred to as C4 when using octave designators. To make things even

more confusing, RTcmix offers octave point pitch class designation, for which middle C is

 It’s a complete coincidence that the title of this sonata is “Elements of C:”, which actually has nothing 39

to do with the fact that we’ll obsess for a bit on the musical note C. The point of the title was to shift our
focus toward the constructs of the C programming language. I suppose I could’ve gone with “Elements of
MINC:”, but MINC-is-not-C, so that’s confusing. To me at least.

�56

7.00. To wit: 40

// middle C
frequency = 261.62 //in cycles per second, or Hz
note = 60 //this is the MIDI note number
pitch = C4 //the letter and octave designator
pitch_class = 7.00 //the octave, followed by the pitch. 7.01 = C#, 7.02 = D, etc.

 In order to construct a C major scale, we have a variety of options in RTcmix.

The notes of a C major scale (which you can say aloud to yourself while playing them,

ascending, on the piano) are C D E F G A B, followed by the next C, which will put

you in the next octave. Since each of those notes can be thought of as an element and

all of the elements together can be thought of as a list of elements, we can put them into

an array, which we’ll do using their MIDI note numbers.

c_major_scale = {60, 62, 64, 65, 67, 69, 71, 72}

 Each element in our list is part of the major scale, which we’ve called

“c_major_scale”. It is important to remember that each of our elements in the array

(designated as the elements within the curly braces and separated by commas) is also

kept at a specific place within the list, or array, itself. Let’s pick out just the note E in

our list, which is MIDI note number 64.

E = c_major_scale[2]

 Take a moment to think about how this is working and don’t be afraid if some

confusion ensues. We can see that we made a variable called “E” because we wanted to

 If you were left feeling confused at the piano, unable to find the note C in the first place, a quick online 40

search should help you find that note. Any college level music theory text will also include a far more
detailed account of this discussion, likely in its first chapter, though I highly doubt that they’ll get into
octave point pitch class. You might, however, find them explaining cycles/second, especially with regard
to the note A4.

�57

grab the note E from our array. Next, we called on the array named “c_major_scale”

because that’s where our particular note lies. Finally, you’ll note the brackets and the

number 2: This is the address for our element within the array. This is where confusion

might onset.

 It looks to me as if E (64) is the third element in our array, which begs the

question: Why did we call on 2? Wouldn’t that return the second element, D (62)?

While we do have eight elements in our array, they are numbered from 0 - 7, rather than

1-8, so you would say that C (60) is the 0th element in the array, D (62) is the 1st

element, etc.

 [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

array = {alpha, beta, charlie, delta, echo, foxtrot, hotel, golf}
alpha = array[0]
echo = array[4]
golf = array[7] //even though its technically the 8th element.

 Arrays are particularly useful when put into a loop, as we can cycle through their

elements in the same way as playing the ascending notes for C major on the piano.

rtsetparams(44100, 2)
load("STRUM2")

pitch_array = {7.00, 7.02, 7.04, 7.05, 7.07, 7.09, 7.11, 8.00} //C major, in octave
point pitch class
pitch_length = len(pitch_array) //the len() command returns the number of elements
in the array (8)

//————STRUM2 p-fields
start = 0
duration = 1.0
amplitude = 30000
envelope = maketable("window", 1000, "hanning")
pitch = pitch_array[0] //can you guess which number we’re calling on at this point?
squish = 1.0
decay = 1.25

�58

pan = 0.5

for(start = 0; start < pitch_length; start += duration){
 STRUM2(start, duration, amplitude*envelope, pitch_array[start], squish, decay,
 pan)
 }

Score file 11: Ascending major scale 41

 Because our value for “start” will increment by one each time through the loop, it

is an incredibly useful way to play through elements in an array, provided that you move

from left to right. However, what if we wanted to play the scale both forward and

backward, like we might do when warming up on our instrument?

rtsetparams(44100, 2)
load("STRUM2")

pitch_array = {7.00, 7.02, 7.04, 7.05, 7.07, 7.09, 7.11, 8.00}
pitch_length = len(pitch_array)

start = 0
//save “pitch” for later
duration = 1.0
amplitude = 30000
squish = 1.0
decay = 1.25

for(iteration = 0; iteration < 1; iteration += 1){

 for(index = 0; index < pitch_length; index += 1){

 We’re using the STRUM2() instrument, which is a synthesized guitar that gives the user the ability to 41

mimic the hardness of the plectra (“squish”) and a decay time. Because STRUM2() can interpret octave
point pitch class data, there was no need to convert it to Hz using cpspch(). Moreover, careful readers
will see that the variables start and pitch were declared twice and changed, once in the list of p-field
declarations and then in the loop. While this is redundant, it does give a good sense of the anatomy of
STRUM2()’s p-field elements before delving into it in the loop. You might at first list all of the p-field
elements as variables regardless of later declarations as good practice, but then later abandon the practice
as you better understand each instrument and its constituent elements.

�59

 pitch = pitch_array[index]
 pan = pickrand(0.3, 0.7)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + duration
 }

 for(index = index - 1; index >= 0; index -= 1){
 pitch = pitch_array[index]
 pan = pickrand(0.3, 0.7)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + duration
 }
 }

Score file 12: Ascending and descending C major scale

 We can always use more than one loop in our score file and in the above example,

we’re using a nested loop, or a loop within another loop. Here, the variable “start” isn’t

being used both in the for() loop and as a p-field in the instrument, but instead we’re

using something else. This is because we want to have one meta-loop that will initiate

the events for the other loops found inside of it. Our meta-loop gives us the number of

times, in total, that we want each of our inner loops to go through. Since I like to think

of these as iterations, I used “iteration” as a variable for the meta-loop, which you’ll note

only happens once. 42

 Within the meta-loop are two more for() loops, one to play our scale ascending,

and the other, descending. Again, we don’t want to use “start” as our incremental

variable in the loop, since we’ll be decrementing that value for the descending scale.

Instead, we can use a variable called “index”, which determines the index value of our

array, or the particular note being played. With all of this in mind, it becomes clearer

how the value for index is being treated, even if we haven’t seen the second loop

 It’s common to encounter loops that abbreviate “iteration” for simply “i”. Thus, many programming 42

examples that use loops will state for(i = 0; i < something;…).

�60

structure, which will start at index value 7 and count down from there. Here is a 43

clearer picture of the value for index as we move from top to bottom in this loop.

in the first loop, index will equal: 0, 1, 2, 3, 4, 5, 6, 7

through the second, it will equal: 7, 6, 5, 4, 3, 2, 1, 0

 Now we can see how we’re navigating our way through the loop, but what about

that value for start times? Since we didn’t include it as the incremental value in the

loop, we need to work with it somewhere else, which we’ve done in the last line of each

respective loop structure. Since “duration” equals one, start will equal itself plus one

each time through. If we play our major scale both ascending and descending, can you

figure out the corresponding values for start as we move along? 44

 We can also transpose our major scale script, in order to include all twelve keys.

rtsetparams(44100, 2)
load("STRUM2")

pitch_array = {7.00, 7.02, 7.04, 7.05, 7.07, 7.09, 7.11, 8.00}
pitch_length = len(pitch_array)

start = 0
duration = 0.125 // new duration, akin to sixteenth notes
amplitude = 20000
envelope = maketable("window", 1000, "hanning")
pitch = pitch_array[1]
squish = 1.0
decay = 1.25

 Here’s another example where understanding the index value in an array is important. We needed to 43

state for(index = index - 1…) in order to ensure that the starting value is 7. Check to see what happens
when you say index - 3, or index - 4 instead. Can you configure this script so that it doesn’t repeat the C
an octave above middle C?

 Here’s a cool hint: Try placing print(start) inside each of the loops and RTcmix will print out that value 44

for you. This can be a useful strategy for tracking values of variables in your scripts, especially if
something is clipping or causing your score file to crash.

�61

transpositions = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11,
 1.00}
num_transpositions = len(transpositions)

for(iteration = 0; iteration < num_transpositions; iteration += 1){

 for(index = 0; index < pitch_length; index += 1){
 pitch = pitch_array[index] + transpositions[iteration]
 pan = pickrand(0.3, 0.7)
 STRUM2(start, duration, amplitude*envelope, pitch, squish, decay,
 pan)
 start = start + duration //change durations here
 }

 // omit repeating top and bottom notes at the octave
 for(index = index - 2; index >= 0; index -= 1){
 pitch = pitch_array[index] + transpositions[iteration]
 pan = pickrand(0.3, 0.7)
 STRUM2(start, duration, amplitude*envelope, pitch, squish, decay,
 pan)

 start = start + duration

 }
 }

Score file 13: Transpositions

 Data that is placed within any loop in an RTcmix script can also be subject to

conditional tests, which are constructs that we find examples of in our everyday

language. For example, we might commonly express to someone, “If it’s raining outside,

then I’ll grab my umbrella.” In the world of RTcmix and MINC, we can represent this

using an if() statement.

if (it_is_raining){
 grab_the_umbrella
 }

 Statements such as these place the condition inside of parentheses and the

�62

outcome of that test within curly braces. There is no limit to the number of outcomes

that you might use, so these if() statements can be quite powerful.

 Even more exciting are logical tests, which enhance how we utilize our

conditionals. For example, we might pose this question: “Choose a random integer

between 0 and 10. If the random number is greater than or equal to 5, turn up my

amplitude by 0.25, or else turn it down by 0.25.”

srand()

x = trand(0,10)
printf("the variable x equals: %f \n", x)

amplitude = 0.75

if(x >= 5){
 amplitude = amplitude + 0.25
 }

else{
 amplitude = amplitude - 0.25
 }

printf("amplitude now equals: %f \n", amplitude) 45

Score file 14: Conditional example 46

 printf() is more of a C-style printing. You’ll see the results in your Terminal window.45

 Important note about the use of srand() in the opening line of this script. Each equation that returns a 46

random number (think irand(), trand(), or random()) needs to be seeded in order to generate truly new
random numbers. If we didn’t include srand() at the beginning of our script, our value for x would be the
same each time we execute the score file. The same goes for seeding srand() with something like
srand(12). When we include srand() with empty parentheses, the seed value corresponds with the clock
time of our computer, or how long it has been in operation since we turned it on. This ensures that all
random values will be different each time we run the script. Try commenting out srand() or filling it in
with an integer and see what types of values you return for x. I find it useful, when composing sections of
pieces that use random numbers, to seed my random number generator with srand(1), listen to the result,
then seed with srand(2), listen to the result, etc. This way, I can perhaps find a best version of my script
that I’d like to use in the work at hand.

�63

 Even though this seems like a rather vanilla conditional example, it has the

elementary constructs of a random walk. Random walks are processes that either

increment or decrement according to a given probability.

 Let’s use pitch as a variable we can subject to a random walk. We’ll set up the

random walk so that the pitch of our instrument will either increase by a half step or

decrease by a half step equally. Think of it this way: A two sided coin has the equal

probability of landing on either heads or tails, so if we flip a coin 100 times and take

note of all the heads and all the tails, we can reasonably expect to have an outcome

close to 50 heads and 50 tails. Similarly, we’ll do a conditional test that reasonably

ensures we increment 50% of the time and decrement 50% of the time.

rtsetparams(44100, 2)
load("WAVETABLE")
srand()

start = 0
duration = 0.25
amplitude = 18000
envelope = maketable("curve", 1000, 0,0,1, 0.1,1.0,-10, 0.33,0.5,-1, 0.8,0.25,-10,
1.0,0)
note = 60
pan = random()
waveform = maketable("wave", 1000, “tri”)

increment = 0.0625
for(start = 0; start < 100; start += increment){
 WAVETABLE(start, duration, amplitude*envelope, cpsmidi(note), pan = random(),
waveform)

 x = random()
 if(x < 0.5){
 note += 1 //50% of the time, increase by a half step
 }

 if(x > 0.5){
 note -= 1 //50% of the time, decrease by a half step

�64

 }
 }

Score file 15: Random walk

 Using the conditions put forth in this score file, it’s possible to change the

probability of the outcomes. Because “x” is returning numbers from 0.0 to 1.0, it’s useful

to think of those as percentages, thus the 0.5 condition. However, if you’d rather have

the melody that slightly favors and ascent, change that number to 0.52 or 0.55,

remembering to correspondingly change the values for decrementing to 0.48 and 0.45,

respectively. 47

 Conditions aren’t limited to phrases such as “if x is less than” or “if x is greater

than or equal to”. Remember our first example when we used “If it’s raining, then…” as a

conditional test? Well, what if we wanted to subject our outcome to more than one

condition, such as “If it’s sunny or if it’s raining, then…” For this, we’ll need to add some

more symbols to our tool belt.

 if(it_is_sunny || it_is_raining){

 grab_the_umbrella
 }

 Note how we had to use two parallel lines (| |) to complete our statement. This

is another example of an operator that we can utilize for conditional tests in C.

< less than

> greater than

<= less than or equal to

>= greater than or equal to

 Or, create an if() else() statement as we did before.47

�65

== is equal to 48

!= is not equal to

&& and, such as if(x > 10 && x <=20)

|| or, such as if(x > 10 || x <= 20)

 We can also test to see if a number is even or odd, by checking to see if there is a

remainder when a given number is divided by two. This works well for the following

example (a personal favorite), which outlines the “wondrous number” algorithm laid out

by Douglas Hofstadter. 49

rtsetparams(44100, 2)
load("MMODALBAR")
srand()

/*
3n + 1 algorithm = a simple procedure for generating data
"The Wondrous Number algorithm"

Step 1: Take a random number.
Step 2: If the number is ODD, triple it and add one.
Step 3: If the number is EVEN, divide by two.

A wondrous number will divide itself all the way down to 1 and repeat over and over
and over.
*/

n = trand(100,127)
print(n)

for(i = 0; i < 5; i += 0.125){

 if(n%2 == 0){ //if n / 2 DOESN'T leave a remainder (is even...)

 When defining variables, use =, such as alpha = 100. In a conditional test, use ==, such as asking 48

if(alpha == 100).

 The score file that follows is a realization of an algorithm found in his book Gödel, Escher, Bach: An 49

Eternal Golden Braid. The book is absolutely phenomenal in every way and please, please take a chance
to read it for yourself.

�66

 n = trunc((n / 2)) //trunc() takes off any decimals
 }

 else if(n%2 == 1){ //if n / 2 DOES leave a remainder (is odd...)
 n = trunc(((n * 3) + 1))
 }

 print(n)

 MMODALBAR(start = i, duration = 0.125, amplitude = 20000, frequency =
 cpsmidi(n), hardness = 1.0, position = 0.5, 0, pan = 0.5)
 }

Score file 16: Wondrous Number 3n + 1 50

 Understanding these principles of the MINC parser, which are so closely tied into

the C programming language, will greatly enhance your experience with RTcmix. In

fact, the concepts covered in this sonata form the essence of the program itself and

separate it from so many proprietary software programs available to us today.

 Most computer music audio workstation programs, be it Ableton Live, Reason,

Pro Tools, Reaper, or Logic, contain plugin effects that modify your sounds. However,

RTcmix affords us the ability to algorithmically design how we use those sounds and

effects in time using a programming language, rather than the admittedly gorgeous (you

have to pay for something, right?) user interface of the aforementioned programs. When

we encounter those effects and sounds in syntax, we’re more apt to understand and

research the parameters that define them, all while sculpting and refining those sounds

using unique processes. More than one student has remarked, after learning a bit of

RTcmix, how much their experience with proprietary DAWs has been enhanced after

realizing exactly how those GUI plugin effects are actually functioning. Brad Garton

said it best and I couldn’t agree more: When it comes to composing electronic and

 You’ll want to run this script multiple times to get the full effect of the subtle differences, especially the 50

difference between randomly starting with a wondrous number and not returning one.

�67

computer music, “…I generally think the way RTcmix does.”

 Here is one last example score file that relies heavily on conditional tests. In it,

I’m creating a drum machine from individual, mono drum set samples (bass drum, snare

drum, hi hat, etc.) that are arranged in an array from low sounds to high sounds. From

there, I’m using a variety of conditional tests to first choose from the outermost

(extreme) elements of the array (so this should rely more heavily on bass drum and

hihat sounds) and gradually shift toward choosing from the middle of the array (tom

sounds and snare), eventually randomly selecting from any part of the array. We haven’t

looked at the JFUNCS() instrument (really a library of functions) yet, but I’m loading

it in order to utilize map(), which takes incoming numbers in a range of 0 to 1 and

expands them to another range, specified by the user. In this case, I’m expanding 0 to 1

to the range of 0 to 5 to randomly select from the drum sounds in my array. Moreover, I

need to use trunc() to take off the decimal point that will result from map(), since

array locations can’t intrinsically be floating point numbers. 51

rtsetparams(44100, 1)
load("DELAY")
load("JFUNCS")
srand()

bd = "/Users/jerod_s/Documents/Pd/drum-machine/samples/BD01.wav"
sd = "/Users/jerod_s/Documents/Pd/drum-machine/samples/SD01.wav"
tomlow = "/Users/jerod_s/Documents/Pd/drum-machine/samples/TOM05L.wav"
tomhigh = "/Users/jerod_s/Documents/Pd/drum-machine/samples/TOM09H.wav"
ride = "/Users/jerod_s/Documents/Pd/drum-machine/samples/RIDE1.wav"
hihat = "/Users/jerod_s/Documents/Pd/drum-machine/samples/CLHAT1.wav"

drums = {bd, tomlow, tomhigh, sd, ride, hihat}
numdrums = len(drums)

//drums arranged from low sounds to high sounds

 If I wanted to truly round these numbers, I’d need to do something like index = (trunc(map(outcome, 51

0,1, 0,numdrums) + 0.5). In the example score file, I’m literally taking a number like 2.65 and making it
2, whereas if I included the 0.5, I’d be sure to get 3.

�68

//begin by tending toward extremes, then middle, then all

increment = 0
for(start = 0; start < 50; start += increment) {
 x = random()
 y = random()

 if(start < 10){
 if(x > 0.75){
 outcome = x
 index = trunc(map(outcome, 0,1, 0,numdrums))
 }
 if(y < 0.25){
 outcome = y
 index = trunc(map(outcome, 0,1, 0,numdrums))
 }
 }
 else{
 index = pickrand(0,1, 4,5)
 }

 if(start > 10 && start < 20){
 outcome = ((x + y) / 2)
 index = trunc(map(outcome, 0,1, 0,numdrums))
 }

 if(start < 20){
 index = trand(numdrums)
 }

 file = drums[index]
 rtinput(file)
 DELAY(start, instart = 0, duration = DUR(), amplitude = 1.0, delaytime = DUR())
 increment = DUR()
 }

Score file 17: Random drum machine

Sonata III: Conditionals

Search the documentation for an instrument that hasn’t been used or discussed thus far

�69

and find as out as much as you can about it. Then, create a 1’ score file that comments

on each of the p-fields that constitute the instrument, generates values from an array,

and uses at least three different conditional test to alter parameters.

�70

|| Interlude III: RTcmix and Python ||

 In the RTcmix world, MINC is sometimes referred to as a parser, front end, or

“language”. Any of these terms refer to the fact that MINC code (which again, borrows

from C) is the syntax used to create our score files. However, MINC isn’t the only

language that we can utilize in the course of our work with RTcmix: Both the Perl and

Python languages have been ported to RTcmix, so that we can compose our scripts

using their constructs, rather than those of MINC. For some, this interlude is likely

going to be completely useless, as they’ll be more than happy to continue working in

MINC. For others who might already be familiar with either Perl or Python, this will be

a fun interlude to look through. Because I enjoy using the Python programming

language, this interlude will focus on some of the basics of the language and how it can

be used in conjunction with RTcmix.

 Are there advantages to using Perl or Python with RTcmix? Yes and no. Unlike

MINC, Python is a so-called object-oriented programming language, which allows the

user to define classes of “objects” that can be used throughout the program. Moreover,

when using Python, we can import all of its distinct libraries to further refine our

scripts. However as of this writing, creating RTcmix scripts using a feature-rich 52

language like Python isn’t supported when using the [rtcmix~] object in Pure Data or

Max/MSP.

 As noted in the installation process, it is possible to configure your build of

RTcmix using Python, among other ancillary features. We’ll still save our score files with

the suffix .sco — not .py, which denotes a Python file — and we can still play them in

our Terminal using:

 The purpose of this interlude isn’t to discuss Python in full, so please don’t rely on it as a primer to the 52

world of Python. Rather, we’re only going to be covering a very, very small amount of Python, with the
mindset that we’re doing so in order to approach RTcmix from a new angle. For full on accounts of
Python, I’m a fan of Zed Shaw’s Learn Python the Hard Way and John Zeele’s Python Programming. I
can’t tell you the number of times I visited stackoverflow.com to seek answers to my totally amateurish
Python-related questions.

�71

http://stackoverflow.com

pycmix < /Path/to/your/file.sco

 Our first step in a script that uses Python isn’t to call on rtsetparams(), but

instead to write

from rtcmix import *

which will add all the elements of the “rtcmix” namespace to our script. Think of this as

an RTcmix library working within Python, which ensures that Python knows what to do

with program-specific tasks like WAVETABLE() and PANECHO() and bus_config(),

which obviously aren’t native to Python itself. From there, we can call on rtsetparams()

like we did earlier, as well as import() for loading instruments. Let’s rewrite score file 9

in Python and compare its new syntax with MINC.

from rtcmix import * # note that using “#” is the correct way to comment in Python
rtsetparams(44100, 2)
load(“WAVETABLE”)

amplitude = 10000
envelope = maketable(“line”, 1000, 0,0, 0.1,1.0, 0.8,1.0, 1.0,0)

increment = 1.0
for start in range (0, 50, increment):
 duration = trand(4,10)
 note = trand(60,72)
 pan = irand(0.0,1.0)
 WAVETABLE(start, duration, amplitude*envelope, cpsmidi(note), pan)
 increment = irand(0.25,4.0)

Score file 18: Score file 9 in Python

 Because MINC intrinsically does away with the semicolons found at the end of

each line of code in the C programming language and Python doesn’t have any

�72

semicolons at all, both scores look strikingly alike. I find Python to be an incredibly

elegant way of writing code. In fact, the for loop structure omits the use of curly braces

and instead relies on indentation to delineate processes that need to be executed in the

loop itself. However, attempting to change score file 17 to increment by a floating point

number will cause some headaches, as loops in Python are solely incremented by integer

numbers. 53

 Here’s a bit of code that will solve the issue for us.

def custom_range(start, stop, step_size):
 x = start
 while x < stop:
 yield x
 x+= step_size

 The three constituent components of our object are a start value, stop value, and

step size for incrementing. Let’s say that we start at 0, have a value of 10 for stop, and

increment by 0.5 each time through the loop. Within our definition, we create an 54

arbitrary variable, “x”, that will equal start, since we need to declare start times for our

 This is one point where Python becomes powerful and customizable, as we can create our own custom 53

loop that will increment by decimals. Imagine for a moment that we wanted to create a simple command
that takes an arbitrary input number and always outputs the sum of that number and 15, similar to an
addition object in Pure Data or Max/MSP that looks like [+ 15].

def sum_fifteen(input_number):
 return input_number + 15

 We’ve created a definition for a class called “sum_fifteen”, which is a bit of code that we can use
within our script to use at any time. We started with def, which needs a name and a set of values to
process. In this case, our “sum_fifteen” object is only in need of an input number, which we’ve named
accordingly. Next, we use the return command to output the sum of our “input_number” and 15.

y = sum_fifteen(10)
print y

 It’s safe to say that the value for “y” will be 25 and “sum_fifteen” has done its job.

 Any guesses on how many times we’ll run through this loop?54

�73

loop structures. Then, as long as “x” is less than “stop”, yield “x” and increment it by the

“step_size”. My hope is that the previous two sentences sound stunningly similar to the

process for utilizing for() loops in MINC because they should. Note again the use of

indentation and how it functions within “custom_range”.

from rtcmix import *

rtsetparams(44100, 2)
load("WAVETABLE")

here's one example of a Python library available for our use
import random
in order to use an feature of the random library, use random.nameoffeature
below, we'll use random.random, which works in the same way as MINCs random()

srand()

#----- WAVETABLE p-fields
start = 0
duration = 0.125
amplitude = 20000

generate a list of MIDI notes, similar to filling an array

my_list = [] # declare the list of elements
num_elements = 100

for i in range(num_elements + 1):
 my_list.append(random.randrange(50,101,1)) # can you see how this line works?

print my_list

def custom_range(start, stop, step_size):
 x = start
 while x < stop:
 yield x
 x += step_size

increment = duration
index = 0

�74

for start in custom_range(0, (num_elements / 8), increment):
 WAVETABLE(start, duration, amplitude, cpsmidi(my_list[index]), random.random())
 index += 1

Score file 19: Python script with a list and class definition

 With MINC, we work with arrays of elements and in Python we work with lists.

In score file 18, we are using a loop to fill a list of elements my_list with random

integers between 50 and 101, which are in turn being translated to MIDI note numbers

to use as a random melody with WAVETABLE(). Using the append feature allows us to

add a new random element to our list each time we cycle through the loop. Moreover,

because our duration values are at 0.125 and our incremental value for the loop is equal

to that duration, we are hearing our melody in a sixteenth note pattern. 55

 Conditionals in Python are also similar in MINC, with the syntactical caveat that

again we focus on indentation instead of curly braces. The next example score file

doesn’t make sound, but instead creates four note chords for use in a piano or pitched

percussion part.

from rtcmix import *

import random

 Regarding tempo: If we consider that an incremental value of 1 will intrinsically increment every 55

second, it stands to reason that we’re working with a metronome value of quarter note = 60. Thus, values
of 1 will sound — in terms of quarter = 60 — like quarter notes, 0.5 as eighth notes, 0.125 as sixteenth
notes, etc. In order to convert values in seconds to beats per minute, you’ll want to set up a definition
that looks something like this

def sec_to_bpm(input):
 return 60 / input

knowing that you can change the 60 to 60000 if you’re more comfortable thinking of time values in
milliseconds, as is the case with Pd or Max/MSP.

�75

from random import randrange
random.seed()

lowest_note = 45 # In MIDI
highest_note = 96
mode = highest_note - lowest_note # Think back to mean, median, and mode. What is mode
again?

s = a = t = b = mode # Have each voice (soprano, alto, tenor, bass) start on mode
value
In the loop, we’ll watch each voice move inward and outward

for i in range(0,10):
 x = random.randrange(10) #random number to use for conditional tests

 if x < 5:
 s += 1
 else:
 s -= 1

 if x < 2 or x > 8:
 a += 1
 else:
 a -= 1

 if x < 7:
 b -= 1
 else:
 b += 1

 if s - a > 12 or t - b > 12: # this is quite slick, writing “or" instead of ||
 s = s - 12
 t = t - 12

 gamut_in_range = [b, t, a, s]
 print "gamut in spread range: %s" % gamut_in_range

Score file 20: Making chords from conditionals

 Essentially, each respective voice is being subjected to its own random walk,

going up or down by half steps according to the returned value for x. Moreover, the final

�76

if statement ensures that the soprano voice will always be within an octave of the alto

voice and that the tenor will always be an within an octave above the bass voice. This

ensures that future pianists or vibraphone players who play our gorgeous random chord

collection won’t have to spread their fingers or mallets too far to reach the notes.

 One very important advantage of Python over MINC is the ability to create

callable objects. They are routine tasks that you can define and call on at any point in

your score file after you’ve created them. For example, let’s say that we want to create a

function that returns a number squared, such that number x will equal x times x.

def square(x):
 return (x * x)

 At any point in our score file, we can now call upon our new function, square, by

writing it with a corresponding element to evaluate in the same way that we use

commands like abs(), round(), trunc(), or wrap() in MINC.

element_squared = square(4)

 We could create another function to evaluate the square root of a given element,

but this would also be a pretty routine task and one that we’d expect to have available

to us at any time. Thankfully, a host of exciting features await those who import

Python’s math library, just as we imported elements from its random library earlier.

 Python is incredibly adept at treating lists, which is a powerful tool when we

consider pitch transformations later on in the book. Let’s fill a list with six random

elements that we will use as pitches.

spray_table = 1
spray_size = 6
seed = 12

�77

aggregate = []
spray_init(spray_table, spray_size, seed) #spray_init is an RTcmix-intrinsic command
for i in range(0,spray_size):
 aggregate.append(get_spray(spray_table))

print(aggregate)

 The spray_init() command comes from MINC and returns unrepeated random

numbers from 0 up to the range specified. In this case, we’re getting random numbers

from 0 to 5 that we’re using to fill our aggregate list. We can transpose them into a

meaningful range, such as MIDI, by creating our own transposing object.

def list_to_midi(pitches, range):
 return [x + range for x in pitches]

series = list_to_midi(aggregate, 60)
print(series)

 Note that we are first declaring two arguments. The first is the set of pitches that

we’d like to transform — in this case, our aggregate list — and a range to transpose

them in to, such as 60 for the range starting above middle C. From there, we’re

returning each individual x value plus 60 when we finally utilize our object to create a

new list, called series.

 For the majority our work, we’ll be using MINC. However, for those excited

about and interested in the world of Python itself and how it can be used in conjunction

with RTcmix, I highly encourage you to write the remaining examples in both

languages. To end this interlude, we’ll explore a complex Python example and it will be

your job to research each of the lines in question and how they are working. 56

from rtcmix import *

 This example will come up again when we explore twelve-tone transformations in Interlude VI, but it’s 56

presented here as a teaser for those who are interested right now. There is an example of “list slicing” in it,
which we will cover later on, but you are welcome to seek out if you’d like to.

�78

import random

rtsetparams(44100, 2)
load("MMODALBAR")

#---------- MMODALBAR
start = 0
duration = 1
amplitude = 30000

#---pitch stuff
spray_table = 1
spray_size = 12
seed = 12

aggregate = []
spray_init(spray_table, spray_size, seed)
for i in range(0,spray_size):
 aggregate.append(get_spray(spray_table))

def retrograde(pitches):
 return pitches[::-1] # Search “list slicing in Python” for an explanation

def invert(pitches):
 return [((x - 12) * -1) for x in pitches]

def retrograde_invert(pitches):
 return invert(retrograde(pitches))

def series_to_midi(pitches, range):
 return [x + range for x in pitches]

p_0 = series_to_midi(aggregate, 32)
r_0 = series_to_midi(retrograde(aggregate),48)
i_0 = series_to_midi(invert(aggregate), 60)
ri_0 = series_to_midi(retrograde_invert(aggregate), 72)

hardness = 1.0
position = 1.0
instrument = 4
pan = 0.5

series of chords

�79

for start in range(0,spray_size):
 MMODALBAR(start, duration, amplitude, cpsmidi(p_0[start]), hardness, position,
 instrument, pan)
 MMODALBAR(start, duration, amplitude, cpsmidi(r_0[start]), hardness, position,
 instrument, pan)
 MMODALBAR(start, duration, amplitude, cpsmidi(i_0[start]), hardness, position,
 instrument, pan)
 MMODALBAR(start, duration, amplitude, cpsmidi(ri_0[start]), hardness,position,
 instrument, pan)

Score file 21: Dodecaphonic transformations in Python

 I find that in our era of unparalleled access to information, it is incredibly useful

to seek out answers using known resources. From experience, I can say that learning the

basics of Python by rewriting example scripts from others and using comments to help

me better understand the functions of the program was a very enriching experience.

 I’m also a proponent of immersive learning styles and building skills

incrementally. If even twenty minutes per day are spent rewriting known RTcmix files

into Python and taking the time to search concepts that you either haven’t encountered

before or would like to know more about, you’ll soon find a sense of facility with your

work and a more enlightening experience using RTcmix while composing your work.

Interlude III: Python and RTcmix

Rewrite score file 20, researching each command that is foreign to you, and use

comments to note how those commands and concepts are functioning in the script. This

will be especially useful if you are unaware of 12-tone music (dodecaphony) and how

aggregate row forms are constructed and how inversions, retrograde, and retrograde-

inversion transformations relate to the aggregate.

As a second part of your interlude, rewrite a previous score in MINC — either from the

�80

book or one that you’ve composed on your own — into Python.

�81

|| Sonata IV: Adding various effects to your scripts||

 Much like a chain of guitar pedals, RTcmix is capable of sending your processed

sounds into any of a number of effects to further enhance and refine your musical ideas.

Not only does RTcmix contain the standard set of DSP effects — such as delay, various

types of filters, EQ, flange, or chorus — but it can dynamically update those effects in

real-time, which again yields endless possibilities during the composition process.

 We’ll begin by sampling a standard audio file and passing it through an effect via

the bus_config() command.

rtsetparams(44100, 2)
load(“STEREO”) //simple stereo sampling, must be .aiff or .wav!

rtinput(“/path/to/your/file.aiff”) //remember to point to a file on your computer

start = 0
instart = 0 //input start time
duration = DUR()
amplitude = 1.0 //relative, not absolute
pan = 0.5
STEREO(start, instart, duration, amplitude, pan)

Score file 22: Simple stereo playback of a sound file

 With STEREO(), there are two p-field values for start times. The first is the

overall start time, which we are familiar with, and designates when to onset the

STEREO() instrument itself. Again, we want the instrument to start right way, so we

choose a start time of 0. Now, STEREO() also includes an input start time, or at what

point within the audio file to begin playback. For example, if we are working with a 30”

sound file and set an input start time of 15, STEREO() will play the sound file starting

at 15”, and then play through to the end. The DUR() command returns the overall

�82

duration of the audio file, so if we are working with a 30” clip, DUR() would return a

value of 30. P-field values for amplitude and panning are dynamic, so those can be 57

updated with a table for more exploration.

 As a first example, we’ll pass the audio from STEREO() to a REV() instrument

using the bus_config() command to add a little bit of reverb to our sound. 58

rtsetparams(44100, 2)
load(“STEREO”)
load(“REV”) //reverb instrument
rtinput(“/path/to/your/file.aiff”) //remember to point to a file on your computer

bus_config(“STEREO”, “aux 0-1 out”) //send audio through an auxiliary line
start = 0
instart = 0 //input start time
duration = DUR()
amplitude = 1.0 //relative, not absolute
pan = 0.5
STEREO(start, instart, duration, amplitude, pan)

bus_config(“REV”, “aux 0-1 in”, “out 0-1”) //receive audio from aux line 0-1 and send
out
type = 1 // 1 is Perry Cook's, 2 is John Chowning's, 3 is Michael McNabb's
rvbtime = 2.5
rvbpct = 0.5
inchan = 0
REV(start, instart, duration + rvbtime, amplitude, type, rvbtime, rvbpct, inchan)

 If we did want to use an input start time of 15, it’s good practice to use 57

duration = DUR() - instart

to ensure that STEREO() will only play for the specified amount of time that you are utilizing within the
audio file itself.

 RTcmix also includes a Schroeder reverb instrument, REVERBIT() and two other reverb instruments 58

worth mentioning at this point are FREEVERB() and GVERB(), which can produce very long and very
smooth-sounding reverberations. RTcmix also includes some room-simulation instruments that are a bit
more complicated to use, but of course the sample scorefiles in the RTcmix package will help you utilize
them correctly. They are ROOM() and PLACE(), which have been updated with enhancements in the
form of MROOM() and MPLACE().

�83

 Score file 23: Adding reverb with bus_config()

 Let’s have a bit of fun with our audio file before passing it to a delay instrument.

We’ll first put it through a loop that will pick random start times within the file and

play them for 0.25 seconds, which corresponds with our increment value. Then using

DEL1() — just one of RTcmix’s delay instruments — we’ll be able to very succinctly

take a copy of the sample in question and play it again at a (you guessed it) random

amount of time.

rtsetparams(44100, 2)
load(“STEREO”)
load(“DEL1”) //delay instrument
rtinput(“/path/to/your/file.aiff”)

bus_config(“STEREO”, “aux 0-1 out”)

increment = 0.25
for(start = 0; start < 100; start += increment){
 instart = irand(0,DUR())
 duration = increment
 amplitude = irand(0,1.0)
 pan = 0.5
 STEREO(start, instart, duration, amplitude, pan)
}

bus_config(“DEL1”, “aux 0-1 in”, “out 0-1”)
start = 0
instart = 0
delay_duration = 30
amplitude = 1.0
envelope = maketable(“line”, 1000, 0,0, 0.1,1.0, 0.9,1.0, 1.0,0)
delay_time = maketable("random", 10.0, "triangle", 1.0, 8.0)
r_ch_amplitude = 1.0 // right channel relative to left channel
DEL1(start, instart, delay_duration, amplitude*envelope, delay_time, r_ch_amplitude)

 Score file 24: Simple delay instrument

�84

 The DEL1() instrument processes a delayed copy of the original sound file (or

input audio source) at a specified delay time in p-field 6, where we’ve opted to

randomize the process using a table of random numbers between 1.0 and 8.0 (seconds)

and processes it in the right channel relative to the original single in the left channel.

The result is a 30 second excerpt of randomly-derived moments of your sound source,

panned across the stereo field according to the makeLFO() command. There are other

delay instruments in RTcmix, including DELAY(), which processes delayed copies of

your signals with a specified feedback parameter. This will afford you to ability create

ping-pong style delay lines (think of the phenomenon of the sound of a ping pong ball

falling toward a table, having enough energy to spring back up, then down, then up,

then down, ever so slightly less and less) and other types of delays according to your

own algorithmic procedures. 59

 Let’s shift focus on to some of the so-called short-term delay effects, such as echo,

doubling, chorus , and flange, all of which are available to us in the RTcmix library of 60

instruments. Each of these effects involve some type of delayed copy of an input source 61

and differ in the amount of overlap or time processed. Let’s first look at PANECHO(),

RTcmix’s echo instrument, which takes input audio and not only provides echo, but

pans it back and forth across the stereo field in the aforementioned “ping pong” style.

rtsetparams(44100, 2)
load("PANECHO") // an echo instrument that includes panning

rtinput(“/path/to/file.aiff“)
bus_config("PANECHO", "in 0-1", "out 0-1")

 See also JDELAY(), which is similar to DELAY(), but provides a p-field for wet/dry mix, DC block, 59

and a low pass filter.

 RTcmix doesn’t have a standalone chorus instrument per se, but does include John Gibson’s lovely 60

JCHOR(), which is a granulated chorus instrument that combines the older, CMIX CHOR() instrument
by Paul Lansky, in conjunction with Doug Scott’s TRANS().

 We could include reverb as another short-term delay effect, but we took a look at it earlier.61

�85

//------------------ping-pong delay
start = 0
instart = 0
duration = 60
amplitude = 1.0
envelope = maketable("window", 1000, "hanning")
channel0delay = 0.25 // in sec
channel1delay = 0.50
delay_feedback = 0.8 // ALWAYS less than 1.0 or a crazy feedback loop ensues!
ringdowndur = 1.0

PANECHO(start, instart, duration, amplitude*envelope, channel0delay, channel1delay,
delay_feedback, ringdowndur)

 Score file 25: Echo with panning via PANECHO()

 Echo is itself a process that delays the signal by about 40 milliseconds or longer

and one super important concept to keep in mind with PANECHO() is the p-field for

feedback, which can get out of hand quickly if it’s accidentally set above 1.0. You’ll note

that the echo plays back in the left channel at a delay time of 0.25 seconds and in the

right at 0.5 seconds, which — along with the feedback time — can be updated using

dynamic tables.

 If a signal is played back with an exact copy of itself that is delayed anywhere

from fifteen to 40 thousandths of a second, the overall effect will be a doubling of the

original signal. You can verify this phenomena by first playing a file back using

STEREO() and seeing its resulting maximum amplitude in the Terminal window, then

doubling the signal with another STEREO() call that is delayed by, say, 0.004 seconds

and seeing its resulting maximum amplitude.

rtsetparams(44100, 2)
load("STEREO")
rtinput(“/path/to/file.wav“)

start = 0

�86

instart1 = 0
instart2 = 0.004
duration = DUR()
amplitude = 1.0
pan = 0.5
STEREO(start, instart1, duration, amplitude, pan)
STEREO(start, instart2, duration, amplitude, pan)

Score file 26: Doubling a signal using STEREO() and requisite delay

 While doubled signals are of course great to use, RTcmix also includes a

wonderful instrument called HOLO(), which produces a “Carver Sonic Hologram”

generator that widens the stereo field. What we’re talking about here with doubling and

HOLO() is really ensuring that — much like normalization— we’re using the most

robust, cleanest, clearest audio source file in our compositions, which can in turn be

processed later. Let’s first use HOLO() to widen our original file and then send it to the

flange instrument.

rtsetparams(44100, 2)
load("HOLO") //phase cancellation
load("FLANGE")

rtinput(“/path/to/file.wav“)

bus_config("HOLO", "in 0-1", "aux 0-1 out")
start = 0
instart = 0
duration = DUR()
signal_amplitude = 0.5 //amplitude of original audio
processed_amplitude = 0.75 //amplitude of "hologram" of signal
HOLO(start, instart, duration, signal_amplitude, processed_amplitude)

bus_config("FLANGE", "aux 0-1 in", "out 0-1")
amplitude = 1.0
resonance = irand(0,1) //percentage, 0-1
maxdelay = 1 / cpspch(9.02) //usually determined as 1 / cpspch(octave.pitch)
moddepth = 25 //percentage, 0-100

�87

modrate = makeLFO("sine", 10.25, 1.0,5.0) //in Hz, fun to use an LFO for this
wetdrymix = 0.8 //percentage, 0-1
FLANGE(start, instart, duration, amplitude, resonance, maxdelay, moddepth, modrate,
 wetdrymix)

Score file 27: Stereo hologram of sound with FLANGE()

 The above score file works really well when processing sounds of speech or other

audio sources that have a particularly noisy spectrum, as the flanger’s periodic shifting

causes cancellation and reinforcement of certain frequencies of your source audio.

 There are many, many more instruments and effects to explore in conjunction

with bus_config(). While this Sonata explored short term delay effects in detail, the

following interlude will focus specifically on subtractive synthesis and digital filters, all

while introducing more complex types of chained connections for further sculpting and

refinement of your sounds.

SONATA IV: A brief RTcmix etude

Using at least three delay effects covered in this Sonata, as well as at least two more

RTcmix effects that you discover on your own via the online documentation, create a

two to three minute etude using chained effects via bus_config(). See how many “aux

in” and “aux out” connections you can make and supplement your etude with a brief

paragraph or two detailing your compositional process as you wrote your work.

�88

|| Interlude IV: A detailed look at bus_config() and connections ||

 In order to begin understanding the connection of instruments in RTcmix in

detail, we’ll need to begin by first exploring one of the oldest CMIX instruments that is

still in use with the program, and little by little begin building complex chains of

connections using some of the more recent additions to the suite of RTcmix tools.

 As alluded to in the Prelude, Paul Lansky’s work with CMIX more or less boiled

down to creating a compositional tool that would afford the user the ability to mix

together various sound files using the C programming language. This early instrument

still exists in RTcmix and you’ll be able to use it without having to first load it using

load() as we’ve become accustomed to thus far. That is because MIX() remains a

critical piece of the RTcmix, and as the online documentation states, MIX() is just

“always there. Always.”

 We’ve already seen MIX() in action when we used STEREO() earlier. This is

because while MIX() has existed from the beginning, STEREO() has more or less

taken over as the main tool for audio file sampling in RTcmix. That isn’t to say,

however, that we can’t still use MIX(), but in order to do so, we need to get used to its

channel matrix. In essence, using either of these two instruments gets to the heart of

connections in RTcmix, namely, taking an audio file in (by loading it) and sending it out

to your sound card.

rtsetparams(44100, 2)
rtinput("/Users/jerod_s/Desktop/bwv20.aif")

duration = DUR()
amplitude1 = makeLFO("sine", 0.3, 0.25,1)
MIX(start = 0, instart = 0, duration, amplitude1, 0, 0)

amplitude2 = makeLFO("sine", 0.4, 1,0.25)
MIX(start = 1, instart = 0, duration, amplitude2, 1, 1)

�89

Score file 28: MIX() with amplitudes in and out of phase

 The above score file takes one input file and mixes it between the left and right 62

channels of the stereo field, delaying one copy of the sound file by one second (the result

is something of a canon or caccia) and introduces a phasing effect to each respective

channel’s amplitude via makeLFO(). The last two p-fields for MIX() can be confusing

for multichannel diffusion , but for stereo output is pretty straightforward: The last two 63

p-fields following the p-field for amplitude delineate the input channel and output

channel. So, in the first call to MIX(), I’m stating that I’d like to have input channel 0

(from “bwv20.aif”) sent to output channel 0. That’s pretty simple to understand, and

you can deduce what 1,1 means in the last two p-fields for the second MIX() call. One

particularly useful strategy for MIX() is to use -1 as an output “destination” in order to

mute that channel.

 Each time you send a sound out of an auxiliary line to another instrument, you

are losing its original constructs, which you might want to use at another point in your

score file. For example, think about a call to WAVETABLE() that is being sent via

“aux 0-1 out” to FLANGE(), which is then sent out to your sound card. Your original

waveform or whatever cool processes that you were doing with WAVETABLE() alone

will forever be subject to flanging, and we’ll cease to hear the original waveforms

themselves. There may be times when you might want to hear both the original sounds

and their flanged results at the same time, but we can’t send a sound out to two places

 The “bwv20.aif” file features my two amazing sight singing classes from the Crane School of Music in 62

the 2014-2015 academic year singing the final chorale from Bach’s “O Ewigkeit, du Donnerwort” in solfege.
It’s a personal favorite and is included as a companion file to this text for your own processing.

 Most readers are probably going to be using RTcmix in stereo, however, there are a number of 63

instruments built for surround sound diffusion. In particular, QPAN() is a fantastic quadraphonic
panning instrument that utilized (x,y) coordinates to diffuse your sound source across the surrounding
audio field. NPAN() is similar, but in addition to the Cartesian placement that QPAN() uses, you can
also move sounds around, circular, in degrees, which is really helpful for 8-channel works. With either of
these instruments, you’ll need to of course call rtsetparams(44100, 8) or something similar to reflect the
number of speakers that you are utilizing in your mix. Your terminal readout will reflect this with peak
amplitudes for channels 0, 1, 2, 3, 4, etc.

�90

simultaneously using bus_config().

bus_config("WAVETABLE", “aux 0-1 out”, “out 0-1”) //ERROR!

 To mitigate this dilemma, we can use SPLITTER(), which affords us the ability

to circumvent the problem of the “one in and one out” methodology of bus_config(). In

essence, SPLITTER() takes inputs and sends them out to multiple outputs, with the

exception that you won’t be able to output to both an auxiliary out and out to your

sound card.

bus_config(“SPLITTER”, “aux 0-1 in”, “aux 2-3 out”, “aux 5 out”, “aux 12-13 out”)// OK

bus_config(“SPLITTER”, “aux 0-1 in”, “aux 2 out”, “aux 7-8 out”, “out 0-1”)// NOT OK

This is a powerful way to control a large number of effects in your score file. Here’s an

example of this technique in action, which sends FMINST() to both a main output and

via an aux send to SHAPE().

rtsetparams(44100, 2)
load("FMINST")
load("SHAPE")
load("SPLITTER")
srand()

// This is how we'll route our sounds
bus_config("FMINST", "aux 0-1 out")

bus_config("SPLITTER", "aux 0-1 in", "out 0-1")
SPLITTER(start = 0, instart = 0, duration = 60, amplitude = 1.0, input_channel = 0,
 amp0 = 1.0, amp1 = 1.0)

bus_config("SPLITTER", "aux 0-1 in", "aux 2-3 out")
SPLITTER(start, instart, duration, amplitude, input_channel, amp0, amp1)

bus_config("SHAPE", "aux 2-3 in", "out 0-1")

�91

//--------------------------FMINST
amplitude = 3000
envelope = maketable("curve", 1000, 0,0,0, 0.2,0.5,10.0, 0.7,0.01,10.0, 0.8,0)
carrier = 7.02
modulator = maketable("random", 3, "even", 440, 550)
min_index = trand(1,10)
max_index = 20 - min_index
pan = makeLFO("sine", 10.125, 1,0)
waveform = maketable("wave", 8, "sine")
guide = maketable("cheby", "nonorm", 10, 0.9, 1.0, 1.0, 0.3, -0.2, 0.6, -0.7, 0.9,
 -0.1, 0.0, -0.25, 1.0, 0.25, -0.125)

FMINST(start, duration, amplitude*envelope, cpspch(carrier), modulator, min_index,
max_index, pan, waveform, guide)

//--------------------------SHAPE
min_distortion = 0.5
max_distortion = 1.0
normalization = 0
input_channel = 0
pan = makeLFO("sine", 0.125, 0,1)
transfer_function = maketable("cheby", "nonorm", 1000, 0.4, -0.25, 0.7, 0.6, 0.7, 0.9)

SHAPE(start = 0, instart = 0, duration, amplitude = 1.0, min_distortion,
 max_distortion, normalization, input_channel, pan, transfer_function)

Score file 29: Multiple outputs with SPLITTER()

 You’ll note that both FMINST() and SHAPE() are utilizing makeLFO() for

panning, albeit with one moving faster than the other. This is to highlight the fact that

SPLITTER() is doing its job and not only taking the frequency modulation sounds

directly to our main output, but also sending them for further sculpting. SHAPE() is a

waveshaping instrument, which is an example of distortion synthesis that utilizes a so-

called nonlinear transfer function to “distort” the incoming signal. This will reshape the

incoming signal by adding the presence of new frequencies to its spectrum. One of my

�92

favorite transfer functions uses Chebyshev polynomials , which are defined as “cosine 64

curves with a somewhat disturbed horizontal scale, but the vertical scale has not been

touched.” 65

 Recall Score File 17 for a moment. When you heard it, you probably remember

that because we called rtsetparams(44100, 1) at the top of our score file — due to the

fact that we were working with mono audio files — we only heard playback in one of our

speakers. Getting that mono input to output to stereo is another useful strategy for

SPLITTER(). At the bottom of the loop in Score File 17, simply add the following

after line 49 (after, of course ensuring that we’ve called on rtsetparams() for stereo

output).

 bus_config("DELAY", "in 0", "aux 0 out")

 DELAY(start, instart = 0, duration = DUR(), amplitude = 1.0, delaytime = DUR())

 bus_config("SPLITTER", "aux 0 in", "out 0-1")
 SPLITTER(start, instart, duration, amplitude, input_channel = 0, amp0 = 1.0,
 amp1 = 1.0)

 Now let’s go back to using an audio sound sample and we’ll then pass it to a

variety of subtractive synthesis instruments, or filters. One of the more important 66

aspects of audio sculpting in electroacoustic music is the use of digital audio filters and

equalization to better refine the amplitudes of frequencies across the audio spectrum in

our compositions. RTcmix boasts a large number of instruments for successfully realizing

filtering in your work and we’ll start with the basics.

 In the case of bus_config(“cheby”) we’re stating that we don’t want the values of our table to be 64

normalized, that we want 1000 points on our graph, and that we want to perform the polynomial equation
at index 0.4. The remaining p-fields denote the “relative strength” of the harmonics at the given index,
whose values can be negative. All of this is to say that we have a way to somewhat determine the
harmonic spectrum of the signal in the waveshaping process.

 This is a direct quote from Forman S. Acton’s book Numerical Methods that Work. 65

 We’re going to spend a lot more time taking a look at subtractive synthesis in Interlude V shortly.66

�93

 Of the many varieties of digital audio filters, there are two whose names are

pretty self-explanatory: Low pass filters will allow frequencies to pass below a specified

cutoff frequency and high pass filters will do the same, albeit passing frequencies above

the cutoff. The signal that is allowed to pass is called the passband and the signal that

is filtered out is called the stopband. Those of you familiar with Pure Data will probably

be thinking about [lop~] and [hip~] objects and how they are used, however; RTcmix

doesn’t differentiate between low and high pass filters as separate instruments, per se, so

instead we’ll need to define specific parameters in one instrument to get the job done.

 The first filter instrument that we’ll explore is ELL(), which is an elliptical

filter. Elliptical filters have sharply defined passbands and stop bands (fast cutoffs), with

a certain amount of “ripple” present at each band. This means that the cutoff 67

frequency that you declare will be pretty well defined and steep in comparison to some

other filters that tend to rolloff a bit more. 68

 In the following scorefile, we’ll take an input sound and send the left channel to a

low pass filter and the right to a high pass filter with randomly derived cutoff

frequencies.

rtsetparams(44100, 2)
load("STEREO")
load("ELL")

rtinput("/Users/jerod_s/Desktop/bwv20.aif")

//some global variables
start = 0
instart = 0

 Right now, we’re at one of those points where this could easily delve more into a detailed description of 67

filter design that again has already been explained way, way better in other introductions to computer
music. I would, however, recommend the Wikipedia entry for digital filters (https://en.wikipedia.org/wiki/
Filter_(signal_processing)), which has some nice looking graphs for elliptical filters, as well as
Butterworth filters, which we’ll explore later on.

 Graphs for elliptical filters look like vertical walls while others look like gently rolling hills. There are 68

many parameters to define the shape and contour of your filter, no matter the type that you are utilizing.

�94

https://en.wikipedia.org/wiki/Filter_(signal_processing))

duration = DUR()
amplitude = 1.0

//read in our audio file and send to an aux line
bus_config("STEREO", "in 0-1", "aux 0-1 out")
STEREO(start, instart, duration, amplitude, pan = 0.5)

// lowpass filter, creating a stopband at around 100 Hz
passbandcutoff = 499 //in Hz
stopbandcutoff = 501
p2 = 0 // this p-field is always 0 for low and highpass filters
ripple = .8 // amount of ripple (0.0 - 1.0)
attenuation = 90 // in dB (higher the number, the steeper the filter)
ellset(passbandcutoff, stopbandcutoff, p2, ripple, attenuation)

ringduration = 1.0 // in seconds (a slight ringing for sound to fade out)

bus_config("ELL", "aux 0 in", "out 0")
ELL(start, instart, duration, amplitude, ringduration)

// highpass filter, creating a stopband at around 1000 Hz
passbandcutoff = 1001
stopbandcutoff = 999
p2 = 0
ripple = .8
attenuation = 90
ellset(passbandcutoff, stopbandcutoff, p2, ripple, attenuation)

bus_config("ELL", "aux 1 in", "out 1")
ELL(start, instart, duration, amplitude = 2.0, ringduration)

Score file 30: Low and high pass filters

 Careful copiers of the above code will hopefully get to the last line and notice

that I’ve asked for an amplitude value of 2.0! This will happen from time to time in

your score files that utilize filtering because we’ve filtered out quite a bit of the audio

spectrum, so there’ll be times like this where we might need to cook the amplitude to

compensate for what might be a pretty quiet portion of your audio file.

 The two most important aspects of ELL() and its design are the p-fields for the

�95

passband and stopband, which go to a subcommand that is unique to ELL() called

ellset(). Note that in order to use a lowpass filter, the p-field for the stopband’s cutoff

frequency needs to be higher than that of the passband and vice versa for creating a

highpass filter. Moreover, these p-fields can be controlled using maketable() in order 69

to sweep along different frequencies in real time.

 At this point, we have two separate, pretty clearly demarcated ideas going on.

During the composition process, you might be asking yourself, “But what more can I do

with this? It’s a good idea to split the high and low pass filtered sounds between the

different stereo channels, but what if I wanted to move those around a bit? Could each

separate sound pan in an interesting way, more or less interacting with the other

sound?”

 The answer to all of this or really any ideas you come up with during your

composing time is of course, yes, but it’s just a matter of identifying the problem at

hand and getting a grasp on how to implement it using the program at your disposal.

Since bus_config() is pretty limitless , we can continue sending our sounds out of it to 70

more aux lines and we can introduce the PAN() instrument to realize our goal here.

rtsetparams(44100, 2)
load("STEREO")
load("PAN")
load("ELL")

rtinput("/Users/jerod_s/Desktop/bwv20.aif")

start = 0
instart = 0
duration = DUR()
amplitude = 1.0

 ELL() will also be able to generate a bandpass filter, which has some variation in its p-fields for 69

ellset() and designates an entire band of frequencies to pass through, with stopbands both above and
below the passband. Looking at a bandpass filter on a graph sort of looks like a small hill that you can
control the steepness of (the bandpass, or, the hill).

 You’d have to have a pretty crazy amount of aux lines going to really test the limit of bus_config(). 70

�96

bus_config("STEREO", "in 0-1", "aux 0-1 out")
STEREO(start, instart, duration, amplitude, pan = 0.5)

passbandcutoff = 499
stopbandcutoff = 501
p2 = 0
ripple = .8
attenuation = 90
ellset(passbandcutoff, stopbandcutoff, p2, ripple, attenuation)

ringduration = 1.0

bus_config("ELL", "aux 0 in", "aux 2 out")
inputchannel = 0
ELL(start, instart, duration, amplitude, ringduration)

pan1 = maketable("line", 10, 0,0, 0.5,1, 1.0,0)
bus_config("PAN", "aux 2 in", "out 0-1")
PAN(start, instart, duration, amplitude, inputchannel, panmode = 1, pan1)

passbandcutoff = 1001
stopbandcutoff = 999
p2 = 0
ripple = .8
attenuation = 90
ellset(passbandcutoff, stopbandcutoff, p2, ripple, attenuation)

bus_config("ELL", "aux 1 in", "aux 3 out")
ELL(start, instart, duration, amplitude = 2.0, ringduration)

bus_config("PAN", "aux 3 in", "out 0-1")
pan2 = maketable("line", 10, 0,1, 0.5,0, 1.0,0)
PAN(start, instart, duration, amplitude, inputchannel, panmode = 0, pan2)

Score file 31: Sweepable panning

 I’ve found that using PAN() as a final instrument call in my score files will

ensure that I’m completely in control of how I’m shaping and sending my sounds in

space.

�97

 It was alluded to in an earlier footnote, but there are a multitude of instruments

that are capable for realizing surround sound directly in RTcmix. That isn’t to say,

however, that you won’t be able to export your sounds as audio files using rtoutput() 71

to bring into your digital audio workstation of choice for not only further refinement,

but also routing to you surround mix.

rtoutput(“/path/to/your/file.aiff”) // save as .aiff (or .wav) file 72

 If you are committed to rerunning your score file that includes saving to an audio

file via rtoutput(), you’ll need to call on the command set_option().

rtoutput(“/path/to/your/file.wav”)
set_option(“clobber = on”) // “clobber = on” will overwrite files.

 There are a number of RTcmix options that can be turned on or off using

set_option() and the online documentation will walk you through all of them. Suffice it

to say that there are quite a few ways to interact with RTcmix and you are free to

customize that experience as much as you’d like to. For example, if I’m running a score

with quite a few iterations through my loops or nested loops, I’ll often use the command

print_off() to prevent the long sequence of commands and parameters that I’m running

from printing to the Terminal. This will keep your Terminal window clean, but won’t

save any time for score file rendering, unfortunately. 73

 With a wide array of instruments at its disposal, RTcmix won’t disappoint when

it comes to completely customizing and designing sound. With a myriad of ways to

 Which will output the requisite number of channels based on rtsetparams().71

 Don’t forget that simply writing rtoutput(“myfile.aiff”) will save the file to your current directory. Tired 72

of only processing audio files? Using rtinput(“AUDIO”) will allow you to prompt your internal microphone
or input from your external sound card. (We’re going to look at interactivity and the real-time processing
of instruments when we explore RTcmix with Pd and Max/MSP.)

 But consider what it must’ve been like before the days of real time synthesis when you’d have to wait a 73

day to hear what your code ended up generating in terms of sound. Quite the world we live in, really.

�98

internally send and receive digitals via bus_config() and SPLITTER(), you’ll be sure

to find yourself incorporating subtle changes to your sounds to better enhance your

compositional experience. Who knows, maybe you’ll find yourself feeling more apt to

algorithmically design a sweepable EQ or completely mix your work in a series of .sco

files and ditch your big box, proprietary DAW all together?

INTERLUDE IV: COMPLEX PANNING ETUDE

Using bus_config() and SPLITTER(), create an etude that focuses nearly exclusively

on panning. Think about ways that you can isolate sounds exclusively to either side of

the stereo field and have them interact in a meaningful way. Could you create a panning

etude that has two sounds constantly crossing over each other at different rates, while

maintaining their unimpeded signal in each’s respective beginning location?

�99

|| Sonata V: Using RTcmix the “wrong” way ||

 Of course there is no “right” or “wrong” way to use RTcmix and the title of this

Sonata shouldn’t instill a feeling that your personal use of the program will inherently

be thought of as either par for the course or unusual in any respect, rather; For the past

few years, I’ve become increasingly interested in a subgenre of electronic music referred

to as “glitch” and the ways that I can achieve those glitch sounds and textures into my

own music using RTcmix. Thus, what follows is a creative exploration of glitch

techniques using RTcmix that in no way “breaks” the program or suggests that we’ll use

it in any way that is unintended. In fact, for me, half of the fun of glitch is using what

are (were?) at one time or another thought of as mistakes in the digital audio domain

(think clicks and pops and distortion, etc.) that can be creatively harnessed into an

exciting sound world.

 Glitch music itself could mean a variety of things, including the suggestion that

the music itself is borne from some form of failure or destruction. One example is the 74

systematic marring of CDs with the intention that they will skip (codified by, among

others, Oval and Yasunao Tone), providing a rhythmic backdrop of unintentional jumps

and clicks. Anyone who has plugged an 1/8” jack into their laptop while connected to a

mixer with the levels up will certainly understand the wonderfully egregious sounds

(glitches) that emanate from your studio monitors.

 Generating glitch sounds don’t always need to come from alterations or cracks in

hardware however, and can be cultivated systematically from digital signal processing

using RTcmix. This Sonata uncovers a few of those processes and hopefully engenders a

willingness to explore the program beyond its perceived functionality. We’ll begin by

looking at quantization noise and aliasing — which will inevitably lead to a brief

discussion of digital audio theory — and move to manufacturing clicks and pops, finally

 A definitive look at the history and discussion of glitch music is undoubtedly Caleb Kelly’s Cracked 74

Media: The Sound of Malfunction.

�100

exploring ways to call on RTcmix instruments beyond their “limits.”

 As mentioned in footnote 31, bit depth is the number of bits available to

represent each sample in the digital domain. In 16 bit audio, there are 65,536 integer

values available to represent the analog signal being sampled (with 44,100 samples/

second in standard CD quality audio). However, analog signals will always be more

accurate than their digital representations and quantization error is the resulting

numerical difference between incoming, continuous analog signals and their discrete

digital representations during the sampling process. This inherently produces noise that

will become far more apparent as the bit depth is lowered. Introducing quantization 75

noise is a simple procedure in RTcmix using the DECIMATE() instrument.

rtsetparams(44100, 2)
load(“DECIMATE”)
rtinput(“/path/to/your/file.aiff”)

inputstart = 0
duration = 3.0
preamplitude = 0.5 //amplitude of original signal
postamplitude = 0.5 //amplitude of decimated signal
bitdepth = 16.0
filtercut = 0
inputchannel = 0
pan = 0.5

for(start = 0; start < 40; start += duration){
 bitdepth -= 2.0 //decrease each time through the loop
 DECIMATE(start, inputstart, duration, preamplitude, postamplitude,
 bitdepth, inputchannel, pan)
 }

Score file 32: Quantization error

 Although introducing a small amount of noise (called dithering) into the sampling process randomizes 75

the amount of error present and will thus eliminate large patterns, or overt blocks, of noisy signal, which
is a common feature of most digital audio workstations during the digital to analog conversion process.

�101

 For this score file, the bit depth is initialized at 16.0 and reduced by 2.0 each time

through our loop. What results is a gradual shift from the clean sound of the original

sampled file to something far more noisy. I’ve found that when sampling crisp sounds

from something like a music box will turn its tones into something akin to an electric

guitar with feedback, for example. There are many ways to refine your decimated

sounds, including experimenting with the amplitude values for the incoming and

decimated signals, as well as going so low as to recreate 1-bit sounds in a simple on/off

scenario, which is great for those who have an affinity for harsh noise.76

 According to the Nyquist theorem, frequencies that can be accurately sampled

are less than or equal to one half of the sample rate. Thus, when sampling frequencies at

44.1 kHz, those frequencies greater than 22.05 kHz will be aliased, or folded over, which

produces inaccurate, noisy representations in the range of frequencies that we can hear. 77

 The following equation is used to find the frequency of the aliased signal in Hertz.

In the score file example that follows, a sine wave is sampled at 39.1 kHz, which when

folded over produces a tone at 5,000 Hz.

a(N) = |s – (N)r|

a = frequency of aliased signal in Hz

s = frequency of sampled signal in Hz

r = sample rate

 Now, whether or not you want to cook your amplitudes above 1.0 for some extra shock value (or 76

Merzbow remix) is up to you, but I will say that (and trust me on this one) caution should be used when
experimenting with these procedures and should preferably should never be realized from the outset using
headphones. Remember that the Terminal provides a readout to let you know if clipping is occurring, as
well as which particular samples are being affected. Thus, turning down the main output volume on the
mixer prior to starting the score file, checking the readout, and slowly increasing amplitude over time will
prevent any surprising, and potentially damaging, aural moments.

 The general, agreed upon range of human hearing is about 20 Hz to 20 kHz, so the Nyquist frequency is 77

pretty safe in that we can’t really hear any of those frequencies above it anyway. Nonetheless, its often a
good idea to utilize a low pass filter around 20 kHz to ensure that no unwanted signal makes its way to
your mix, though this is of course exactly what we’re after here.

�102

N = nearest common multiple (integer) of a and r

a(1) = |39.1 – (1)44.1|

a = |-5|

a = 5 kHz

rtsetparams(44100, 2)
load(“WAVETABLE”)

start = 0
duration = 10
amplitude = 5000
envelope = maketable(“line”, 1000, 0,0, 0.2,1, 0.4,0.5, 0.7,0.5, 1,0)
frequency = 39100 // some frequency > 22.05 kHz (Nyquist frequency)
pan = 0.5
waveform = maketable(“wave”, 1000, “sine”) // sine wave
WAVETABLE(start, duration, amplitude*envelope, frequency, pan, waveform)

Score file 33: Aliased signal

 Outside of the glaring initialization of such an outstanding supersonic frequency,

the aural result of this score file fails to provide anything unusual. However, aliased

score files that utilize wave forms with more robust overtone content that shift

frequencies within a loop structure provide more interesting results. The following

example uses sawtooth waves with a random walk algorithm to change frequencies over

time.

rtsetparams(44100, 2)
load("WAVETABLE")

srand()

envelope = maketable("line", 1000, 0,0, 0.5,1.0, 1.0,0)

�103

frequency = 37100
pan = 0.5
waveform = maketable("wave", 1000, "saw")

for(start = 0; start < 40; start += 1){
 walkvalue = irand(0, 1) // generate random number between 0 and 1

 if(walkvalue <= 0.7){ // decrease by 0.5 Hz freq 70 % of time
 frequency -= 20.5
 }

 else{ // else increase by 0.5 Hz 30 % of time
 frequency += 20.5
 }

 duration = irand(2, 10)
 amplitude = irand(500, 4000)
 WAVETABLE(start, duration, amplitude*envelope, frequency, pan,
 waveform)
}

Score file 34: Aliasing with random walk

 The snaps, clicks, and pops of speaker cones aided by sudden, drastic shifts of

amplitude are some of the more salient features of glitch. Once considered the unwanted

byproducts of the mastering and mixing process — and one of the closest notions of a

“mistake” when working with digital audio that strives for clean signals — these sounds

have been successfully implemented by many artists.

 Using WAVETABLE() will allow us to specify a wave shape with a specific

duration, amplitude, and frequency, as well as a custom waveform. As we are now well

aware, maketable() is able to generate any of a number of graphs, and to generate

clicks, we’ll use a series of line segments denoted by “line”, although “curve” and other

shapes can be specified followed by the number of points in the graph. Again, I like to

represent the specific values (x, y) of the graph in pairs with no spaces.

�104

rtsetparams(44100, 2)
load(“WAVETABLE”)

duration = 1 // total duration
amplitude = 30000
frequency = 2 // initial frequency
waveform = maketable(“line”, 32767, 0,0, 16384,1, 16385,-1, 16386,0, 32767,0)

for(start = 0; start < 20; start += 1){
 // random #s between 0 and 0.5, avoid values > 3
 frequency = irand(0, 0.5)
 pan = irand(0, 1)

 WAVETABLE(start, duration, amplitude, frequency, pan, waveform)
}

Score file 35: Generating clicks from maketable()

 Creating a table with 32,767 points in straight line segments corresponds directly

with 216 samples in 16-bit audio. Using values less than 32,767 table points will begin to

take on a discernible pitch as the distance between each respective point becomes larger.

Moreover, specifying frequency values greater than three should be avoided, as the pop

will cycle through our for() loop fast enough to coalesce into a discernible pitch. This

particular maketable() writes the pop directly in the middle of the graph, going from

the amplitudes 1 to -1 and back to 0. Shifting the frequency values will change the rate

at which the pops occur, though using irand() also gives this score much more of a

“popcorn” effect, as it returns random floating-point values between 0 and 1 each time

through the loop. For a more interesting texture, panning has also been randomly

distributed across the stereo field.

 These particular clicks are intrinsically harsh: Their function is to send the

speaker cone from full compression to complete rarefaction in a nearly indiscernible

amount of time. Playing them back at loud amplitudes over long periods of time can be

�105

damaging to the speakers and the user. However, raw click sounds can be molded into

something much more subtle and beautiful using filters.

rtsetparams(44100, 2)
load("WAVETABLE")
load("ELL")

bus_config("WAVETABLE", "aux 0-1 out”)
bus_config("ELL", "aux 0-1 in", "out 0-1")
srand()
duration = 1
amplitude = 8000
frequency = 2
waveform = maketable("line", 32767, 0,0, 16384,1, 16385,-1, 16386,0, 32767,0)

pbcut = 9000 // passband cutoff frequency in Hz
sbcut = 900 // stopband cutoff frequency in Hz
ripple = 0.2 // amount of ripple (dB)
attenuation = 90 // attenuation at stopband (dB)

ellamp = 9 // filter amplitude
ringdur = .8 // ring-down duration (in sec.)

// passband value > stopband = highpass filter
ellset(pbcut, sbcut, 0, ripple, attenuation)

for(start = 0; start < 20; start += 1){
 frequency = irand(0, 0.5)
 pan = irand(0, 1)

 WAVETABLE(start, duration, amplitude, frequency, 0.5, waveform)
 ELL(start, 0, duration, ellamp, ringdur, 0, pan)
}

Score file 36: Filtering clicks with ELL()

 We will again call on ELL(), our elliptical filter, which is customizable by way of

its p-field commands, and can function as either a high pass, low pass, or band pass

filter. To review, ELL() first requires the ellset() command to specify its parameters

�106

before being called in the score file. This score file uses a high pass filter to accentuate

the sharp, snapping quality of the clicks. To achieve this, the passband cutoff frequency

(9,000 Hz) must be greater than the stop band cutoff (900 Hz). The amount of ripple, or

ringing in the filter, is specified in dB. In this instance, larger values such as 50 dB will

transform the clicks into a discernible pitch, thus the very low value of 0.2 dB. Finally,

the amount of attenuation at the stop band is set to 90 dB, a steep filter that works well

for this intended effect. 78

 After filling out the parameters for ellset(), a few P-field commands need to be

specified for ELL() itself. Outside of the input and output start times, the filter's

duration — set to the same value of WAVETABLE() — amplitude and ring-down

duration need to be declared either as numerical values or again in this instance as

variables. Although panning was set to the center in WAVETABLE(), it was again

randomized within the loop for ELL().

 Panning plays a key role in another useful approach for creating clicks and pops.

Rather than setting the pan value directly in the middle of the stereo field — or even a

random distribution specified with irand() — it is possible to control spatialization

through the makeLFO() command.

rtsetparams(44100, 2)
load(“WAVETABLE”)

duration = 5
amplitude = 2000
envelope = maketable(“curve”, 1000, 0,0,1, 1,1,0, 3,1,1, 4,0)
frequency = 100
pan = makeLFO(“sine”, 5.0, 0.0, 1.0)

 As long as we’re on the subject of using ELL() in our score files, I’d like to point out that culminating 78

your score files using ELL() as a high pass filter set to pass high frequencies above 5 Hz will eliminate DC
offset. There’ll be times when your score files will include a constant amount of signal, that you’ll be able
to literally see when you export your score file as a .wav or .aiff file and import it using your DAW of
choice. You’ll see you waveform graphed out, but it’ll compress and rarefact above the line of unity,
because it is oscillating in moments of pure compression. DC offset literally pushes your speaker cones out
constantly while playing back your sounds, so its best to filter that out.

�107

waveform = maketable(“wave”, 1000, “sine”)

for(start = 0; start < 20; start += 1){
 WAVETABLE(start, duration, amplitude*envelope, frequency, pan, waveform)
}

Score file 37: makeLFO() within loops for clicks

 The frequency for makeLFO() is set at a 5.0 Hz sine wave, slowly oscillating

between 1.0 (stereo left) and 0.0 (stereo right). By using the makeLFO() as a variable

for panning and then putting it in the loop structure, clicks will occur as the pan values

continually reset. One will notice that by simply eliminating the loop and initiating the

WAVETABLE() instrument with a start time of 0 (substitute start with 0), no clicks

will materialize and the score will produce a 100 Hz sine wave for five seconds.

Moreover, the frequency values in makeLFO() can be altered to produce interesting

effects. Frequencies ranging from 0.1 Hz to 20 Hz will simply produce clicks and pops

against the frequency of the sine wave specified in the MAKETABLE() instrument,

while anything greater than 20 Hz will begin to interact with the sine wave, producing a

sound akin to ring modulation.

 The following score file features a series of overlapping and unfolding triangle and

sine waves with aliased frequencies. In its various transformations, this score file

produced much of the music in in my electroacoustic work kernel_panic from about

4'25” to 6’30”.

rtsetparams(44100, 2)
load("WAVETABLE")
load("ELL")

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("ELL", "aux 0-1 in", "out 0-1")

srand()

�108

pbcut = 80
sbcut = 24000
ripple = .8
attenuation = 90

ellamp = 60
ringdur = .1
dur = 1
amp = 9000
// envelope with curved line segments
env = maketable("curve", 1000, 0,0,1, 1,1,0, 3,1,-1, 4,0)
freq1 = 22000
pan1 = makeLFO("sine", 1, 0, 0.5)

freq2 = 20000
pan2 = makeLFO("sine", 3.5, 0.5, 1)

triwave = maketable("wave", 1000, "tri")
sinewave = maketable("wave", 1000, "sine")

for (st = 0; st < 100; st += 1){
 freq1 += irand(0, 40)
 freq2 -= irand(0, 40)
 dur = irand(5, 10)
 pbcut += 5
 sbcut -= 10
 st += irand(0, 3)

 if (st > 60){
 freq1 -= irand(0, 40)
 freq2 += irand(0, 40)
 sbcut += 100
 }

// triangle waves produce discernible pitches, sine waves will click
 WAVETABLE(st, dur, amp * env, freq1, pan1, triwave)
 WAVETABLE(st, dur, amp * env, freq2, pan2, triwave)

 WAVETABLE(st, dur, amp * env, freq1, pan1, sinewave)
 WAVETABLE(st, dur, amp * env, freq2, pan2, sinewave)
}

ellset(pbcut, sbcut, 0, ripple, attenuation)

�109

ELL(start = 0, instart = 0, dur = 100, ellamp, ringdur, 0, 0.5)

// keep dur (p3) as long as total script time

Score file 38: Score file from kernel_panic

Using triangle waves in maketable(“wave”) produces discernible pitches as each

subsequent harmonic frequency is folded over. Conversely, the aliased fundamental

frequencies from the sine waves produce much softer pitched sounds that enhance the

constantly resetting pan values. Moreover, the variables for WAVETABLE() and

ELL() constantly change via the irand() command in the loop. Despite being a

relatively simple score file, it produces a variety of results as its variables — such as

those for frequencies, durations, and filter parameters — are altered. Using a variety of

waveforms and a multitude of envelope shapes further adds to the effect of different

waves entering in canon.

 The Synthesis Tool Kit (STK) was developed by Perry Cook and Gary Scavone

as a means to, among other things, design and port physical modeling instruments to a

variety of programs. One famous example of physical modeling is the so-called “Karplus-

Strong Plucked String Algorithm,” which sends bursts of white noise to a feedback loop

in a short delay line to replicate the phenomena of plucked strings, such as harpsichords

or guitars. In the STK and RTcmix, you can find these plucked string sounds in the

form of the STRUM() instrument. In fact, we encountered one of Brad Garton’s

example score files during our installation of the standalone version of RTcmix, but we’ll

revisit it now in its entirety. 79

/* START:
 p0 = start; p1 = dur; p2 = pitch (oct.pc); p3 = fundamental decay time
 p4 = nyquist decay time; p5 = amp, p6 = squish; p7 = stereo spread [optional]
 p8 = flag for deleting pluck arrays (used by FRET, BEND, etc.) [optional]
*/

 You’ll find this score file and the rest of the STK examples in /path/to/RTcmix/docs/sample_scores. 79

This particular example score file is called “STRUM1.sco.”

�110

rtsetparams(44100, 2)
load("STRUM")
makegen(2, 2, 7, 7.00, 7.02, 7.05, 7.07, 7.10, 8.00, 8.07)

srand(0)
for (st = 0; st < 15; st = st + 0.1) {
 pind = random() * 7
 pitch = sampfunc(2, pind) 80

 START(st, 1.0, pitch, 1.0, 0.1, 10000.0, 1, random())
}

Score file 38: Brad Garton’s STRUM1.sco example

 I made no changes to the example file to give you an example of one of RTcmix’s

original author’s code, which is a tremendously valuable learning experience for anyone

looking to use RTcmix. You’ll note that STRUM() is being loaded, but was called in 81

our loop as START(). The STRUM() instrument proper is really a family of plucked

string instruments, which includes START(), BEND(), FRET(), START1(), BEND1(

), FRET1(), VSTART1(), and VFRET1(). Each has its own unique take on the

plucked string algorithm, and for lack of better words, START() is the most basic,

though it hasn’t been updated for use with maketable(), hence the call to makegen()

for its envelope shape.

 Take a moment to scour Brad’s code and come up with some educated guesses as

to what exactly all of the p-fields represent. You probably came up (going from left to

right) p-field 0 for a start time, then duration, then a value for pitch, and then a series

 While I of course always advocate for you to scour the documentation on your own, you won’t find any 80

reference to sampfunc() on the RTcmix page, so here’s a good resource via Christopher Bailey: http://
www.music.columbia.edu/cmix/algo.html. Once upon a time when RTcmix relied solely on makegen()
routines for drawing tables, utilizing tables of random values couldn’t (obviously) be accomplished using
maketable(), so this is one older style MINC command that is more or less no longer in use. Should you
encounter legacy score file examples like this one that you’d like to explore in more detail but are unsure
of the syntax, do some searching around online and if all else fails, always feel welcomed to email the
RTcmix mailing list.

 Not to mention that, you know, it’s just cool to look at their work. 81

�111

http://www.music.columbia.edu/cmix/algo.html

of values that became ambiguous. P-fields 3 and 4 represent a fundamental delay time

and Nyquist delay time, respectively. Following that is amplitude (absolute, of course)

and a “squish” time. Lastly, a value for pan is declared, which has been randomized. 82

 Let’s have a little bit of fun with this score file and glitch it out just a bit.

rtsetparams(44100, 2)
load("STRUM")

table_number = 2
makegen(table_number, 2, 7, 3.00, 4.02, 7.05, 7.07, 7.10, 8.00, 18.07)

srand()

increment = 0.1
for (start = 0; start < 10; start += increment) {
 pitch_index = random() * 7
 pitch = sampfunc(table_number, pitch_index)
 amplitude = pickrand(500, 10000, 15000, 20000)
 decay = random()
 nyquist_decay = random()
 squish = start
 START(start, duration = increment, pitch, decay, nyquist_decay, amplitude,
 squish, random())
 }

Score file 39: “Glitched" version of Score File 38

 We need to first make sense of the makegen(). This particular type of

makegen() is a type-2, which fills a table with random values, similar to what we’ve

already encountered with maketable(“random”). In this makegen(), we have seven

elements, which are octave point pitch class designators for pitches. In the loop, we’re

calling on each of those elements, randomly, via sampfunc() and a variable for the index

of our makegen() itself, called “pitch_index.” From there, we’ve randomized a number

of parameters and incremented our “squish” value to go from a super hard plectra, to the

 Or, how soft is the item that is “plucking the string?” 0 = super hard while 10 is akin to fleshy pads of 82

fingers.

�112

fattest of fingers. None of this, however, makes our score file particularly glitchy, and

when you’ve played it back, you’ll notice some clicks, but where do they come from?

 Take a closer look at the list of pitches in makegen(). You’ll see that I’ve altered

a few away from the comfortable octave range of 7 and 8 to the extremes, namely 2 and

18. These two octaves fall well outside of the range of frequencies that we could

reasonably expect a more “normal” sized string to be able to play (unless we were doing

something along the lines of Alvin Lucier’s music for long, thin wires), and so these

parameters are essentially breaking the algorithm for pluck strings, at least in the

strictures set by the code that constitutes the START() version of STRUM(), and we

get resulting clicks in our audio, which again can be further refined or sculpted using

filters or delay lines, etc.

 The final example score file in this Sonata draws upon many of the

aforementioned techniques, but introduces the control_rate() command. Each time that

you call upon a table in RTcmix, the program will need to essentially “sample” the table

in question. This is analogous to the way that digital sampling represent waveforms at

44,100 samples/second, and the standard control sampling rate for RTcmix is 1000

times/second. You are able to sample your control function at the sample rate by using

control_rate(44100), but this can be expensive on your CPU and you probably won’t

notice a tremendous difference in the end. However, lowering the control sample rate can

have a deliciously adverse effect on your sounds and can in some instances get you to

the lo-fi “8-bit” sound that you’ve been craving using control_rate(8). 83

rtsetparams(44100, 2)
load("FMINST")
load("WAVETABLE")
control_rate(4) // have fun experimenting with these values
print_off()

 Even though, for example, you may have designed a sine wave using maketable(“wave”, 1000, “sine”), 83

which should in theory garner a pretty nice looking sine wave in the digital domain, setting the
control_rate() to 8 will trump the look of that wave and get you the 8-bit stair-stepped, chip tune-like
sound you’ve been craving all along. Suffice it to say that I adore using control_rate(). (For good and not
evil, of course.)

�113

srand()

//----------- FM
start = 0
notedur = 0.05
amplitude = 20000
carrier_frequency = 22051
carrier_envelope = maketable("line", 100, 0,0, 1,0.5, 80,0.5, 90,0, 100,0)
modulator_frequency = (carrier_frequency * (2 / 3))
modulator_envelope = maketable("line", 100, 0,0, 1,1.0, 90,0.3, 100,0)
max_index = 1
min_index = 1
waveform = maketable("wave", 1000, "sine")
index_wave = maketable("window", 1000, "hanning")

iteration = 0.05

for(start = 0; start < 100; start = start + iteration) {
 pan = random()
 FMINST(start, notedur, amplitude,
 carrier_frequency*carrier_envelope,
 modulator_frequency*modulator_envelope,
 max_index, min_index, pan, waveform, index_wave)

 x = random()
 y = random()

 max_index = (0.166666 * ((x + y) - 20) + 0.5)
 carrier_frequency *= max_index

 if(x <= 0.5){
 modulator_frequency += irand(1, 3)
 min_index = ((x + y) / 2)
 }

 if(x > 0.9){
 carrier_frequency += 100
 modulator_frequency -= 100
 }

 }

//------------ WAVETABLE

�114

start = 0
duration = 4.5
amplitude = 5000
envelope = maketable("line", 100, 0,1, 0.99,1, 1,0)
frequency = 40
pan = makeLFO("sine", 2.0, 0,1)
waveform = maketable("wave", 1000, "tri")

for(start = 0; start < 35; start += 7){
 WAVETABLE(start, duration, amplitude*envelope, frequency, pan, waveform)
 duration += 0.5
 }

Score file 40: Fun with control_rate() 84

 There are any of a number of ways to creatively explore RTcmix and the best

advice for realizing glitches textures in your music is to start with some of the basic

tenets of digital signal processing and don’t be afraid to stretch the perceived limits of

the instrument or command at hand and trust your ears when creatively applying some

of these examples into your own work. The Synthesis Tool Kit is one example of a set of

instruments that may be exactly what you are looking for in a suite of tools to help you

realize some of the more classic sounds of 90s computer music — but like any

instruments in RTcmix — can be further enhanced to extend far beyond its original

intended use.

SONATA V: GLITCH ETUDE

Begin by using an example score file from the RTcmix application itself and step-by-step

alter it to either distort it or glitch it in some meaningful way. Write down each of the

steps that you used to realize your work and present it in a before and after

demonstration for your peers.

 Although it is reserved specifically in the Perl language, reset() will do exactly the same thing as 84

control_rate().

�115

|| Interlude V: More synthesis and modulation ||

 By now, we’ve either briefly discussed or used the sounds of a variety of types of

digital synthesis procedures. This interlude will explore three main tenets of synthesis in

a bit more detail: Additive, subtractive, and granular synthesis, while also discussing

ring and frequency modulation.

 Our very first foray into RTcmix was by way of the innocuous sine wave, which is

one of the most basic waveforms in electronic music. Sine waves are devoid of any

harmonic content, meaning that they singularly sound at a fundamental pitch —

calculated in cycles per second or Hertz (Hz) — and nothing more, which is why they

are sometimes referred to as pure waves. However, by adding sine waves above the

fundamental pitch together at specified amplitudes and frequencies, it is possible to

construct more complex waveforms through additive synthesis.

 The harmonic series is a naturally occurring phenomena that outlines the

respective partials (or harmonics) of any fundamental pitch. For example, a string that

is tuned to 110 Hz will sound at 220 Hz when it is shortened to half of its length. If you

were to half the half, then half the half, etc., you’d find that each respective harmonic

sounds at 330 Hz, 440 Hz, 550 Hz, etc. This harmonic series is critical in constructing

waveforms from scratch. Some of our most basic waveforms in electronic music are, in

addition to the sine wave, square, sawtooth, and triangle waves.

 A triangle wave is built by taking a fundamental pitch and adding only the odd

numbered partials to its spectrum at amplitudes of 1/n2 where n is equal to the partial

number. So, we can build a triangle wave using sine waves at 110 Hz (1.0 amplitude),

330 (0.33), 550 (0.2), 770 (0.14), etc. When built this way in a digital audio workstation,

you’ll find that the more partials that are added, the more discernible your waveform

�116

will begin to look. 85

 Thankfully, RTcmix doesn’t make us do all of the math ourselves when calling for

various waveforms via maketable(“wave”). However, there may be some times when 86

you’d like more control over the constructs of your waveform and maketable(“wave3”)

will be your resource, which gives you the ability to specify not only partials and

amplitudes, but also phase shifts between 0 and 360 degrees.

wave = maketable(“wave3”, 1000, 1,1,0, 3,0.33,45, 5,0.2,90, 7,0.14,120)

 This whole business of constructing waves becomes way more fun when you use

them in conjunction with HALFWAVE(). A versatile instrument, HALFWAVE()

essentially joins two waveforms together with the ability to dynamically update their

meeting point. In the following example score file, I’m taking a variety of waveforms and

randomly selecting from them to construct the two waves that I’ll need for each call to

HALFWAVE() inside of my loop. The most critical part of this process is accomplished

by these two lines of code, which specify the array of waveforms that I’m using as well

as a variable for the length of my array, via len():

wavegamut = {wave1, wave2, wave3, wave4, wave5}
wavegamutlength = len(wavegamut)

 What follows then, is a sort of nebulous, out of tune organ sound that could be

even further refined by finding ways to more creatively design the constituent parts of

each call to maketable(“wave3”).

rtsetparams(44100, 2)

 This is another wholly vague and glossed over explanation of basic additive synthesis, but again, I 85

encourage you to dig into a few introductory texts on your own or a good old fashioned Google search.
Some of my favorite texts that discuss synthesis in a really approachable way are Thom Holmes’
Electronic and Experimental Music and An Introduction to Music Technology by Dan Hosken.

 That isn’t to say that you couldn’t construct a crude triangle wave by using maketable(“wave”, 1000, 86

1.0, 0, 0.33, 0, 0.2, 0, 0.14, 0…).

�117

load("HALFWAVE")
load("REVERBIT")
srand()

bus_config("HALFWAVE", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-1")

totalduration = 60

//------------------------HALFWAVE
start = 0
duration = 1.75

octavegamut = {2, 10, 11}
octavegamut_length = len(octavegamut)

pitchgamut = {0.00, 0.01, 0.04, 0.05, 0.06, 0.08, 0.10, 0.11}
pitchgamut_length = len(pitchgamut)

amplitude = 1000
envelope = maketable("line", 100, 0,0, 0.5,1, 1.0,0)
wave1 = maketable("wave3", 1000, 3.14,1,0, 6.28,1,0.5)
wave2 = maketable("wave3", 1000, 1.00,1,0, 2.00,1,0.5)
wave3 = maketable("wave3", 1000, 1,1,0, 3,0.3,0, 5,0.2,0, 7,0.05,0, 9,0.01,0,
 11,0.001,0)
wave4 = maketable("wave3", 1000, 1,1,0, 2,0.5,0, 3,0.3,0, 4,0.25,0, 5,0.2,0, 6,0.16,0,
 7,0.14,0, 8,0.125,0)
wave5 = maketable("wave3", 1000, 1,1,0, 3,0.14,0, 5,0.04,0, 7,0.02,0, 9,0.012,0,
 11,0.008,0)
wavegamut = {wave1, wave2, wave3, wave4, wave5}
wavegamutlength = len(wavegamut)

wavecrossoverpoint = 0.5
pan = 0.5

increment = 0.5

for(start = 0; start < totalduration; start += increment){
 octave = octavegamut[trand(0,octavegamut_length)]
 nextpitch = pitchgamut[trand(0,pitchgamut_length)]
 pitch = nextpitch + octave

 if(octave == 2){

�118

 duration = 5.0
 pan = makeLFO("sine", 1.25, 0,1)
 HALFWAVE(start, duration, cpspch(pitch)+0.04, amplitude*envelope, wave1,
 wave2, wavecrossoverpoint, pan)
 }

 wave1 = wavegamut[trand(0,wavegamutlength)]
 wave2 = wavegamut[trand(0,wavegamutlength)]

 random_number_x = round(trand(0, 10))
 random_number_y = round(trand(0, 10))
 average_of_random_numbers = ((random_number_x + random_number_y) / 2)
 wavecrossoverpoint = average_of_random_numbers / 10

 pan = random()
 HALFWAVE(start, duration, cpspch(pitch), amplitude*envelope, wave1, wave2,
 wavecrossoverpoint, pan)
 increment = average_of_random_numbers / 7
 }

//-----------------------REVERBIT
start = 0
instart = 0
duration = totalduration
amplitude = 1.0
envelope = maketable("line", 1000, 0,0, 0.4,1.0, 0.9,0, 1.0,0)
revtime = maketable("line", 1000, 0,1.0, 0.5,1.0, 1.0,0.2) //keep these short
revamnt = 1.0 //0-1 (dry to wet)
chandelay = maketable("random", 100, "gaussian", 0.01,2.0)
cutoff = 2000 //low pass filter in Hz
REVERBIT(start, instart, duration, amplitude*envelope, revtime, revamnt, chandelay, c
 cutoff)

Score file 41: HALFWAVE()

 Earlier, we encountered subtractive synthesis using elliptical filters, designing

them as either high or low pass, though we also know that ELL() can set up bandpass

filters as well. If we consider, by way of an example, a high pass filter, we know that its

design specifies a cutoff frequency (Hz) and allow frequencies above that cutoff, in the

passband, to sound while rejecting those that fall below it in the stopband. Recall also

�119

that filters have an amount of ripple at the the meeting point of the pass and stop

bands, which is calculated in dB, and is the ratio of the highest and lowest amplitudes

in the passband. Perfectly flat ripple would have a gain of 0 dB, while increasing the 87

ratio will start to give your filter a ripply, wavy look to it.

 Another versatile filter in RTcmix’s arsenal is BUTTER(), a dynamic

Butterworth filter. 88

rtsetparams(44100, 2)
load("TRANS")
load("BUTTER")
rtinput(“/path/to/file.aif”)
control_rate(8)

bus_config("TRANS", "in 0-1", "aux 0-1 out")
bus_config("BUTTER", "aux 0-1 in", "out 0-1")

//-----------TRANS
start = 0
instart = trand(0,DUR())
duration = 20
amplitude = 1.0
low = octpch(-0.01) //down a m2
high = octpch(0.01) // up a m2
transp = maketable("random", 1000, "gaussian", low,high)
transposition = makeconverter(transp, "pchoct") //convert to oct.pc
TRANS3(start, instart, duration, amplitude, transposition)

//------------FILTER

filt_type = "bandpass"
sharpness = 5
balance = 1

 A great explanation of this — and filters in general — is given in Miller Puckette’s The Theory and 87

Technique of Electronic Music starting on page 225. Those of you who are avid users of Pure Data will
likely want to own a copy of this book.

 Head to this Wikipedia link: https://en.wikipedia.org/wiki/Butterworth_filter for a really great visual 88

comparison of Butterworth filters to the Elliptical filter that we looked at earlier. You’ll see how much
smoother Butterworth filters look in design.

�120

https://en.wikipedia.org/wiki/Butterworth_filter

input_channel = 0
pan = 0.5
bypass = 0 // 0 to filter sound, 1 to bypass
center_frequency = 1500
bandwidth = 250
BUTTER(start, instart = 0, duration, amplitude, filt_type, sharpness, balance,
input_channel, pan, bypass, center_frequency, bandwidth)

Score file 42: Butterworth bandpass filter

 After having a bit of fun with some random transpositions and grittiness via

control_rate(), our Butterworth filter has been initialized as a bandpass, with a center

frequency of 1500 Hz and a bandwidth of 250 Hz. Bandwidth measures the width of the

passband, again in Hz. This p-field can by dynamically updated and only needs to be

included if you are using a bandpass or bandreject filter.

 When it comes to total refinement of your sound, there really is no better

solution than careful equalization, which isn’t necessarily a function of filtering out

certain frequencies, rather; Equalization gives you the ability to attenuate a number of

frequencies in the audio spectrum, thus enhancing or quieting certain bands of sound

that will better direct you to your desired end result and RTcmix’s MULTEQ()

instrument will allow you to attenuate your sounds up to eight bands.

rtsetparams(44100, 2)
load("MULTEQ")

rtinput(“/path/to/file.aif”)

start = 0
instart = 0
duration = DUR()
amplitude = 0.25
bypass = 0

type1 = "lowshelf"
freq1 = makeLFO("tri", 2.25, 20,100)
Q1 = maketable("line", "nonorm", 1000, 0,10, 0.5,1, 1.0,10)

�121

gain1 = maketable("line", "nonorm", 1000, 0,5, 0.25,-10, 1.0,-2)
bypass1 = 0

type2 = "peaknotch"
freq2 = makeLFO("sine", 0.0125, 200,12000)
Q2 = 5
gain2 = maketable("curve", 25, 0,-12,0, 0.25,9,-10, 1.0,0)
bypass2 = 0

type3 = "peaknotch"
freq3 = 15000
Q3 = 0.25
gain3 = maketable("line", "nonorm", 1000, 0,-2, 1.0,12)
bypass3 = 0
MULTEQ(start, instart, duration, amplitude, bypass,
 type1, freq1, Q1, gain1, bypass1,
 type2, freq2, Q2, gain2, bypass2,
 type3, freq3, Q3, gain3, bypass3)

Score file 43: MULTEQ() with p-field updates

 Infinite impulse response (IIR) and finite impulse response (FIR) filters have an

output that is dependent on a series of incoming impulses. IIR filters are infinite because

they are recursive and have some amount of feedback in their design, which FIR filters a

non-recursive. RTcmix will give you the ability to design very complex filters using its

IIR(), FIR(), or FILTERBANK() instruments, but one exciting effect that falls in line

with these principles is the comb filter, accessed by way of COMBIT() or

MULTICOMB().

rtsetparams(44100, 2)
load("STEREO")
load("COMBIT")
rtinput(“/path/to/file.aif”)

bus_config("STEREO", "in 0-1", "aux 0-1 out")
start = 0
instart = 0

�122

duration = DUR()
amplitude = 1.0
pan = 0.5
STEREO(start, instart, duration, amplitude, pan)

bus_config("COMBIT", "aux 0-1 in", "out 0-1")
frequency = maketable("line", "nonorm", 10, 0,0.1, 1.0,100.0) // in Hz
reverbtime = maketable("line", "nonorm", 1000, 0,2.0, 0.2,10.0, 0.75,4.25, 1.0,0.125)
inputchannel = 0
pan = 0.5
ringduration = 2.5
COMBIT(start, instart, duration, amplitude - 0.25, frequency, reverbtime,
 inputchannel, pan, ringduration)

Score file 44: Comb filter with linear frequency growth

 You’ll note that as this score file plays out, the frequency of the comb filter slowly

increments from 1 to 100 Hz over a series of varying reverb times. The result is an

ethereal cascade of sounds as the comb filter rings the incoming sound at the varying

frequencies outlined in our maketable() for p-field 4. When viewed on a graph, you’ll

see why comb filters are aptly named.

 There are a number of filtering and equalizing instruments in RTcmix’s rich array

of tools. As with most sections in this book, it is my hope that your interest will be

piqued enough to head to the documentation and for yourself check out the possibilities

afforded to you by FILTERBANK(), FILTSWEEP(), JFIR(), MULTICOMB(),

MULTEQ(), and others.

 While it has come to mean a few different things in digital music, sampling is an

important component of our work in RTcmix. When we construct a waveform using

maketable() and WAVETABLE() we’re creating a series of samples that in sum create

a wavetable. There are many different procedures that we can realize using wavetables

and when we divide them into several microsonic subparts and play them back rapidly,

�123

we are in the realm of granular synthesis. 89

 Many composers have explored granular synthesis in one form or another and

RTcmix boats a number of instruments that can realize this technique. Here is an

introductory example using John Gibson’s JGRAN() instrument, which defines small

grains using a specified waveform.

rtsetparams(44100, 2)
load("JGRAN")
control_rate(512)

start = 0
duration = 10
amplitude = 5.0 //okay to go above 1.0 for this instrument
seed = srand()

//oscillator type: 0 = wavetable, 1 = FM
type = 1

//randomize oscillator phase? 0 = no, 1= yes
randphase = 1

// grain envelope
genv = maketable("window", 1000, "hanning") // common window function

// grain waveform
gwave = maketable("wave", 1000, "sine")

// modulation frequency multiplier
mfreqmult = maketable("line", "nonorm", 25, 0.0,1.25, 0.5,2.0, 1.0,0.5) // Hz

// index of modulation envelope (per grain)
modindex = maketable("line", "nonorm", 100, 0.0,0.5, 0.33,10.0, 0.66,25.0, 0.99,0.0,
1.0,0)

// grain frequency
minfreq = 100

 “Microsonic” is an intentional nod to the work of Curtis Roads, whose book Microsound is required 89

reading for those interested in the sounds obtained from and the possibilities afforded by granular
synthesis.

�124

maxfreq = 2205

// grain speed
minspeed = 10 //number of grains/second
maxspeed = 1000

// grain intensity (decibels above 0)
mindb = 40
maxdb = 90

// grain density
density = maketable("line", "nonorm", 100, 0.0,1.0, 0.25,0.325, 1.0,0.8)

pan = maketable("random", 100, "gaussian", 0,1)

// grain stereo location randomization, 0 = none, 1 = full randomization
panrand = 1

JGRAN(start, duration, amplitude, seed, type, randphase,
 genv, gwave, mfreqmult, modindex, minfreq, maxfreq, minspeed, maxspeed,
 mindb, maxdb, density, pan, panrand)

Score file 45: Adapted from John Gibson’s JGRAN() help file

 Note that we have quite a bit of control of how these grains of sound interact

with each other over time. Not only can we specify the type of waveform to cull these

grains from — in this case a sine wave — but we can specify an envelope shape for

them, their frequencies, their speed in grains/second, density, intensity, and stereo

location. All of these p-fields are tightly controlled and can be modified in real-time via 90

maketable(). For even greater stochastic control of these grains, Mara Helmuth’s

SGRANR() is a fantastic instrument and we can perform granular synthesis on

 The so-called Hanning and Hamming window functions are pretty typical for grain shapes in granular 90

synthesis.

�125

incoming sound files using GRANULATE(). 91

rtsetparams(44100, 2)
load("GRANULATE")

source = “/path/to/file.aif”
file = maketable("soundfile", "nonorm", 0, source)
filedur = DUR()

start = 0
instart = trand(0,DUR())
duration = 45
amplitude = ampdb(40)
channels = 2
inputchannel = 0

windowstart = 0.0
windowend = random()
wraparound = 1
traverserate = 1.0
table = maketable("window", 1000, "hamming")
hoptime = 0.0625

injitter = 0.0625
outjitter = 0.0125

mindur = hoptime + random()
maxdur = mindur() + random()
minamp = 0.5
maxamp = 2.0

GRANULATE(start, instart, duration, amplitude, file, channels, inputchannel,
 windowstart, windowend, wraparound,traverserate, table, hoptime,
 injitter, outjitter, mindur, maxdur, minamp ,maxamp)

Score file 46: GRANULATE()

 Granular synthesis was a thoroughly heavily explored synthesis technique as RTcmix came of age, so 91

you’ll find quite a few ways to approach it using the program. See also GRANSYNTH(), STGRANR(),
STGRANR2(), and JCHOR().

�126

 Ring modulation is a classic effect in the analog electronic music world and one of

my absolute favorite works that uses the technique is Karlheinz Stockhausen’s Mantra.

Ring modulation involves the multiplication of two signals and in the case of

Stockhausen’s work, we take the complex sound of a piano and multiply it by the simple

signal of a sine wave. This technique can be replicated using the AM() instrument.

rtsetparams(44100, 2)
load("AM")
rtinput(“/path/to/my/awesomefile.wav“)

start = 0
instart = 0
duration = 30
amplitude = 1.0
frequency = makeLFO("sine", 0.1, 30,1000)
inputchannel = 0
pan = 0.5
waveform = maketable("wave", 1000, "sine")
AM(start, instart, duration, amplitude, frequency, inputchannel, pan, waveform)

Score file 47: Ring modulation using AM()

 When applied to an incoming signal, ring modulation produces sidebands, which

are the sum and difference (in Hz) of the signal with the frequency of the modulator.

For example, a 400 Hz tone that is sent to a 100 Hz ring modulator will produce

sidebands of 500 and 300 Hz, respectively. By sweeping the modulator up and down

using makeLFO(), you can hear these sidebands as they ascend and descend, sweeping

across the rich audio spectrum of the incoming signal.

 Frequency modulation (FM) is somewhat more complex than ring modulation,

but its implementation is easy to understand. Discovered by John Chowning, FM

synthesis involves three key components: A carrier frequency, modulator frequency, and

modulation index. With ring modulation, we noted the presence of only one upper and

one lower sideband, however with FM, there are many more sidebands present in the

�127

audio spectrum, producing richer timbral content. The incoming carrier is modulated by

the modulator at a given frequency — generally above the lower threshold of human

hearing so that we can’t perceive the change in pitch, otherwise we get the carrier with

vibrato — while the index calculates the range of deviation between the carrier

frequency and the modulator frequency, or carrier/modulator. Several factors go into

changing the timbre of the resulting sound, such as the waveforms used as the

carrier ,modulator, or the index number, but with a simple implementation comes a

cornucopia of sounds. In fact, John Chowning licensed his patent for FM synthesis to

Yamaha, who in turn created the powerful DX-7 synthesizer, among other instruments. 92

rtsetparams(44100, 2)
load("FMINST")

duration = 2.0
amplitude = 1000
envelope = maketable("window", 1000, "hanning")
carrier = 10
modulator = 110
minindex = 0
maxindex = 1.0
waveform = maketable("wave", 1000, "sine")
index_envelope = maketable("line", "nonorm", 1000, 0,0, 0.5,1.0, 1.0,0)

increment = 0.5
for(start = 0; start < 20; start += increment){
 FMINST(start, duration, amplitude*envelope, carrier, modulator,
 minindex,maxindex, pan = random(), waveform, index_envelope)

 modulator += 110
 maxindex += 0.25
 }

 FM synthesis was highly desired, because you could obtain a rich variety of sounds — brassy, bell-like, 92

percussive — based on a computationally lean algorithm. Those familiar with Pd or Max will of course
have access to FM in a visual diagram, which I encourage you to check out via the help files if you’d like
to try FM synthesis on those platforms for yourself.

�128

Score file 48: Frequency modulation with subsonic carrier

 It is interesting to note how in this score we are using a subsonic carrier

frequency of 10 Hz, which still produces a dazzling array of sidebands given the sine

wave modulator moving up the harmonic series at 110 Hz, with a low modulation index.

 Here is one last FM scorefile, which establishes an interesting groove via a loop

and the use of a “voltage-controlled” filter, designed after the famous Moog VCF. 93

rtsetparams(44100, 2)
load("FMINST")
load("MOOGVCF")
load("PAN")
srand()

//-------------- FMINST
bus_config("FMINST", "aux 0-1 out")
start = 0
duration = 0.125
modulatorfrequency = 440
minindex = 0
waveform = maketable("wave", 1000, "sine")
guide = maketable("line", "nonorm", 8, 0,1.0, 1.0,0)

increment = duration
for(start = 0; start < 500; start += increment){
 carrier = cpspch(pickrand(6.02, 7.05, 5.07, 5.11, 5.02, 5.04, 5.09, 5.11))
 maxindex = irand(0,5)
 amplitude = trand(5000,20000)
 FMINST(start, duration, amplitude, carrier, modulatorfrequency, minindex,
 maxindex, pan = 0, waveform, guide)
 FMINST(start+1, duration, amplitude, carrier, modulatorfrequency, minindex,
 maxindex, pan = 1, waveform, guide)
 }

//------------- MOOGVCF
bus_config("MOOGVCF", "aux 0-1 in", "aux 2-3 out")

 Be careful of the resonance on this filter. One of the defining characteristics of MOOGVCF() is its 93

sharp, resonant peaks and you’ll find a threshold where the filter will self-oscillate, causing feedback.

�129

start = 0
instart = 0
duration = 360
amplitude = 1.0
envelope = maketable("line", 1000, 0,0, 0.25,1.0, 0.9,1.0, 1.0,0)
loophan = 0
pan = 0.5
bypass = 0
centerfrequency = makeLFO("tri", 0.125, 500,12000)
resonance = maketable("line", 1000, 0,0.45, 0.25,0.1, 0.625,0.425, 1.0,0.25) //
careful with these values

MOOGVCF(start, instart, duration, amplitude, loophan, pan, bypass, centerfrequency,
resonance)

//------------- PAN
bus_config("PAN", "aux 2-3 in", "out 0-1")
start = 0
instart = 0
duration = 360
amplitude = 1.0
inchannel = 0
pantype = 1
pan = maketable("random", 1000, "even", 0,1)
PAN(start, instart, duration, amplitude, inchannel, pantype, pan)

Score file 49: FM groove with MOOGVCF()

 The world of synthesis and modulation is far reaching and ripe for more

exploration. While the basic tenents of synthesis as outlined in this Interlude aren’t

themselves malleable, what you do with those tenets in your score files is what makes for

interesting sonic results. We’ve just seen how FM can produce velvety, cascading waves

or be used as the backdrop for a groove-based etude. Depending on the types of

waveforms that you utilize —whether of our basic shapes or something constructed

algorithmically or from known data plots — you’ll find that your results will be

surprising, interesting, and most importantly fun to work with.

�130

INTERLUDE V: SYNTHESIS ETUDE

Create a 2-3’ etude using at least one of the synthesis or modulation procedures outlined

in this section, as well as one that hasn’t yet been covered. Scour the online

documentation for your new instruments’ implementation and be prepared to present its

basic tenets and use for your peers.

�131

|| Sonata VI: Randomness and algorithms ||

 RTcmix’s basic methodology lies in the calling of scorefile commands and

instruments using the MINC parser with real-time handling of p-field parameters. The

elements of C that are found within MINC — not to mention Python — afford us as

users the ability to create well designed algorithms and processes that will enhance our

sound world over time.

 An algorithm is a process or order of operations that brings about a desired

result. We’ve already encountered one example when we explored and wrote out the 3n

+ 1 wondrous number game in score file 16. In it, we not only observed a set of numbers

that were derived from the algorithm itself, but also explored randomness by way of

trand() for determining the original number that onsets the process. Algorithms are

limited only by your imagination and in this Sonata, we will more deeply explore

randomness and algorithmic procedures, creatively utilizing their principles in your

work. 94

 By way of review, we are already familiar with, or have come across srand(),

irand(), trand(), random(), pickrand(), as well as maketable(“random”) and some of

its weighted distributions. I’d say that we’re off to a pretty good start! However, let’s

begin exploring randomness in more detail by focusing on pickrand(), which has been

introduced but not fully explained.

 Recall that an array in MINC is a series of elements that we can draw from in

our score files. If, for example, I’d like to create a C major pentatonic melody, but

choose randomly from the set of pitches that comprise the scale itself, I could begin by

 Because this Sonata is pretty code-heavy and won’t focus so much on making sound, you won’t find 94

examples marked Score file 50, 51, etc., but rather there’ll be an ongoing series of code examples for you
to try and of course save for yourself.

�132

using pickrand(). Carefully copy the following code and run it a few times in your 95

Terminal to compare the results.

srand()
print_off()

notes = {}
for(i = 0; i < 10; i += 1){
 note = pickrand(7.00, 7.02, 7.04, 7.07, 7.09)
 notes[i] = note
 }

print_on()
print(notes)

 You’ll see that each time you execute this score file, you don’t have a great deal

of control over the notes that are chosen at random as we fill our array with random

pitches from pickrand(). However, you can utilize another command called

pickwrand(), which chooses elements based on weighted distributions.

note = pickwrand(7.00,10, 7.02,10, 7.04,20, 7.07,20, 7.09,40)

 Each note in our original set now has a corresponding number to go along with

it, which you’ll see I’ve written in pairs. 7.00 with a corresponding 10 literally means

“choose 7.00 10% of the time.” From this, you can see that I’m favoring the notes E, G4,

and A a bit more than C or D, and A will be picked about 40% of the time. Go ahead

and substitute this new line into score file 50 and check the results. 96

 While it is exciting to know that we can more carefully craft our parameters

 In reality, we’re never really choosing at random since we’re seeding our random number generator to 95

something that can be determined. In this case — as with most — it’s best to say pseudorandom
numbers, but we can stick with random.

 The possibilities are now starting to take shape as we consider these random distributions. What if, for 96

example, you wanted to favor C4 in your melody and also have the duration of each of those notes be
twice as long as the other notes? Or, could you find a way to ensure that all A4s pan to the right?

�133

using random numbers, let’s go one level deeper and create some of these distributions

from scratch.

 We’ll start by choosing random integers between 0 and 10 using trand() and aim

to favor a return of values in the middle, a so-called triangular distribution due to its

high probability of middle values and low probability of low and high values. When the

probability distribution is viewed on a graph, it resembles the shape of a triangle, hence

the name.

srand()
print_off()

gamut = {}
for(i = 0; i < 10; i += 1){
 x = trand(0,11)
 y = trand(0,11)
 element = ((x + y) / 2)
 gamut[i] = element
 }

print_on()
print(gamut)

 In order to get at values weighted toward the middle, we first choose two random

integers and then take the average of them. Since we’re finding a generic list of elements,

I’ve gone with the variable name gamut to denote our array, filling it with the element

variable. Careful readout of your Terminal will show that because we’re taking the

average of two integers, we’ll at times end up with floating point numbers, but we can

mitigate this by rounding up the values for each individual element. 97

element = trunc((((x + y) + 0.5) / 2))

 It’s been a while since we’ve seen trunc(), but recall that it takes off decimal

 I added the print_off() and print_on() commands to ensure that all that is printed to the Terminal is 97

a clean looking array and nothing else.

�134

points, which is our goal here, only after we’ve “rounded up” by adding 0.5 to each of

our elements.

 We can also weight outcomes toward the low or high values of our list.

srand()
print_off()

gamut = {}
for(i = 0; i < 10; i += 1){
 x = trand(0,11)
 y = trand(0,11)

 if(x > y){
 element = x
 }

 else{
 element = y
 }

 gamut[i] = element
 }

print_on()
print(gamut)

 We’re again using two random integers, this time ensuring that each number for

element will be drawn from the highest value returned between x and y, rather than

their average. This is accomplished by our conditional statement “if x is greater than y,

then element equals x, else element equals y. Conversely, we can change the outcome for

element to favor the lower end of the 0-10 spectrum, but I’ll pause here and let you

come up with the solution to that on your own.

 The preceding examples will generate one single outcome, which we can of course

transfer to a loop and then an array to garner a series of elements. However, we do have

the ability to generate and manipulate random numbers in the maketable() command.

�135

gamut = maketable(“random”, 10, “gaussian”, 0,1)
dumptable(gamut)

 A Gaussian distribution is sometimes referred to as a normal distribution and is 98

one of the tried and true “bell curves” that you might be familiar with w/r/t grades.

Like triangular distributions, it has a proclivity toward values in the middle of a given

range, albeit with a slightly different distribution. The dumptable() command will print

the contents of your table to the Terminal window. Moreover, there are a few commands

that will allow you to further manipulate your table data, much like what we saw earlier

with makefilter().

gamut = maketable(“random”, 10, “cauchy”, 30,100)
gamut_plus_one = add(gamut, 1)
gamut_minus_two = sub(gamut, 2)
gamut_times_five = mul(gamut, 5)
gamut_dividedby_two = div(gamut, 2)

dumptable(gamut)
dumptable(gamut_plus_one)
dumptable(gamut_minus_two)
dumptable(gamut_times_five)
dumptable(gamut_dividedby_two)

 Note that we’ve selected a range of 30 to 100 using a Cauchy distribution, which

also has a bell-curve shape, and in this example, we can interpret the outcomes for any

of a variety of musical parameters, including frequency in Hz. If we want to utilize those

values as pitch data for an instrument, we can convert it accordingly.

pitch_gamut = makeconverter(gamut, “cpspch”)

 This will translate all of our values in Hz to octave point pitch class, so that, for

example, a value of 440 will return 7.09. A check of the online documentation will show

 Returning individual Gaussian numbers exists in the JFUNCS() library.98

�136

that there are a number of ways to convert your table data to fit your particular needs.

 If an algorithm is a process or order of operations that will produce an outcome,

then it is important to consider that a well-considered and strongly crafted algorithm

will lead to more effective results. For example, we might implement a random walk to

determine pitch, as we did in score file 15.

srand()
print_off()
pitches = {}
note = 60 //middle C
for(i = 0; i < 24; i += 1){
 x = random()
 if(x < 0.5){
 note += 1 //50% of the time, increase by a half step
 }

 if(x > 0.5){
 note -= 1 //50% of the time, decrease by a half step
 }

 pitches[i] = note
 }

print_on()
print(pitches)

 This particular random walk will return notes one half step up or one half step

down fifty percent of the time, respectively. This is akin to a coin flip, which will vary

over time, but we can reasonably expect our algorithm to have 12 ascending moments

and 12 descending through the loop. We’ve laid a backdrop for our process, but this is

ripe for further refinement. What if, for example, you wanted to favor, ever so slightly,

ascending notes rather than descending? What ratio will you choose? 51/49? 60/40?

Could all ascending notes move up by a whole step while those that descend move by a

half step?

 Moreover, let’s say that we’re writing this wonderful melody for an instrument

�137

that has a limited range. We’ll go with an octave, so we can only choose notes between

60 and 72. We’re going to need to set up some boundaries and another rule for our

random walk once it reaches a boundary point. There are any of a number of ways to

treat this rule, but we’ll go with returning our note to F#, in the middle of our octave

range and a point where we can start this new melody.

srand()
print_off()
pitches = {}
note = 66 //F# above middle C
for(i = 0; i < 24; i += 1){
 x = random()
 if(x < 0.54){
 note += 2 //50% of the time, increase by a half step
 }

 if(x >= 0.46){
 note -= 1 //50% of the time, decrease by a half step
 }

 if(note > 72 || note < 60){
 note = 66
 }
 pitches[i] = note
 }

print_on()
print(pitches)

 We can continue refining and transforming this random walk as much as we’d

like. In order to avoid getting caught up in the myriad of possibilities, I find it helpful to

keep a composition journal that I write in plain english before crafting on the computer.

For this example, I might write something like, “I want a limited range of MIDI pitches

between 60 and 72 that will revolve around 66, or F#. Using a random walk that

slightly favors ascending pitches in whole steps — as opposed to descending half steps —

I’ll create some boundary lines that force the melody back to F# if it surpasses the

octave range. I’m thinking about tying durations into this as well, so that each whole

�138

step corresponds with a longer note duration and greater amplitude each time I reach

F#. I’ll try this out on a MMODALBAR() instrument and maybe add REVERBIT()

…” You get the idea.

 The study of chaos theory is incredibly interesting. Using some of its precepts, we

are able to reasonably predict dynamic outcomes that are highly sensitive to

initializations. One such algorithm that falls under the umbrella of chaos theory is the

so-called logistic map, which among other uses can predict population density based on

initial conditions. While the scope of this text isn’t of course to take any of these

sociological issues into consideration, we do find the the logistic map is incredibly easy

to implement into MINC and provides some wicked fun results from minor deviations.

 Here is the equation itself, which is actually quite simple.

xt + 1 = Rxt(1 - xt)

 We start with initializing two variables, R, which represents a number that

corresponds with the combined effects of birth/death rates, and x, fun concept called

the “fraction of carrying capacity,” which is related to the current population size. In 99

MINC, we’ll use a loop to get our successive values for x and fill them in an array.

R = 2.0
x = 0.5

gamut = {}
for(i = 0; i < 20; i += 1){
 x = ((R * x) * (1 - x))
 gamut[i] = x
 }
print(gamut)

 I’m culling these variables, their explanations, and the sample values from a fantastic book by Melanie 99

Mitchell called Complexity: A Guided Tour, particularly the logistic map section starting on page 27. I
love her quote, “Given this simplified model, scientists and mathematicians promptly forget all about
population growth, carrying capacity, and anything else connected to the real world, and simply get lost
in the astounding behavior of the equation itself.” This is exactly what we’re about to do.

�139

 Our Terminal readout provides nothing to write home about at all, as you’ll note

a sequences of 0.5 values.

[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

 This is just a starting point for the fun involved with this equation, and speaks,

algorithmically, to the beauty of chaotic systems and how they deviate based on minute

changes in initial variables. Try, for example, changing x to 0.2 and check out the

results.

[0.32, 0.4352, 0.49160192, 0.499858944505, 0.499999960207, 0.5, 0.5, 0.5, 0.5, 0.5]

 It’s interesting how we start below 0.5 and then slowly but surely make our way

toward it before the string of repetition onsets. As noted by Melanie Mitchell, if we let R

= 3.1 and x = 0.2, we find that the returning values will eventually oscillate around 0.55

and 0.76. 100

[0.496, 0.7749504, 0.540647060374, 0.769878231097, 0.549213795177, 0.767491807329,
0.553189212337, 0.766229813842, 0.555277227287, 0.765527727245]

 With values for R up to 3.4, this oscillation phenomena will continue. When R is

between 3.4 and 3.5, x will oscillate between four values. With R between 3.54 and 3.55,

x will oscillate between eight values, between 3.564 and 3.565, sixteen values. Thus, x is

relatively predictable for these values for R, but chaos ensures once R = 3.569946, when

x no longer hovers between a set of values and thus shows more chaotic behavior. While

at first blush these values might seem to be completely random, they in fact aren’t, but

closely resemble random behavior.

 I sincerely hope that you’re thinking, “Wow. This is cool. What if I used these for panning values or 100

even transform them so that they oscillate around 0 so as to use them for a cool waveform?”

�140

R = 3.569946
x = 0.5

gamut = {}
for(i = 0; i < 20; i += 1){
 x = ((R * x) * (1 - x))
 gamut[i] = x
 }
print(gamut)

[0.8924865, 0.34255183839, 0.803987811424, 0.56259282557, 0.878499944893,
0.381048152586, 0.841973399124, 0.474996288695, 0.890254621243, 0.348788474365,
0.810859950725, 0.547508663226, 0.884428870981, 0.364900042489, 0.827327850893,
0.509989912316, 0.892130225286, 0.343549777878, 0.805106102693, 0.56016117682]

 What an equation! Let’s take our gamut of data and convert it into something

musically significant, such as pitches for the sitar physical model instrument,

MSITAR() . Before we do that, however, we’ll first need to get our individual pitches

into a range that will reasonably fit into MIDI notes and then Hz. An example might

look something like this:

pitches = gamut * 100
current_pitch = cpsmidi(trunc((pitches[ii]) + 0.5))

 Now we can combine our processes — the logistic map, conversion to a fitting

pitch range — into an example score file that includes all of the requisite p-field data for

MSITAR().

rtsetparams(44100, 2)
load("MSITAR")

R = 3.569946
x = 0.5

pitches = {}
number_of_pitches = 20

�141

//parameters for MSITAR
duration = 5.0
amplitude = 20000
envelope = maketable("line", 100, 0.0,0.125, 0.75,0.75, 1.0,0.0)
pluck = 0.25

for(start = 0; start < number_of_pitches; start += 1){
 x = ((R * x) * (1 - x))
 pitches[start] = x * 100
 current_pitch = cpsmidi(trunc((pitches[start]) + 0.5))
 MSITAR(start, duration, amplitude*envelope, current_pitch, pluck)
 }

Score file 50: MSITAR() pitches from logistic map

 Now if that isn’t the apt soundtrack for a nightmare sequence in a horror film, I

don’t know what is.

 Without a doubt, random parameters and algorithmic procedures play a large

role in much of the music being composed today. With an abiding sense of curiosity and

willingness to research and apply these processes in your own work, I hope that you will

find as much joy and wonderment as I do while composing. There is no doubt that

leaving some musical parameters and elements to chance greatly enhances our

experience with our music and yields surprising, if ultimately fitting, results.

SONATA VI: ALGORITHMIC ETUDE

Compose a one to three minute work that includes one, if not two algorithmic processes.

You might spend some time searching for an interesting equation or process that can be

implemented in MINC and applied to at least two different RTcmix instruments.

Moreover, utilize at least three different random processes or weighted random

distributions in your finished composition.

�142

|| Interlude VI: Pitch transformations ||

 Interlude III left us with a complex Python script that outlined a series of pitch

transformations using the twelve tone system. In the early twentieth century, Viennese

composer Arnold Schoenberg codified a new method of composition that would finally

divorce Western classical music from its evolution of tonality and fully liberate

chromaticism, which is referred to as twelve tone music, serialism, or dodecaphony.

 No worries if that all sounds super confusing, as we’ll take time to fully explain

the notion of pitch and some of the meaningful ways — including Schoenberg’s method

— that we can manipulate pitches in our music using RTcmix.

 Let’s start by rehashing the beginning of Sonata III, where introduced the major

scale. Recall that when looking at a piano, we see black and white keys, with the black

keys laid out in alternating groups of two and three. Looking at the group of two black

keys, we know that the white key adjacent to the leftmost black key is C. Playing from

that particular key up to the next C produces our requisite sequence of half steps and

whole steps that constitutes a major scale with the letter names C, D, E, F, G, A, B,

and again, C representing each individual pitch.

 The low C to the higher C spans an octave and if we include all of the black and

white keys in that octave, we have a total of eleven pitches. Play them all in 101

succession and you’ve just played a chromatic scale!

 If we put each of the notes with their letter name into an array, we might get

something that looks like this:

notes = {“C4”, “C#4”, “D4”, “D#4”, “E4”, “F4”, “F#4”, “G4”, “G#4”, “A4”, “A#4”, “B4”}

 However, let’s abstract our notion of pitch by divorcing each from its letter name

 Twelve, if you count the repetition of C once you get to the top.101

�143

and instead give each note in the chromatic scale a numerical designation.

notes = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

 Now we can see that each C will equal 0, each F will equal 5, each B will equal

11, and so on. This is an important step, as we want to get used to seeing 6 and

immediately thinking F#, or knowing that Bb equals 10, and we’re not super concerned

with octave designation right now, and want to be able to instead think of these notes

as abstract entities that fit within one octave. 102

 There are many different ways that we can manipulate this array or list of

pitches. We can divide our pitches into subsets of the full gamut, creating chords. For 103

example, a C major chord could be constructed out of our array like this:

notes = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
c_major_chord = {notes[0], notes[4], notes[7]}

 Or, we might randomly select three notes from our array to make our chord.

srand()
chord = {}
notes = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
array_length = len(notes)

for(i = 0; i < 3; i += 1){
 new_note = notes[trand(0,array_length)]
 chord[i] = new_note
 }
print(chord)

 For those who don’t have a background in music theory, the # and b can enharmonically represent the 102

same pitch, thus D# and Eb represent the same note on the piano, but we’re going to think of it as 3.

 Recall that we construct arrays in MINC and lists in Python.103

�144

 Our code also works well in Python.

from rtcmix import *
import random
srand()
chord = []
notes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
list_length = len(notes) #returns 12, so take away one to get indices 0-11
print(list_length)

for i in range(0,3):
 new_note = notes[random.randint(0,list_length - 1)]
 chord.append(new_note)

print(chord)

 If we’d rather avoid repeated notes, we can always call upon spray_init(), but

this will work well for now.

 One effective composition method of manipulating pitches is to play your

particular succession in reverse.

pitch_gamut = {0, 1, 2, 3, 4, 5}
array_length = len(pitch_gamut)
gamut_reversed = {}
for(i = 0; i < array_length; i += 1){
 gamut_reversed[i] = pitch_gamut[((array_length - 1) - i)]
 }

print(pitch_gamut)
print(gamut_reversed)

 And in Python:

from rtcmix import *
pitch_gamut = [0, 1, 2, 3, 4, 5]

�145

def reverse(pitches):
 return pitches[::-1]

gamut_reversed = reverse(pitch_gamut)

print(pitch_gamut)
print(gamut_reversed)

 Let’s take a pause to focus on Python for a second. See how thrifty the Python

code looks? This is because we were able to create a function that reverses lists — thus

precluding our need for a loop — using a handy device called list slicing. All arrays in

MINC can be indexed, but in Python, we can uniquely index our lists both forwards and

backwards. So for example if we wanted to access the first element in our gamut of

pitches — just like in MINC — we’d use something like this:

pitch_gamut = [60, 64, 67, 68, 69, 70]
first_pitch = pitch_gamut[0]

 We can can access “68” in two ways, either by our familiar method of reading

from left to right starting at 0, or now backwards.

pitch = pitch_gamut[3] //index 3 = 68
pitch = pitch_gamut[-3] //returns 68 as well

 What if we wanted pitches 64, 67, and 68 in our gamut? For this, we will “slice”

the list.

chord = pitch_gamut[1:4]

 Note how we’re gathering elements one through three in the list. It’s a bit of a

misnomer, since the list slice looks like it’s saying “take elements one through four,” so

you might at first blush expect to return [64, 67, 68, 69]. Instead it’s best to think that

we’re starting with pitch_gamut[x] and ending with pitch_gamut[x - 1], which can be

�146

confusing if you’ve been rocking out on MINC up until now.

 To access our list verbatim, we can simply write:

repeat_gamut = pitch_gamut[:]

 If you leave one end of the slice empty, Python will return only the first or last

set of elements that you are looking for, respectively.

first_three_pitches = pitch_gamut[:3]
last_three_pitches = pitch_gamut[3:]
last_two_pitches = pitch_gamut[4:]

 We’ll return to some heavier Python when the time comes, but let’s get back to

pitch transformations in general. We’ve looked at denoting subsets of our gamut of

pitches and now utilizing them in reverse, but we can also invert them.

 Inversion of pitches is a simple notion that merely involves addition and

subtraction, but with a caveat called mod-12 arithmetic. When we describe pitches in

western music, you’ll find that we only represent them with the letters A, B, C, D, E, F,

and G. Rather than call the next note in this succession “H,” we instead wrap around to

“A” again and repeat our succession. Similarly, in mod-12, we wrap any results above 12

back into the range of 0 - 11, which of course corresponds nicely to our notion of

chromaticism. For example, 8 + 5 = 13 in our numbering system, but in mod-12, 8 + 5

= 1. To understand this, you can think of reaching 12 and then wrapping your way back

down to 1, just like we do on a clock face. Similarly, 8 + 4 = 0 in mod-12.

 Now we’re ready to invert our pitches and to do so we’ll need the mod() function

in MINC and the math.fmod() function in Python.

gamut = {0, 5, 4, 9, 11}
gamut_length = len(gamut)
invert_gamut = {}

�147

for(i = 0; i < gamut_length; i += 1){
 invert_gamut[i] = mod(((gamut[i] - 12) * -1), 12)
 }

print(gamut)
print(invert_gamut)

 And again in Python.

from rtcmix import *
import math

pitch_gamut = [0, 5, 4, 8, 2]

def invert(pitches):
 return [math.fmod(((x - 12) * -1), 12) for x in pitches]

print(pitch_gamut)
print(invert(pitch_gamut))

 Transposing pitches is another useful method for playing around with pitch and is

easy to implement now that we have mod-12 in our tool belt.

pitch_gamut = {0, 5, 4, 8, 2}
gamut_length = len(pitch_gamut)

transpose_gamut = {}
transposition = 2 //transpose by a whole step, or Major 2nd

for(i = 0; i < gamut_length; i += 1){
 transpose_gamut[i] = mod(pitch_gamut[i] + transposition, 12)
 }

print(pitch_gamut)
print(transpose_gamut)

�148

 Now for Python.

from rtcmix import *
import math

pitch_gamut = [0, 5, 4, 8, 2]
transpose_gamut = []

transposition = 7 # up a Perfect 5th

def transpose(input_list, transposition_value):
 return [math.fmod(element+transposition_value, 12) for element in input_list]

print(pitch_gamut)
print(transpose(pitch_gamut, transposition))

 Before we consider Schoenberg’s method of serialism, let’s review. We can declare

arrays or lists of pitches and have the ability to transpose them by a given value. We

can also write them backwards, or in reverse, and can invert them. As we now consider

dodecaphony, we’ll codify these transformations using some specific methods and place

each of our lists or arrays of pitches into a suitable range for RTcmix to play back as

MIDI notes.

 For Schoenberg, composition with twelve tones eliminated the need to write

music that centered around a central, tonal key area. Instead, his method relies solely on

each of the pitches of the chromatic scale and one is not permitted to repeat a pitch

until each note in the chromatic collection has been utilized. Thus, you can see how his

mode of operation totally and completely liberates chromaticism as the central focus of

the music.

 We begin with a twelve note row, sometimes referred to as an aggregate, which

we’ve up until now been calling array, list, or gamut. Just as we encountered with

algorithms, a well-crafted, carefully considered aggregate row form will assist greatly in

�149

the outcome of your work. So, let’s throw caution to the wind and make a row using

chance procedures! 104

srand()
spray_table = 1
spray_size = 12
seed = trand(0,100)
spray_init(spray_table, spray_size, seed)

aggregate = {}

for(i = 0; i < spray_size; i += 1){
 aggregate[i] = get_spray(spray_table)
 }

p_0 = aggregate

 Here is my aggregate row form, which is also called prime form. It’s customary to

say that an non-transposed, prime row is called p0, hence our variable p_0.

 Next, we’ll take our familiar code from above for writing our notes backward and

utilize it to get the retrograde row form, or r0 if it’s not transposed.

retrograde = {}
for(i = 0; i < spray_size; i += 1){
 retrograde[i] = aggregate[((spray_size - 1) - i)]
 }

r_0 = retrograde

 From there, we can can also invert our pitches to get the inverted row form, or i0.

inversion = {}
for(i = 0; i < spray_size; i += 1){
 inversion[i] = mod(((aggregate[i] - 12) * -1), 12)

 We’re going to accomplish all of this in MINC, since Python is going to get to shine again soon.104

�150

 }

i_0 = inversion

 The notion of retrograde inversion row form is the last component of the twelve

tone method. We’ll take the inverted row form and write it backward, designated as ri0.

retrograde_inversion = {}
for(i = 0; i < spray_size; i += 1){
 retrograde_inversion[i] = inversion[((spray_size - 1) - i)]
 }

ri_0 = retrograde_inversion

 So far so good! Here’s the entire score file tidied up with some print statements to

verify our work.

srand()
spray_table = 1
spray_size = 12
seed = trand(0,100)
spray_init(spray_table, spray_size, seed)

aggregate = {}

for(i = 0; i < spray_size; i += 1){
 aggregate[i] = get_spray(spray_table)
 }

p_0 = aggregate

retrograde = {}
for(i = 0; i < spray_size; i += 1){
 retrograde[i] = aggregate[((spray_size - 1) - i)]
 }

r_0 = retrograde

inversion = {}

�151

for(i = 0; i < spray_size; i += 1){
 inversion[i] = mod(((aggregate[i] - 12) * -1), 12)
 }

i_0 = inversion

retrograde_inversion = {}
for(i = 0; i < spray_size; i += 1){
 retrograde_inversion[i] = inversion[((spray_size - 1) - i)]
 }

ri_0 = retrograde_inversion

print(p_0)
print(r_0)
print(i_0)
print(ri_0)

Score file 51: Twelve tone transformations in MINC 105

 Our final task is to put these into a suitable range for MIDI. In Python, we can

accomplish this by creating a new function for MIDI conversion, as we did in score file

21. I like to think of these as starting in octaves spanning C to C, so that I’m

transposing into middle Cs range (60) or an octave higher (72) or lower (48). In MINC,

you can simply add each requisite transposition into your for() loop while constructing

your row forms.

rtsetparams(44100, 2)
load("MMODALBAR")

//---------- MMODALBAR
start = 0
duration = 1
amplitude = 30000

 Pretty much score file 21 in MINC. Take a moment to compare and contrast the two score files. Are 105

you starting to find a preference for one language over the other?

�152

//---pitch stuff
spray_table = 1
spray_size = 12
seed = 12

aggregate = {}
transposition = 48
spray_init(spray_table, spray_size, seed)
for(i = 0; i < spray_size; i += 1){
 aggregate[i] = get_spray(spray_table) + transposition
 }

reverse = {}
invert = {}
retrograde_invert = {}
for(i = 0; i < spray_size; i += 1){
 reverse[i] = aggregate[i - 1] + 60
 invert[i] = aggregate[i - 12] + 72
 }

retrograde_invert = {}
for(i = 0; i < spray_size; i += 1){
 retrograde_invert[i] = invert[i - 1] + 60
 }

hardness = 1.0
position = 1.0
instrument = 4
pan = 0.5

for(start = 0; start < spray_size; start += 1){
 MMODALBAR(start, duration, amplitude, aggregate[start], hardness, position,
 instrument, pan)
 MMODALBAR(start, duration, amplitude, reverse[start], hardness, position,
 instrument, pan)
 MMODALBAR(start, duration, amplitude, invert[start], hardness, position,
 instrument, pan)
 MMODALBAR(start, duration, amplitude, retrograde_invert[start], hardness,
 position, instrument, pan)
 }

Score file 52: Score file 21 in MINC

�153

 Neither score files 21 or 52 might be the most musically edifying composition

right now — just a roving series of MMODALBAR() chords built from dodecaphonic

transformations — but you can now imagine all of the possibilities that you have at

your disposal for further refinement. You could certainly transpose any of these row

forms, change durations, amplitudes, instruments, add effects, etc. 106

 We’ll sum up this sections with a return to Python and some of the incredibly

useful pitch manipulating methods that you can implement thanks to Python’s ability to

define functions. The following examples were culled from Christopher Burns’

“Compositional Algorithms” course at the University of Wisconsin-Milwaukee, which I

had the pleasure of taking in 2007. The course was designed around the LISP

programming language, which I’ve adapted to Python for use with RTcmix.

 We can place conditional tests within our functions to return values based on

their outcomes. For example, if I wanted to return the absolute value of a given number,

I could create a simple test to see if the number in question is either positive or

negative, knowing that tests for absolute value return the number’s distance from zero,

which will intrinsically be positive.

def absolute_value(x):
 if(x >= 0):
 return x
 else:
 return x * -1

print absolute_value(-5)

 This is useful because we can now generate interesting lists of numbers that we

can turn into any form of musical data that we wish, such as generating lists of numbers

according to the Fibonacci sequence up to a determined location.

 If you transpose your prime form up two half steps, you are customarily creating p2. Similarly, if you 106

transpose your retrograde form up five half steps, you’ll have r5.

�154

fibonacci_list = []
def fibonacci(x):
 if(x == 0):
 return 0
 elif(x == 1):
 return 1
 else:
 return (fibonacci(x - 1) + fibonacci(x - 2))

for i in range(0,10):
 fibonacci_list.append(fibonacci(i))

print fibonacci_list #first ten elements in the fibonacci sequence

 From here, we can return to list slicing to hone in an any portions of the

fibonacci sequence that we’d like to use in our score. Here, we’ll can take our list of 107

fibonacci numbers and return them in a palindrome.

def palindrome(input_list):
 return input_list + input_list[::-1]

print palindrome(fibonacci_list)

 However, note that we’ve repeated the top number in our list, 34, as we appended

the original list with its reversed form. To mitigate this dilemma, we can elide the

repeated note all together.

def palindrome_elided(input_list):
 first_half = input_list
 reverse_list = input_list[::-1]
 second_half = reverse_list[1:]
 return first_half + second_half

 For example, take a moment to figure out how you would isolate the numbers 21, 34, 55, and 89 in the 107

list of fibonacci numbers and convert them to frequencies in Hz for use in a WAVETABLE() instrument.

�155

print palindrome_elided(fibonacci_list)

 We’ve failed to thus far utilize repetition of our list of numbers, useful for our

minimalists at heart.

def repeat(input_list, iterations):
 return input_list * iterations

print repeat(fibonacci_list, 4)

 The following score file example sums up our newly codified transformations

using an aggregate twelve note row while also defining functions that will divide the row

into hexachords and rotate the pitches in the hexachords to the left or to the right.

from rtcmix import *

sample_series = (0, 11, 6, 2, 9, 5, 10, 4, 7, 3, 1, 8)

def reverse(input_list):
 return input_list[::-1]
print reverse(sample_series)

def get_first_hexachord(input_series):
 return input_series[:6]
print get_first_hexachord(sample_series)

def get_second_hexachord(input_series):
 return input_series[6:]
print get_second_hexachord(sample_series)

def get_cheap_second_hexachord(input_series):
 return reverse(get_first_hexachord(input_series))
print get_cheap_second_hexachord(sample_series)

def transpose(input_list, transposition_value):
 return [(element + transposition_value) % 12 for element in input_list]
print transpose(get_first_hexachord(sample_series), 10)

�156

def rotate_right(input_list, rotation):
 return input_list[rotation:] + input_list[:rotation]

print get_second_hexachord(sample_series)
print rotate_right(get_second_hexachord(sample_series), 1)

def rotate_left(input_list, rotation):
 return input_list[-rotation:] + input_list[:-rotation]

print get_second_hexachord(sample_series)
print rotate_left(get_second_hexachord(sample_series), 2)

Score file 53: Complex transformations in Python

INTERLUDE VI: PITCH ETUDE

Compose a brief, one minute RTcmix etude that focuses on pitch and various

transformations. Use two instruments that are unfamiliar to you or that you have yet to

use by searching the online documentation. Think of your etude as a small invention for

two voices, so that the pitches between your two instruments interact in a meaningful,

contrapuntal fashion.

�157

|| Sonata VII: RTcmix in Pure Data and Max/MSP ||

 Visual programming languages afford the ability to create complex patches —

akin to our score files or scripts — using a set of patchable objects, messages, and other

tools designed for real-time control and signal processing. Pure Data (Pd) and Max/

MSP (Max) are incredibly popular platforms for realizing your work using the visual

programming paradigm and RTcmix has been adapted for use within either of these

powerful software packages.

 In the mid 1980s, Miller Puckette was at IRCAM in Paris, working on developing

a suite of patchable tools for realizing live, interactive computer music which was

eventually dubbed Max — in homage to Max Mathews — and has been further refined

by David Zicarelli and made available, commercially, through his company Cycling ’74.

Once Max was able to realize the handling of digital signals, it was then called Max/

MSP and after adding libraries of video processing tools, has been known as Max/MSP/

Jitter, though “Max” or “Max/MSP” are interchangeable titles and in the computer

music world, saying that you work with Max is very common and most anyone will

know what you are referring to.

 In 1996, Miller redesigned his code and began offering the open source program

Pure Data, which he continues to maintain under the heading “Pd Vanilla” due to its set

functionality, which differentiates it from “Pd-extended,” a community-curated version

that offers a large set of external libraries, including the powerful GEM library for video

processing. Whether you are working in Pd Vanilla or Pd-extended, most will know

what you are using if you indicate that you are working with Pd.

 Despite their shared lineage, these two programs should really be thought of as

separate entities. Due to its open source nature, Pd is — like RTcmix — completely

customizable, and there is no shortage of documentation for learning how to write your

own objects, add them to your library, or change the existing code that constitutes the

program to personalize your own experience while using it. On the other hand, because

�158

Max/MSP is commercially available, it is curated by a team of paid developers, and

since the recent release of Max 7, boasts a powerful GUI interface that is predicated on

user accessibility — especially geared toward beginning programmers — and a wide

range of pre-designed patchable modules for quickly realizing work in signal processing.

Please know that whatever flavor you choose between Pd and Max is of course up to

you.

 Personally, I enjoy working in both Pd and Max. I first learned visual

programming on Pd and continue to enjoy relying on it nearly exclusively for my work

in live, interactive performances. Because RTcmix was first developed for Max and has

only recently realized functionality in Pd, there was a period of time where I focused my

work on Max if I was going to utilize RTcmix in conjunction with playing live. Again,

there is no shortage of tools available to the computer musician who is working today

and after sampling freely from both Pd and Max in this Sonata, my hope is that you’ll

find a platform that works best for you, aids in your enjoyment while programming and

patching your music, and assists in realizing your tasks quickly and efficiently.

 We’ll begin by downloading both programs. Because Pd is free and open source,

you’ll be able to enjoy it cost free for as long as you’d like. Max will offer a trial version

that has full functionality. While you will eventually need to pay for Max, there are deep

discounts for students and educators alike.

 Head to http://www.puredata.info and make sure to download either Pd-

extended or Pd Vanilla. The extended version is maintained by the Pd community at

large and includes support for video processing and a host of custom tools. By

downloading Vanilla, you’ll get the version of Pd that is maintained by Miller Puckette.

�159

http://www.puredata.info

 By clicking on either link, you’ll be prompted to link to a download for your

platform and will begin the download process on the SourceForge page. Once complete,

you’ll receive a .dmg file that you can double-click on to run the Pd installer, which like

the GUI versions of RTcmix, will do all of the work for you and won’t require any work

in the Terminal. 108

 Now, do the same for getting Max by navigating to https://cycling74.com and

downloading Max 7.

 The download process will again be straightforward and you’ll now have Pd and

Max ready to go in your /Applications. Feel free to place their icons in your Dock if

you’d like to.

 We’ll also need the RTcmix object that runs for each program, respectively. We’ll

first get the version for Max by going back to the RTcmix web page and clicking on the

“rtcmix~” link. The heading for Mac OS X Directories will point to a download link for

the requisite .zip file.

 Don’t worry if that link says “max6” somewhere in its name, as it will run just

fine in our Max 7 application.

 When you downloaded Max, you might’ve missed the fact that you now have a

folder in your /Documents called Max 7, or /User/Documents/Max \ 7. Within that

folder are a few subfolders, one of which is called “Library.” This is where you’ll need to

 For the purposes of this text, all Pd examples were completed using the Vanilla build.108

�160

https://cycling74.com

place the unzipped “rtcmix~_1.92/osx/max6” folder that we just downloaded. The

raison d’être of this “Library” folder is to house all of your so-called external objects and

libraries so that Max can find them once we call upon them in our work.

 Back to Pd. Navigate to https://github.com/jwmatthys/rtcmix-in-pd and click

on the link in the lower right corner of your screen which denotes “Download ZIP.”

 You’ll be downloading a folder called “rtcmix-in-pd-master” which will for now

reside in your /Downloads. Create a folder in your /Documents called “Pd-externals”

where you’ll then move the “rtcmix-in-pd-master” folder into.

 Go ahead and open Pure Data and then open a new patcher window by clicking

command-n or head to the Menu bar and clicking File → New.

 Before we can have fun with RTcmix in Pd, we have one last step. Pd needs to be

able to find your “Pd-externals” folder, so click Pd-extended → Preferences → Path in

the Menu bar and create a new path for Pd that points to the aforementioned externals

folder, then click “Apply” and “OK” and you should be good to go.

�161

https://github.com/jwmatthys/rtcmix-in-pd

 When you open Pd, you have two windows, one is the main Pd window, which

depending on a variety of factors might already have some text printed to it, and the

patcher window, where we will create and interact with our Pd patches. The Pd window

exists to communicate with you if, for example, there is an error in your patch, but you

may also print messages to it in order to verify that portions of your Pd patch are

working correctly. I prefer collapsing the main Pd window a bit and maximizing the

space I have on my Pd window for patching and we’ll begin by creating our first object

in the patcher window. 109

 There are way too many incredibly helpful tutorials, manuals, and YouTube videos dedicated to 109

starting with Pd (or Max). Again, the scope of this text isn’t to be able to use these programs
proficiently, but fundamentally in order to use RTcmix in conjunction with them.

�162

 Type command-1 and you’ll notice that your mouse arrow has changed to a

pointing hand with a rectangular box. This means that your are in edit mode and can

create Pd objects, messages, number boxes, symbols, or comments. Pd runs in two

modes, edit and run mode, which allows you to interact with your Pd patch once you’ve

finished editing it. Type in “rtcmix~ 2” and click away from the rectangular box to

create the object. Be sure to include a space between the tilde and 2.

 For some of you, this is your first Pd object! There are a few things to keep in

mind with Pd (and Max) objects. The first is that they contain inlets and outlets. Inlets

can receive a variety of things, such as audio signals or messages, and outlets will output

the result of the processes that implemented within the Pd object itself. This is part of

the beauty of a visual programming language: We won’t be confronted with lines of text

as we’ve been getting used to in MINC and Python, but we’re now engaging with that

code as it is encapsulated within a tidy, graphical object. In addition, many Pd objects

have a namespace (like rtcmix~ or metro or + or moses) and an argument, which we’ve

denoted as 2 for our object. We didi this because we are specifying two so-called signal

outlets that you can think of as functioning akin to the number of outlets we specify in

rtsetparams().

 Practice getting between edit mode and run mode by typing command-e. As you

move the cursor around, you’ll notice that edit mode features our little hand icon and

run mode retains the familiar arrow. In edit mode, type command-2 to create a message

and type in “bang.” Click away from the message (which isn’t rectangular in shape but

looks like a tiny flag) to create it and hover over its outlet. You should notice a little

target circle appear. Click and hold, then drag your cursor to create a patch line that

can then be connected to the leftmost inlet of the [rtcmix~] object.

�163

 Create another message (command-2) that states “flush” and connect that to the

leftmost inlet of [rtcmix~] as well. Lastly, create a [dac~] object (command-1) and

connect the two signal outlets of the [rtcmix~] object to its corresponding inlets. The

[dac~] object stands for digital-to-analog converter and translates the digital stream of

data coming from our computer to acoustic energy that we can hear via our speakers or

headphones.

 Perfect. Now we are able to go to run mode (command-e again if you aren’t

already there) and click on our [rtcmix~] object. A new editing window should pop up

where you’ll write all of your MINC code.

�164

 Feel free to copy and paste a completed score file here or start from scratch and

build a simple oscillator like I’ve done. It’s important to remember two things at this

point. First, you no longer need to write rtsetparams() or use load() because that

functionality is built into the Pd object itself (same goes for Max, of course). Also, we

need to close this window after we’re done editing to actually load the MINC code into

the object itself.

 Next, go to your main Pd window and click on the box next to “DSP” so that we

can begin processing audio.

 We are ready to hear our score file once we click on the “bang” message that we

created earlier. If all goes well, you should hear your RTcmix script running in Pd! 110

 You can either let the script run its course or click on “flush” to stop rendering it.

Now that we have sound working in Pd and have heard our first script, right-click on

the [rtcmix~] object and select “Help” from the list of options.

 And such a let down, if not. The likely culprit is found in the top Menu bar under Media → Audio 110

Settings. Make sure that these indicate your built-in input and output, or your audio interface if you are
using one. Still nothing? Double check to make sure that you created “bang” with a message (command-2)
and not an object (command-1).

�165

 From here, you’ll be confronted with the object’s help file, which will introduce

you to a number of options for using [rtcmix~] successfully. We’re not going to cover all

of these options verbatim quite yet, but suffice it to say that now that we are in the

visual programming paradigm, you should feel free to click away on any of the messages

or objects that are posted and let the tutorial presented in the help file answer any

pressing questions that you might have at this point.

 We will instead shift our focus to Max/MSP, so go ahead and open Max 7. 111

Type command-n and you’ll see that the presentation for Max is quite a bit different

than Pd. Max opens a patcher that is full of a variety of toolbars on each side of its

window.

 We won’t of course outline these tools in detail, but know that hovering over

them will indicate, very briefly, what each of them are and for the curious, the little icon

that looks like an open book on the right side of the window is a great place to start for

 Take a moment to save your Pd patch by typing command-s and save the .pd file anywhere that you’d 111

like. You might find it useful to save your Pd and/or Max patches to a folder that includes all of your
score files created thus far in conjunction with our work, so that it is easy to find them and call upon
them when you have your Pd or Max patch running, since they’ll be in the same directory.

�166

mini-lessons about Max itself. I might add, however, that typing command-m will 112

access the Max window, which prints errors the same way that the Pd window does,

which can be extremely helpful for debugging your code. You’ll see that this window is

also accessible by clicking on the icon above the open book that we just mentioned on

the righthand side of the patcher window.

 The methodology for Max is exactly the same as it is for Pd. We’re going to

create a variety of patchable objects and messages to realize our work in conjunction

with RTcmix. Let’s start by rebuilding our basic Pd patch that will play RTcmix score

files.

 To create an object in Max, type n. You’ll create messages by typing m. By

typing command-e, you’ll toggle between edit mode and run mode, which is verified by

the little lock icon on the bottom of your patcher window. 113

 As we did earlier, click — well, double-click this time — on the [rtcmix~] object

while in run mode and a scripting window will open. Type or copy/paste some MINC

code into that window and close it to load the code into the [rtcmix~] object. To get

sound, click on the power button in the lower right corner of the patcher window and

 Seriously, these are really fun, include step-by-step video(!) instructions and speak to the mantra of 112

making Max approachable to the absolute beginner.

 You can also click on this lock to toggle between the two modes.113

�167

when you’re ready, click on the “bang” message to hear your work! 114

 So far so good! Now while in edit mode, right-click on the [rtcmix~] object and

open up its corresponding help file.

 I highly encourage you to visit each of the modules contained within the help

patch and for now, we are going to focus on the important concept of internal buffers. 115

 Until now, we’ve been utilizing the [rtcmix~] in a singular fashion. That is, we’ve

only loaded one script at a time into its buffer, which has the ability to recall up to

twenty buffers at a time. Think of it this way: You’ll be able to save up to twenty score

files into one [rtcmix~] object at any given time! After we understand how to implement

this functionality, we’ll see why it is useful for our work.

 Start by creating a new message in your existing Pd or Max patch, called

“setscript 0” and then connect it to the leftmost inlet of the [rtcmix~] object. This way,

 No sound? Head to the Menu and navigate to Options → Audio Status and make sure you are 114

processing sound through your internal speakers or audio interface. The VU meters in the lower right
corner will verify if sound is being processed and can turn your volume up or down as well.

 Feel free to execute the following code in either Pd or Max.115

�168

we’ve stored our current score file — the innocuous sine wave or something that you

copied and pasted — to buffer 0. Then, create another message, this time called

“goscript 0” that will play buffer 0 in just the same way that “bang” did earlier.

 In run mode, first click on “setscript 0” and then click on “goscript 0” and you

should hear your score file again. Double click on the [rtcmix~] object to reopen the

scripting widow and create a new script within it and when you are finished, close the

window. Click “bang” and you’ll hear your new script, which we are going to store into a

new buffer. In edit mode, change the message for “setscript” so that it reads “setscript 1”

and then click on it while back in run mode. Then, create a new message called “goscript

1” and connect it to the leftmost inlet of [rtcmix~].

�169

 We’re now able to click on “goscript 0” to hear our original score file and “goscript

1” to hear the newest script. 116

 To better answer the question of why storing multiple buffers is useful or why,

even, we’re bothering to play back RTcmix scripts in a new paradigm when we’ve been

doing just fine up until now, we need to understand why Pd and Max are useful and

why they are so popular in the world of computer music.

 We’ve yet to touch on the notion that while useful as a sound generating

platform, we can — and most definitely should — present our work in RTcmix in a live

performance setting. While the world of electronic music and more specifically electronic

music using computers is relatively young, it is today very common to see and hear live

performances where laptops and speakers are just as valid an expressive medium as the

piano or violin. While my undergraduate days included an incredible number of hours on

my trumpet, when people invariably ask me, as a musician, “So what do you play?” I

always respond with, “Laptop computer.”

 Pd and Max are beautiful programs to be sure, but one of their more outstanding

features is their ability to assist you with transforming your laptop into the custom

instrument that you might be looking to establish. For example, I’ve been typing and

typing and typing away to create this book, but what if I used all of these keys on my

keypad to trigger notes or events, just the same way that piano keys trigger various

pitches. Could I create a basic instrument that will allow me to control the [rtcmix~]

object in a meaningful way? Well, Pd and Max have a rich array of powerful objects to

assist you with realizing your live work — or any work, for that matter — and let’s get

to answering the above question using a few of them.

 Somewhere above all of the code in your patcher window, create a new object

called [key] and leave room to create a few more items below it. Now, underneath that

 It’s customary to utilize comments in your patch window to help you remember what it is that you did 116

while working on your Pd or Max patch. In Pd, type command-5 to create a comment and place it next to
the object or message in question. For Max, typing c will work.

�170

[key] object, create a number box by clicking command-3 in Pd or i in Max. Connect 117

the outlet of [key] to the inlet of the number box, get back into run mode, and type the

numbers one through zero at the top of your keyboard. You’ll notice that each key has a

corresponding number coming out of the [key] object, which we’re going to use to trigger

the various messages we’ve already written into our patch.

 Create a new object, [select], as well as a number of arguments to correspond

with the numbers that are generated by the [key] object. When [select] receives a

number in its inlet, it produces a bang — which we can think of as a trigger or onset

that will do something useful for us — to its corresponding outlet. For example, I would

like to trigger my first score using the “1” on my keyboard and the second score file

using the “2.” Therefore, I’m going to need to use [select 49 50] as my object with

corresponding arguments. I’ll take it a step further, however, and include the space bar

for playing the currently stored buffer and the delete key for stopping score file

rendering using the “flush” message. 118

 Quick side note. Max differentiates between floating-point numbers and integers, so always be 117

cognizant of this fact. Type i for an integer number box and type f for a floating-point number box. The
Pd number box can compute either of the two types. Be extra careful in Max if you’re trying to do a little
bit of math (again we’re a little past the scope of this text, but it’s good to know anyway) as you’ll need
to create a [+.] object for adding numbers that might be floats, while the [+] object will compute integers
and truncate floating-point numbers in the same way that trunc() does in RTcmix.

 Those of you working in Pd will note that the delete key corresponds with 8 and not 127 as it does in 118

Max.

�171

 You can imagine the versatility that we can create with this patch simply by

storing enough score file buffers into our object to correspond with the top row of

numbers on our keyboard. If you’d like to play with more than twenty buffers, you’ll

need to create a new [rtcmix~] object that can be connected to the same [dac~] object

and filled with its own scripts. 119

 Both Pd and Max have their own set of powerful signal processing objects and

you’ll greatly enhance your experience with these programs when you utilize their DSP

tools in conjunction with RTcmix. Earlier we discussed the notion of ring modulation,

which is very easy to implement in Pd or Max and can add another layer of complexity

and flexibility to our patch.

 We’ll transition back to Pd, but again, all of this can be done in Max using the

same objects and number boxes, albeit with the caveat of specifying floating-point

numbers or integers.

 Disconnect the patch lines from the outlets of [rtcmix~] and [dac~] and create a

bit of space between each of them. We’re going to add the ring modulation effect after

[rtcmix~] using the same methodology that we are familiar with using bus_config(),

albeit with some enhanced control thanks to our visual programs. Recall that ring

modulation multiplies a complex incoming signal with a simple modulating signal to

produce sum and difference tones, or sidebands.

 Both programs include a suite of tools for arithmetic and you can work with

control data or signal data. Any object with the “~” following it will manipulate signals,

which is evidenced by the look of their outlets and patch lines. Create a [*~] object to

multiply signal values and connect one of the outlets of [rtcmix~] into its leftmost inlet.

Next, you’ll create the [osc~] object in Pd or the [cycle~] object in Max to create a sine

wave oscillator. Connect your sine wave to the rightmost inlet of [*~] to complete the

multiplication. Then, connect a number box to the inlet of your [osc~] or [cycle~] object.

 In edit mode, you can highlight entire portions of your patch by clicking, holding, and dragging to 119

surround your selection. Then, use command-d to batch duplicate, but note that your internal buffers will
also be copied into the new [rtcmix~] object.

�172

Finally, connect the outlet of [*~] to both of the inlets for the [dac~] object.

 Double click on a number box, type in the desired value (in this instance, the

frequency of our oscillator), and hit enter. This will store that value to our oscillator,

but we can also click on the number box, hold, and drag up and down to sweep through

our varying sidebands. Pretty fun!

 Suffice it to say that with some research and practice, you’ll quickly gain a great

deal of facility on Pd and/or Max, which will be especially useful for your work with

RTcmix. These two programs greatly enhance the live performance experience, as they

are particularly adept at transforming your laptop into a completely customizable

instrument. Moreover, they are incredibly facile at controlling MIDI data, so mapping

your new USB keyboard or control surface is a cinch. 120

 Our next Interlude will continue our work with Pd and Max and the ways in

 It should be noted, however, that RTcmix contains this functionality via makeconnection(“midi”), which 120

we’ll explore in our Postlude on customization.

�173

which we can use their objects and messages to control p-field data in our RTcmix

scripts in real time as well as ways that we can incorporate acoustic instruments into the

fold for potential electroacoustic works.

SONATA VII: PD OR MAX PATCH

Using the principles outlined in this Sonata, create a Pd or Max patch that includes at

least three stored buffers and is mapped to your keyboard in a way that spells out your

initials or first name. Thus, it will be possible for someone to type your initials or name

into the patch and hear your corresponding RTcmix sounds in a meaningful, well-

sculpted musical etude.

�174

|| Interlude VII: Interactivity ||

 We’ve yet to explore the critical world of interaction with live, acoustic

instruments using RTcmix. With our newfound facility in Pd and Max, we’ll be able to

take live input from a microphone and process it via the [rtcmix~] object, which can be

controlled or further processed, depending on our desired implementation. We’re going

to learn how to capture audio and update p-field parameters from Pd and Max, and

finally utilize all of our tools to create a basic, performance-ready patch.

 Earlier, we were introduced to the [dac~] object, which translates digital data to

analog signal. The [adc~] object does the opposite: It takes real-world acoustic energy

captured by your microphone and translates it to streams of digital data for processing

in our patches. Start with a new Pd or Max patch and create an [rtcmix~] object that is

ready for stereo output. Then, create an [adc~] object and connect its leftmost outlet to

the leftmost inlet of [rtcmix~]. Finally, create a [dac~] object and connect the outlets of

[rtcmix~] to [dac~] the same way we did earlier.

 We’ll also need “bang” and “flush” messages to play our score file once we have

sound ready to process.

�175

 You are free to code your score files in your preferred text editor, or you can

write them directly in the scripting window that pops up once you click on the [rtcmix~]

object. I will say, however, coding in this window runs the risk of losing your work

should Pd or Max crash.

 Up until now, we’ve limited our incoming audio to sound files accessed via

rtinput() pointing to files on our computers. However, now that we are in the Pd/Max

paradigm, we can utilize rtinput(“AUDIO”) to capture audio that is incoming via the

[adc~] object. Remember that we don’t need to call upon rtsetparms() or load() while

using the [rtcmix~] object, so your first line in your score file can be a call to rtinput().

rtinput(“AUDIO”)

 Depending on how you’ve configured your system in Pd or Max to handle

incoming sound, you’ll now be able to process live audio. If you haven’t already done so,

double check your Audio Settings (Pd) or Audio Status (Max) to make sure that

incoming sound is coming from your internal microphone or external, standalone audio

interface with a microphone connected to it.

 We’ll begin with a simple processing example, so let’s add a bit of delay to our

voices as we speak into the microphone.

rtinput("AUDIO")
start = 0
instart = 0
duration = 30
amplitude = 1.0
delay_time = 1.0
r_ch_amplitude = 1.0 // right channel amplitude relative to left channel
DEL1(start, instart, duration, amplitude, delay_time, r_ch_amplitude)

Score file 54: Simple delay of incoming signal

 Before closing the scripting window and clicking on the “bang” message to start

processing sound, make sure that you are processing audio by checking the DSP button

�176

in Pd or the power button in the lower right corner of your patching window in Max.

Also, be sure to wear headphones or the proximity of your internal microphone to your

internal speakers will onset some wicked feedback that we don’t want. 121

 If all goes well, you should be able to hear a delayed copy of yourself as you speak

or sing into your microphone!

 RTcmix will of course stop processing audio after 30 seconds, but what if we’d

like to use this budding Pd or Max instrument’s functionality indefinitely? While we

could amend our duration within the script itself, we can call upon MAXBANG(),

which outputs a bang to the rightmost outlet of [rtcmix~] at a specified time. For

example, we’ll amend score file 54 by indicating a duration of five seconds. We’ll also use

MAXBANG() to output a bang after five seconds, which we can then use to loop our

score file.

rtinput("AUDIO")
start = 0
instart = 0
duration = 5
amplitude = 1.0
delay_time = 1.0
r_ch_amplitude = 1.0 // right channel amplitude relative to left channel
DEL1(start, instart, duration, amplitude, delay_time, r_ch_amplitude)

MAXBANG(5)

Score file 54: Simple delay of incoming signal

 Well, after working through Sonata V, maybe you do like the sound of grating feedback?121

�177

 The object coming out of the right outlet of [rtcmix~] is a bang button, which

you can create by typing shift-command-b in Pd or b in Max. The outlet of this bang

button is connected to the inlet of the “bang” message above, which will create a loop.

After clicking on the original “bang” message, our score file will loop indefinitely, which

we’re going to want some control over. For now, head back to edit mode and disconnect

the patch line from the bang button to and add the following to your patch. 122

 The [gate] object in Max and the [spigot] object in Pd are aptly named. Note

 I’ve included examples for both Pd and Max here as this is one area where the two programs will differ 122

a bit.

�178

how each respective object takes a bang button and the messages “0” and “1” into its

inlets, though they are reversed depending on your program of choice. Functioning like a

gate or spigot, these objects will allow data to pass through it as long as “1” is selected,

and will stop data from passing with a “0” message. In this way, we can control whether

or not our [rtcmix~] object will run indefinitely.

 We’re familiar with updating p-field parameters using table data, however the

[rtcmix~] object can be further enhanced to include a multitude of inlets that will

accept control data from Pd or Max to pass to the internal p-fields. We’re going to need

to create a new [rtcmix~] object with two arguments: “2” for the number of outlets that

we’d like to use, and “1” for the number of inlets that we need. Moreover, let’s connect a

number box to the rightmost inlet of [rtcmix~] and be sure to create it using f in Max

for floating numbers.

 This new inlet can receive streaming numbers from Pd or Max by way of the

makeconnection(“inlet”) command. For example, we’re going to control our delay time

using this inlet and including the following in our score file.

delay_time = makeconnection(“inlet”, 1, 1.0)

�179

 We are now able to transition back to run mode and interact with our delay

times. For example, any number box can be altered by first double clicking on it, 123

typing in your desired number, and clicking enter. Or, you may click on the box, hold,

and scroll up and down to dynamically update values. If, on the other hand, you have a

set series of numbers that you’d like to utilize as delay times, please feel free to create a

set of messages that connect to the requisite inlet of the [rtcmix~] object.

 We could use Pd or Max to generate random numbers to use as dynamic updates

for any of our p-fields that use makeconnection(“inlet”) using the [random] object.

Carefully reconstruct the following snippet of code and prepare to connect it to the

rightmost inlet of your [rtcmix~] object.

 Amend your MINC code to have a duration of 30, as well as MAXBANG(30) so that we can truly hear 123

the changes in delay times.

�180

 Starting with two messages, “bang” and “stop,” we are able to control a

metronome using the [metro] object. Time in Pd and Max is calculated in milliseconds,

so initializing a [metro] object with 1000 will ensure that a bang is sent out of its output

every second. The [random] object accepts bangs into its inlet and once it receives a

bang, outputs a random number between zero and one less the number specified in its

creation argument. In this case, I’m outputting numbers between one and four because

I’ve added a [+] object to add one to each incoming number from [random]. Thus, my

final range of values will be between one and five.

 By turning this metronome on, we can speak or play into our microphones,

continually loop our [rtcmix~] object to render indefinitely, and interact with random

delay times.

 If this is your first time using Pd or Max, I’d like to propose a small challenge.

Now that we have some practice with the methodology of connections in these two

programs, see if you can devise a way that will start your [rtcmix~] script, open your

gate or spigot, and start your metronome all at once using the space bar. Then, map

�181

your delete key to turn all of those elements off at once. 124

 We’re going to shift focus and concentrate instead on a powerful way to interact

with the audio that is incoming via the [adc~] object. One of the most powerful 125

objects in both Pd and Max is [sigmund~], a real-time audio analysis tool that can

return many important strings of data, including pitch.

 If you’d like, go ahead and open a new patch window and save it to your folder of

working Pd or Max patches. Then, code together this small snippet. 126

 Once you have this patched together, make sure that you are set to compute

audio and sing a few pitches into your microphone. If all is working correctly, you should

see some changes and know that [sigmund~] is tracking your pitches in real time and

outputting them as values to your number box!

 Now, we specified notes as an argument for [sigmund~], which outputs MIDI note

values and only shifts values once a change in pitch is interpreted. Change the creation

argument from notes to pitch and observe the difference in the stream of values.

 Let’s revert back to notes and ensure that our values will be rounded up to the

nearest integer value. We’ll also translate those MIDI note values to Hz using the [mtof]

object.

 Growing weary of the sheer number of patch lines turning into a cluttered mess of unruly spaghetti in 124

your patching window? Take a moment to check out the [send] and [receive] objects and read their
corresponding help files.

 Since most of our visual aids have been Max-centric, we’ll include visuals in Pd for this string of 125

concepts.

 Max users will want to use a floating-point number box here.126

�182

 We’ll also create an [rtcmix~] object and a [dac~] object and connect them

accordingly. As a proof of concept, we’re not going to connect the [adc~] object to

[rtcmix~] just yet.

 Turning our attention back to the MINC code within our [rtcmix~] object, we’re

going to introduce a new instrument, MBLOWBOTL(), which we’ll control using our

pitch tracker.

start = 0
duration = 30
amplitude = 30000
pitch = makeconnection("inlet", 1, 261)
noise_gain = 0.25

�183

pressure = 0.75
MBLOWBOTL(start, duration, amplitude, pitch, noise_gain, pressure)

Score file 55: Controlling MBLOWBOTL() within [rtcmix~]

 MBLOWBOTL() is a member of the suite of STK instruments in RTcmix and

replicates the sound produced by blowing over the top of a bottle. Note that sound is

continuous and updates only when we sing or speak into our microphone because we are

using the notes argument in [sigmund~]. 127

 Connect the outlet of [adc~] to the leftmost inlet of [rtcmix~] and clear your

scripting window so that we can explore live processing of our sounds via

VOCODESYNTH(), which is one of RTcmix’s vocoders. The vocoder (voice encoder)

was originally developed as a means of transmitting the human voice over telephone

lines and is a popular synthesis technique for realizing interesting sound effects and is a

common component in analog electronic music. A vocoder generates sounds based on

the spectral characteristics of an input signal that is first analyzed and then synthesized

using any of a number of filters.

rtinput("AUDIO")

start = 0
instart = 0
duration = 30
amplitude = 10

filters = 40
low_center_frequency = 220
interval_spacing = cpspch(0.02) / cpspch(0.0)
transposition = 0.00

 For those who might use or are exploring the pitches argument, take note: When no sound is produced 127

and analyzed, a constant stream of -1500 is sent via the outlet of [sigmund~]. This can have terrible
consequences (painful noise/clipping) if used as a p-field parameter. To mitigate this problem, try using
the [clip] object, which constrains numbers to a set range, so something like [clip 20 500] might do the
trick here.

�184

bandwidth = 0.009
window_length = 0.001
smoothness = 0.98
threshold = 0.0001
attack = 0.001
release = 1.0
high_mix = 0.25
high_center_frequency = 2000

input_channel = 0
pan_frequency = makeconnection("inlet", 1, 5.0)
pan = makeLFO("sine", pan_frequency, 0,1)
carrier_wave = maketable("wave", 1000, "tri")

scalecurve = maketable("curve", "nonorm", 1000, 0.0,0.25,1.0, 1.0,1.0)

VOCODESYNTH(start, instart, duration, amplitude, filters, low_center_frequency,
 interval_spacing, transposition, bandwidth, window_length,
 smoothness, threshold, attack, release, high_mix, high_center_frequency,
 input_channel, pan, carrier_wave, scalecurve)

Score file 56: Robot voice

 Before running this script, let’s cover the constituent parts of

VOCODESYNTH() and amend our Pd or Max patch a bit to best utilize our

interaction with makeLFO().

 We’re using 40 filters in our sound, though you are of course free to play with

that value and make note of the changes. After setting the center frequency of the

lowest in the set of filters, we specify how the remaining center frequencies are

determined, intervalically. In this instance, we are dividing our interval

(cpspch(interval)) by cpspch(0.0), which will return stacks of the interval using equal

temperament. You’ll then see that we are not transposing our incoming sound and are

using very minute values for our filter constructs.

 The real interaction occurs in our p-field for panning. Using our makeLFO()

command, we can dynamically update the frequency of our low frequency oscillator

�185

using makeconnection(“inlet”). Thus, as you sing or whistle or speak pitches that are

higher into your Pd or Max patch, the frequency for our LFO will change accordingly.

 In order to get pitches that are less than 20 Hz — which we want in order to

truly be low frequencies — we need to divide our outgoing pitches from [mtof] by ten, or

more depending on the range of your voice.

 Make note that if the frequency for makeLFO() reaches to or exceeds about 20

Hz, the LFO itself becomes audible and will modulate our vocoder sounds for yet

another level of complexity.

 The following figures sum up the concepts that we’ve covered with Pd and Max,

and are included with all of the ancillary example score files to this book. As with any 128

examples or scripts, they are yours to rewrite, hack, utilize, or amend in any way that

you’d like in order to better realize your sounds.

 They are .maxpat or .pd files, labeled as -interactivity.maxpat or -interactivity.pd, respectively.128

�186

 We’ve merely scratched the surface of the multifarious possibilities afforded to

anyone who is interested in composing interactive music using RTcmix in conjunction

with Pure Data and/or Max/MSP. As noted earlier, Max 7 includes a wide array of

learning tools built right into the program, including videos, tutorials, and of course help

patches. For those who’ll continue with Pd, the FLOSS (Free Libre Open Source

Software) Manual is a tremendous resource, which you can find at http://

en.flossmanuals.net/pure-data/. Moreover, while the site is about to become

obsolete in April of 2016, I’ve found the Max Objects Database (which includes objects

for Pd as well) to be very helpful in finding new objects that are written by the

�187

http://en.flossmanuals.net/pure-data/

community of users and might not come packaged in Pd or Max. Check out http://

www.maxobjects.com for as long as the site is up and running.

INTERLUDE VII: INTERACTIVE PD OR MAX PATCH

Compose an improvisatory work for your instrument or voice that uses pitch tracking to

manipulate a p-field in your RTcmix script. You are free to make your piece as simple or

complex as you like, though exploring graphic notation for your instrumental part is of

course welcomed, as is using an array of RTcmix instruments via bus_config().

�188

http://www.maxobjects.com

|| Postlude: Customization ||

 RTcmix is a totally customizable experience and can be tailored to your

individual tastes and needs. If we look all the way back to our work with installation, we

noticed that there are three different ways to use the program. Moreover, some of you

might have been using RTcmix in conjunction with Python for our entire journey

together, rather than the standard MINC parser. Our work just took us through using

RTcmix in conjunction with Pure Data and Max/MSP. In short, RTcmix shouldn’t be

thought of as software in the same way we view Propellerhead’s Reason audio

workstation, for example. Unlike proprietary software, we don’t need to wait for the

next X.x release to add to our enjoyment or finally include that bit of functionality

we’ve been craving all along. Rather, RTcmix affords us the ability to use it on our own

terms, using only, or adding, the features that we want to utilize. At its heart, RTcmix is

a sophisticated suite of instrument libraries and commands that will assist us in

realizing our music, whatever the platform may be.

 We’re going to wrap up our work with RTcmix by briefly introducing a few of the

customizable features of the program itself. We’ll begin by looking at some of its

graphical possibilities via some ancillary downloads, including printing tables and using

the mouse trackpad as a data source. Then, we’ll explore MIDI and how we can use

USB MIDI controllers in conjunction with RTcmix.

 Earlier, we introduced the concept of envelopes — the ADSR envelope in

particular — and included a few graphs to help us get a sense of each envelope’s shape.

This was especially useful when considering the difference between creating tables using

maketable(“line”) and maketable(“curve”). In order to crate you own graphical tables

using RTcmix’s plottable() command, we’re going to need a few ancillary downloads.

 First, we’re going to need XQuartz, which is found at http://

xquartz.macosforge.org and can be downloaded by clicking on the Quick Download link

and running the installer.

�189

http://xquartz.macosforge.org

 This is a version of the X Window System for Mac OS X, which allows our

computers to run non-Apple software that is specifically reliant on the X Window

System for its graphical user interface, which we are going to be using in our last

download, AquaTerm.

 Next, we’ll download AquaTerm by visiting http://sourceforge.net/projects/

aquaterm/files/?source=navbar and clicking on the link for the .dmg image.

 Double click on the .dmg and run the package installer, which will place

AquaTerm in your /Applications.

 Lastly, head to http://www.gnuplot.info in order to download gnuplot, a graphics

utility for the command line. Navigate to the release link for Version 5.0, which will take

you to the SourceForge website.

 From there, you can click on the link for the .tar.gz package, which should

�190

http://sourceforge.net/projects/aquaterm/files/?source=navbar
http://www.gnuplot.info

initiate your download.

 Once that is complete, double click on the .tar package, which will create a folder

called “gnuplot-5.0.0” in your /Downloads, which you can of course move to /

Applications if you’d like to. Similar to our process for downloading RTcmix on the

command line, you’ll want to open your Terminal and change directories to your /

gnuplot-5.0.0 location and install the package using ./configure, then make, and make

install as a three step process. Don’t forget to include the aquaterm flag in the same way

that we configured RTcmix for Python earlier.

cd /path/to/Applications/gnuplot-5.0.0

./configure -—with-aquaterm

make

make install

 We’re all set for including graphics and plotting tables with RTcmix! Check your

work by opening score file 15 and adding the following to your script. 129

plottable(envelope)

 It doesn’t really matter where you place this bit of code, but for clarity’s sake, add it after line eight 129

where we created our envelope.

�191

 Not only can we plot tables, but the new graphics window will allow us to use

our trackpad as a source for real-time data via makeconnection(“mouse”).

rtsetparams(44100, 2)
load("STEREO")
rtinput("/Users/jerod_s/Desktop/organ-test.aif")

start = 0
instart = 0
duration = DUR()
amplitude = makeconnection("mouse", "y", 0,1, default = 0.5, lag = 50)
pan = makeconnection("mouse", "x", 1,0, default = 0.5, lag = 50)
STEREO(start, instart, duration, amplitude, pan)

Score file 57: Using data from trackpad

 Amplitude data is tracking on the y axis and pan data on the x axis of our mouse

window, which you can see is set in the second p-field of makeconnection(“mouse”).

�192

 From there, we set a range of values — written in pairs — as well as a default

value to use when starting our script, a lag time in milliseconds to smooth out changes

in values. If we didn’t specify a lag time, we’d hear clicks and pops as we drag our

cursor around our window.

 For many, the use of USB MIDI controllers is a way to enhance the experience of

playing live, due to the array of buttons, knobs, and sliders that can be utilized to alter

data in their program of choice. We can use MIDI data with RTcmix in two ways and

we’ll first explore MIDI control in Pd and Max, then look at MIDI control natively in

RTcmix itself.

 My current controller of choice is the Livid block, which is made by Livid

Instruments, though, sadly, the unit is now out of production. I enjoy using this

particular controller because of its sheer number of buttons, which I can use to trigger

events in RTcmix, and its corresponding row of eight knobs.

�193

Photo courtesy of lividinstruments.com

 Any knob, button, or slider has a corresponding value associated with it, much

like we observed with the [key] object in Pd and Max. Thus, it will be possible to select

any of those values for use in our patch and then passed to the [rtcmix~] object via

makeconnection(“inlet”).

 Take a moment to ensure that your USB-connected MIDI controller is hooked up

to your computer and then open Pd or Max. In Pd, we’re going to need to visit the

Menu bar and select Media → MIDI Settings. From there, you’ll be able to select your

input and output MIDI devices. In this case, I’m looking for my block controller and

once you find yours, click on “Apply” and then “OK.”

 If you are using Max/MSP, head to the Menu bar for Options → MIDI Setup and

select your controller.

�194

http://lividinstruments.com

 We aren’t going to be concerned with passing MIDI messages out of Pd or Max,

so it’s not imperative to select your controller as an “Output” device, but it’s a good

habit to do straight away as Pd and Max will save your settings the next time you open

the program, in case you do eventually want to pass MIDI messages out to an outboard

synthesizer, for example.

 Depending on your program of choice, take time to carefully code out the

following in a new patching window and pay particular attention to the subtle

differences in the Max patch, such as the need to specify floating point number boxes.

�195

 The [ctlin] object outputs three numbers. The leftmost outlet is the actual control

value, which is a stream of numbers from 0-127 that corresponds with the range of

numbers in the Musical Instrument Digital Interface (MIDI) protocol. The middle outlet

references the control number, which in this case is the far left slider toward the bottom

of my Livid block. Each time I move that slider, [ctlin] will output a “9” as that is the

referential number associated with that particular slider. The far right outlet

corresponds with the MIDI channel assignment, which we aren’t concerned quite yet.

 The range 0-127, while useful, can be amended. In this case, I’m dividing that

range of numbers by 127, in order to put them in the range of 0-1. That way, I can use

them for, say, amplitude values in my script. Moreover, the [sel] object (short for

“select”) will ensure that my [gate] or [spigot] is open only when I move the slider in

question.

 Here is a simple score file for testing this patch now that we have control over at

least one aspect of our script.

rtinput("/path/to/file.aif")

start = 0
instart = 0
duration = DUR()
amplitude = makeconnection("inlet", 1, 0.0)
pan = 0.5
STEREO(start, instart, duration, amplitude, pan)

Score file 58: Amplitude control using MIDI data from Pd or Max

 The only real advantage in constructing our MIDI mapping in Pd or Max is of

course the chance to add any Pd or Max-specific elements to our work. RTcmix is

equipped with the ability to make care of its own MIDI work in-house, so to speak,

using set_option() and makeconnection(“midi”).

�196

rtsetparams(44100, 2)
load("STEREO")
rtinput("/path/to/file.aif")

set_option("midi_indevice = block")

default = 0
lag = 25
channel = 1
slider1 = makeconnection("midi", 0.0,1.0, default, lag, channel, "cntl", value = 9)

STEREO(start = 0, instart = 0, duration = DUR(), amplitude = slider1, pan = 0.5)

Score file 59: MIDI input using makeconnection(“midi”)

 In order to correctly identify your controller for the set_option(“midi_indevice”)

command, you’ll need to open your Audio MIDI Setup application, which is found in

your /Applications/Utilities folder. Once you have that opened, click command-2 to

open the MIDI setup window, which will list your controller.

�197

 In my case, my computer recognizes my controller as “block,” so I’ll change that

accordingly in my call to set_option(). I could use my M-Audio Trigger Finger

controller by declaring set_option(“midi_indevice = USB Trigger Finger”).

 We will need to know which channel our controllers are sending MIDI data

through, which you can find by either clicking on your controller’s icon in Audio MIDI

setup or checking our the number from the rightmost outlet of [ctlin] in Pd or Max.

 You’ll see that we’re creating a connection to the slider1 variable, which includes

a desired range of values (0.0 - 1.0), a default value, lag time, channel number, the type

of data that we’re looking for, and the corresponding number associated with our slider.

 This block controller has 64 buttons that I also use in performance. These

buttons are treated similarly to piano keys on a MIDI keyboard controller, in that they

correlate with pitches and are different from control data. In Pd or Max, you can get

data from these buttons or keys by using the [notein] object and in RTcmix, you’ll need

to specify “noteon” instead of “cntl” in p-field six.

 It can’t be stressed enough: RTcmix is a completely customizable suite of open

source tools. If there’s one overarching mantra of this book, it’s that you are free to use

RTcmix in any way that you wish. It plays well with MINC, Python, Pd, Max/MSP,

MIDI controllers, and even iOS and Android. Constantly evolving, it is curated by a

strong community of users and continues to receive upgrades, enhanced functionality,

and exciting new features that will ensure it continues to be a powerful choice for

electronic and computer musicians for years to come.

�198

|| Appendix: 100 progressive score files ||

 The following examples were copied, culled, and edited from a year-long project I

set forth for myself in 2013, aptly called Script Calendar. For the entire calendar year —

in an effort to truly understand RTcmix from a variety of angles — I wrote a complete

score file for each day. It was a wonderful, personal exploration and one that I am proud

to have gone through and my hope is that these 100 score files serve you well as you

learn the program for yourself.

 If this book is being used in conjunction with a semester-long class, then 100 files

will more or less provide you with the ability to rewrite one of them each day during the

term, with a few days here and there for a day off. I find that like any language or skill,

it is only possible to truly learn and gain facility through small, daily practice and

immersive, hard work. These score files are now yours, to copy, hack, alter, and sculpt

into your own compositions and I sincerely hope that you have as much fun with them

as I did when I worked them out myself.

//Day 1
print(“Hello World!”)

//Day 2
x = 12.6
printf("the variable x equals: %f, %s \n", x, "C-style printing, diff from using print”)

//Day 3
rtsetparams(44100, 2) //set sample rate, num channels
load("WAVETABLE") //load instrument
WAVETABLE(0, 5, 3000, 440, 0.5) //start, duration, amplitude, frequency, pan

//Day 4
rtsetparams(44100, 2)
load("WAVETABLE")
envelope = maketable("line", 1000, 0,0, 0.1,0.8, 0.8,0.5, 1.0,0) // add envelope
WAVETABLE(0, 5, 3000*envelope, 440, 0.5) //sine tone

//Day 5
rtsetparams(44100, 2)
load("WAVETABLE")
envelope = maketable("line", 1000, 0,0, 0.1,0.8, 0.8,0.5, 1.0,0)
wave = maketable("wave", 1000, "saw") // sawtooth wave
WAVETABLE(0, 15, 8000*envelope, 440, 0.5, wave)

//Day 6
rtsetparams(44100, 2)
load("DECIMATE")
rtinput(“/path/to/your/file.wav“)
envelope = maketable("line", 1000, 0,0, 0.1,1.0, 0.5,1.0, 1.0,0)
pan = makeLFO("sine", 0.3, 0,1)
DECIMATE(0, 0, DUR(), 0.5, 0.8*envelope, bitdepth = 2, 0, pan)

//Day 7
rtsetparams(44100, 2)

�199

load("WAVESHAPE")
frequency = makeLFO("sine", 0.1, 400,10000)
envelope = makerandom("prob", 10, -1.0,1.0,0,0)
pan = makerandom("prob", 10, -1.0,1.0,0,0) //random panning
wave = maketable("wave", 1000, "sine")
transferfunction = maketable("cheby", 1000, 0.9, 0.3,-0.2,0.6,-0.7)
indexguide = maketable("line", 1000, 0,0, 3.5,1, 7,0)
WAVESHAPE(0, 20, frequency, 0, 1, 8000*envelope, pan, wave, transferfunction, indexguide)

//Day 8
rtsetparams(44100, 2)
load("AM")
rtinput("/Users/jerod_s/Desktop/SC9.aiff")
env1 = maketable("literal", 1000, 0,0, 2,1, 3,0.5, 7,0.5, 1,0)
env2 = makerandom("prob", 10, -1.0,1.0,0,0)
pan1 = makeLFO("saw", 8.5, 0.3, 0.7)
pan2 = makeLFO("buzz", 0.2, 0, 1.0)
wave = maketable("line", 1000, 0,-1.0, 0.5,1.0, 0.51,-1.0, 1.0,0) //ugly sawtooth wave
AM(0, 0, DUR(), 8.0*env1, 25025, 0, pan1, wave) // aliased carriers
AM(2, 0, DUR(), 8.0*env2, 25050, 0, pan2, wave)

//Day 9
rtsetparams(44100, 2)
load("MBLOWBOTL")
makegen(1, 5, 1000, 0.1, 50, 1, 50, .8, 600, .8, 300, 0.1) //old-style envelope
increment = 1
for(start = 0; start < 50; start += increment){
 amplitude = irand(40000, 80000)
 duration = irand(0.1, 4.0)
 pan = pickwrand(0.0,40, 0.5,20, 1.0,40)//target-value, probability(%)
 frequency = irand(0.1, 18) //subsonic
 MBLOWBOTL(start, duration, amplitude, frequency, noise = 0.3, pressure = 0.5, pan)
 increment = irand(0.1, 0.8)
 }

//Day 10
rtsetparams(44100, 2)
load("WAVETABLE")
load("SHAPE")
bus_config("WAVETABLE", "aux 1 out")
waveform = maketable("wave", 1000, “saw124")
WAVETABLE(0, 30, 10000, 0.34, 0, waveform)

bus_config("SHAPE", "aux 1 in", "out 0-1")
amp = maketable("line", 1000, 0,0, 9,1, 10,0) * 0.25
pan = makeLFO("buzz", 0.4, 0,1)
transferfunction = maketable("random", 10, "triangle", -1.0,1.0)
indexguide = maketable("window", 1000, "hanning")
SHAPE(0, 0, 30, amp, min=0, max=3.0, 0, 0, pan, transferfunction, indexguide)

//Day 11
rtsetparams(44100, 2)
load("AMINST")
control_rate(2000) //reset update rate

duration = 1
amplitude = 8000
envelope = maketable("window", 1000, "hanning") //smooth
modulatoramplitude = maketable("line", 1000, 0,0, 1,1, 2,0)
carrierwave = maketable("wave", 1000, "buzz9")
modulatorwave = maketable("wave", 1000, "sine")
carrierfrequency = cpspch(8.00)
modulatorfrequency = cpspch(8.02)
increment = 0.5

for(start = 0; start < 20; start += increment){
 AMINST(start, duration, amplitude*envelope, carrierfrequency, modulatorfrequency,
 pan = 0.5, modulatoramplitude, carrierwave, modulatorwave)
 carrierfrequency += 2
 modulatorfrequency -= 7
 duration = irand(2, 5) * 3.14
 }

//Day 12
rtsetparams(44100, 2)
load("WAVETABLE")
randomtest = irand(0, 100)
duration = 60
amplitude = 5000
frequency = cpspch(7.11)

�200

waveform = maketable("wave", "nonorm", "nointerp", 2000, "sine")
pan = makeLFO("sine", "nointerp", 5.0, 0,1)

increment = 1.0
for(start = 0; start < 120; start += increment){
 if(randomtest < 50){
 duration = 5
 }
 else{
 duration = 10
 }
 WAVETABLE(start, duration, amplitude, frequency, pan, waveform)
 WAVETABLE(start, duration, amplitude, frequency - 10.5, pan, waveform)
 }

//Day 13
rtsetparams(44100, 2)
load("WAVETABLE")
load("ELL")
bus_config("WAVETABLE", "aux 0-1 out")
bus_config("ELL", "aux 0-1 in", "out 0-1")
amplitude = 5000
wavetype = maketable("line", 32767, 0,0, 16384,1, 16385,-1, 16386,0, 32767,0)
pbcut = 1000 // passband cutoff frequency in Hz
sbcut = 90 // stopband cutoff frequency in Hz
ripple = 0.2 // amount of ripple (dB)
attenuation = 90 // attenuation at stopband (dB)
ellamp = 9 // filter amplitude
ringdur = .8 // ring-down duration (in sec.)
for(start = 0; start < 80; start += irand(0, 1)){
 frequency = irand(0, 1.0) / 7
 duration = irand (0, 1)
 pan = makeLFO("sine", 0.5, 0, 1)
 pbcut += irand(100, 400)
 WAVETABLE(start, duration, amplitude, frequency, 0.5, wavetype)
 WAVETABLE(start+1, duration+frequency, amplitude, frequency, 0.5, wavetype)
 ellset(pbcut, sbcut, 0, ripple, attenuation) // passband value > stopband = HPfilter
 ELL(start, 0, duration, ellamp, ringdur, 0, pan)
 }

//Day 14
rtsetparams(44100, 2)
load("FMINST")
duration = 0.7
amplitude = 5000
envelope = maketable("line", 1000, 0, 0, 3.5,1, 7,0)
carrier = cpspch(7.00)
modulatorfrequency = 220
minindex = 0
maxindex = 10
pan = maketable("random", 5, "gaussian", 0,1)
waveform = maketable("wave", 1000, "sine")
guide = maketable("line", "nonorm", 1000, 0, 0, 5,1, 7, 0)

increment = 0.25
for(start = 0; start < 100; start += increment){
 duration = irand(0.01, 0.8)
 FMINST(start, duration, amplitude*envelope, carrier, modulatorfrequency, minindex, maxindex, pan,
 waveform, guide)
 carrier = cpspch(irand(2.07, 8.09))
 guide = maketable("line", "nonorm", 1000, 0,1, 7,0)
 FMINST(start+1, duration*4, amplitude, carrier, modulatorfrequency, minindex, maxindex, pan, waveform,
 guide)
 maxindex = irand(10, 15)
 increment = irand(0, 1)
 }

//Day 15
rtsetparams(44100, 2)
load("WIGGLE")
amplitude = maketable("line", "nonorm", 1000, 0,0, 0.1,2000, 5,4000, 10,2000)
pitch = 2.03
envelope = maketable("curve", 2000, 0,0,2, 2.5,1,0, 13,1,-3, 25,0)
carrierwaveform = maketable("wave", 24051, "sine")
min = -1.00
max = 2.00
seed = srand()
gliss = maketable("random", "nonorm", "nointerp", 500, "low", min, max) //p4 controls rate
freq = makeconverter(octpch(pitch) + gliss, "cpsoct")
mod_depth_type = 2 // 0 is no mod, 1 is % of carrier, 2 is FM

�201

mod_wavetable = maketable("wave", 1000, "sine")
mod_freq = 200
mod_depth = 20
filt_cf = maketable("curve", "nonorm", 2000, 0,1000,-4, 1,1)
pan = maketable("line", "nonorm", 1000, 0,.2, 1,.5, 2,1)
filt_type = 0 // 0 is no filt, 1 is low, 2 is hight
filt_steep = 20
balance = true // balance output and input signals

WIGGLE(start = 0, 60, amplitude * envelope, freq, mod_depth_type, filt_type, filt_steep, balance,
 carrierwaveform, mod_wavetable, mod_freq, mod_depth, filt_cf, pan)

pan = maketable("line", "nonorm", 1000, 0,1, 1,0)
freq = makeconverter(octpch(pitch + 0.01) + gliss, “cpsoct”)

WIGGLE(start = 1.0, 60, amplitude * envelope, freq, mod_depth_type, filt_type, filt_steep, balance,
 carrierwaveform, mod_wavetable, mod_freq, mod_depth, filt_cf, pan

//Day 16
rtsetparams(44100, 2)
load(“JGRAN")
srand()

durartion = 20
amplitude = 30.0
randomseed = srand()
oscconfig = 0 // wavetable, as opposed to FM (1)
oscphase = 1 // randomize osc phase? 0 is no; 1 is yes
grainenv = maketable("window", 1000, "hamming")
grainwaveclickhi = maketable("line", 32768, 0,0, 16384,0, 16385,1.0, 16387,-1.0, 16388,0, 32768,0)
grainwaveclicklow = maketable("line", 32768, 0,0, 15384,0, 16385,1.0, 17387,-1.0, 18388,0, 32768,0)
FMmult = maketable("random", 1000, "gaussian", 2.0, 100.0)
FMindex = 3.0
minfreq = 0.001 // really slow things down here to produce even faintest freq.
maxfreq = 12.0
minspeed = maketable("line", "nonorm", 1000, 0,0.2, 1,0.001) // decreasing minimum
maxspeed = maketable("line", "nonorm", 1000, 0,0.001, 1,0.2) // increasing maximum
mindb = 20
maxdb = 80
density = maketable("random", 1000, "gaussian", 0,10)
pan = makeLFO("sine", 0.5, 0,1)
panrand = maketable("random", 1000, "gaussian", 0,1)

for (start = 0; start < 80; start += 1){
 JGRAN(start, duration, amplitude, randomseed, oscconfig, oscphase, grainenv, grainwaveclickhi, FMmult,

 FMindex, minfreq, maxfreq, minspeed, maxspeed, mindb, maxdb, density, pan, panrand)

 JGRAN(st, dur, amp, randomseed, oscconfig, oscphase, grainenv, grainwaveclicklow, FMmult, FMindex,
 minfreq, maxfreq, minspeed, maxspeed, mindb, maxdb, density, pan, panrand)
 }

//Day 17
rtsetparams(44100, 2)
load("VOCODESYNTH")
rtinput(“/path/to/file.wav“)

start = 0
instart = 0.0
duration = DUR()
amplitude = 150.0
envelope = maketable("line", 1000, 0,0, .1,1, 0.6,1, 1.0,0)
numbands = 25
lowcf = 300
interval = 0.025
cartransp = 0.00
bw = 0.009
winlen = 0.001
smooth = 0.98
thresh = 0.0001
atktime = 0.001
reltime = 0.01
hipassmod = 0.0
hipasscf = 2000
carwavetable = maketable("wave", 10, 20000, "sine")
scale1 = 0.5
scale2 = 1.0
scalecurve = maketable("curve", "nonorm", 100, 0,scale1,1, 1,scale2)
spacemult = cpspch(interval) / cpspch(0.0)

�202

VOCODESYNTH(start, instart, duration, amplitude*envelope, numbands, lowcf, spacemult, cartransp, bw, winlen,
 smooth, thresh, atktime, reltime, hipassmod, hipasscf, inchan=0, pan=1, carwavetable, scalecurve)

cartransp += 0.001
spacemult += 0.002

VOCODESYNTH(start, instart, duration, amplitude*envelope, numbands, lowcf, spacemult, cartransp, bw, winlen,
 smooth, thresh, atktime, reltime, hipassmod, hipasscf, inchan=0, pan=0, carwavetable, scalecurve)

//Day 18
rtsetparams(44100, 2) //exploring 3n+1 problem from G.E.B
load("WAVETABLE")
srand()

envelope = maketable("line", 1000, 0,0, 0.1,1, 0.3,0.7, 0.7,0.7, 1.0,0)
n = trunc(irand(10, 100)) //choose random integer between 10 and 100

increment = 0.1515
for(start = 0; start < 10; start += increment){
 if(n%2 == 0){ // if n is even
 n = trunc(n * 3 + 1) // do a 3n + 1 operation
 transp = 1.0 // and transpose up and octave
 amplitude = irand(3000, 7000) // louder amplitude values
 pan = irand(0.0, 0.5) //pan L
 }
 else if (n%2 == 1){ // if n is odd
 n = trunc(n / 2) // divide n by 2
 transp = -1.0 // and transpose down an octave
 amplitude = irand(500, 2000) //quieter
 pan = irand(0.5, 1.0) //pan R
 }
 if (n == 1){ // if n equals 1
 exit() // immediately stop program
 }
 pitch = cpsmidi(n) // translate n to pitch in MIDI
 if(pitch > 128){
 pitch = pitch - 127
 }
 dB = dbamp(amp)
 pan = irand(0.0, 1.0)
 constpowpan = boost(pan) / 2
 WAVETABLE(start, increment*0.8, amplitude*envelope, pitch, constpowpan)
 print(n) // only print current n values
 }

//Day 19
rtsetparams(44100, 2)
load("WAVETABLE")
reset(4)
srand(11)

envelope1 = maketable("line", 1000, 0,0, 5,1, 10,0)
envelope2 = maketable("line", 1000, 0,1.0, 5,0.5, 10,0)
waveform1 = maketable("random", 1000, "gaussian", -1,1)
waveform2 = maketable("wave3", 1000, 1,1,0, 2,0.05,0, 3,0.03,0, 4,0.02,0, 5,0.02,0, 6,0.005,1, 7,0.005,0,
 8,0.001,0, 9,0.001,0, 10,0.0001,0, 11,0.0001,0, 13,000.2,0, 15,0.0005,1, 17,0.0001,0,
 19,0.0001,0, 21,0.00002,0, 23,0.0005,1, 25,0.0001,0, 27,0.0001,0, 29.2,0.0002,0,
 31.7,0.00005,1, 33,0.00001,0, 35.5,0.000001,0, 37,0.00005,1, 39,0.00001,0, 41,0.00001,0,
 43,0.00001,0)
gliss1 = maketable("line", "nonorm", 1000, 0,1, 1.0,0.5)
gliss2 = maketable("line", "nonorm", 1000, 0,0, 1.0,1.0)
amp1 = 1000
amp2 = 1500
amp3 = 2000
pan1 = makeLFO("square", 0.1, 0.1,0.5)
pan2 = makeLFO("sine", 0.25, 0.5,1.0)
pan3 = makeLFO("buzz", 0.5, 0.0,1.0)
for (start = 0; start < 50; start += 1){
 WAVETABLE(start+irand(0, 1), 10, amp3*envelope1, 60*gliss1, pan1, waveform1)
 WAVETABLE(start+irand(0.5, 2), 9, amp2*envelope2, 120*gliss2, pan2, waveform2)
 WAVETABLE(start+irand(0.5, 3), 10, amp1*envelope1, 240*gliss1, pan3, waveform1)
 WAVETABLE(start+irand(0.5, 1), 9.5,amp1*envelope2, 480*gliss2, pan1, waveform2)
 WAVETABLE(start+irand(0.5, 3), 10, amp2*envelope1, 760*gliss1, pan2, waveform1)
 WAVETABLE(start+irand(0, 1), 10, amp3*envelope2, 24051*gliss2, pan3, waveform2)
 start += irand (1, 5)
 if(start <= 25){
 amp1 += 1000
 amp2 += 1000
 amp3 += 1000
 }

�203

 }

//Day 20
rtsetparams(44100, 2)
load("MBANDEDWG")
srand()

duration = 0.5
amplitude = 10000
pitch = cpsmidi(70)
strikeposition = 0.3 //range 0.0-1.0
pluck = 0 // 0 no pluck, 1 pluck
maxvelocity = 0.5 //range 0.0-1.0
instrument = 1 // 0 uniform bar, 1 tuned bar, 2 glass harmonica, 3 tibetan singing bowl
pressure = 0.0 //0.0 if struck, otherwise bowed
resonance = 0.9 //range 0.0-1.0
constant = 0.8 //range 0.0-1.0
pan = makeLFO("sine", 0.2, 0.0,1.0)
n = 11700 //choose random integer between 10 and 100

increment = 0.125
for(start = 0; start < 100; start += increment){
 makegen(1, 24, 1000, 0,1, 2,0) //old style line graph for envelope
 MBANDEDWG(start, duration, amplitude, pitch, strikeposition, pluck, maxvelocity, instrument, pressure,
 resonance, constant, pan)
 if(n%2 == 1){ // if n is odd
 n = trunc(n * 3 + 1) // do a 3n + 1 operation
 constant = irand(0.0, 1.0)
 resonance = irand(0.0, 1.0)
 amp = irand(3000, 7000) // louder amplitude values
 }
 else if (n%2 == 0){ // if n is even
 n = trunc(n / 2) // divide n by 2
 maxvelocity = irand(0.0, 1.0)
 strikeposition = irand(0.0, 1.0)
 amp = irand(500, 2000) //quieter
 }
 pitch = cpsmidi(n) // translate n to pitch in MIDI
 if(pitch < 30){
 pitch = pitch + 127
 }
 }

//Day 21
rtsetparams(44100, 2)
load("HALFWAVE")
rate = control_rate(16)
print_off()
srand()

start = 0
duration = 0.75
pitch = octpch(5.07) //start on C#, can also use Hz with HALFWAVE()
amplitude = 300
envelope = maketable("window", 1000, "hamming")
wave1 = maketable("wave3", 1000, 3.14,1,0, 6.28,1,0.5)
wave2 = maketable("wave3", 1000, 1.00,1,0, 2.00,1,0.5)
wave3 = maketable("wave3", 1000, 1,1,0, 3,0.3,0, 5,0.2,0, 7,0.05,0, 9,0.01,0, 11,0.001,0)
wave4 = maketable("wave3", 1000, 1,1,0, 2,0.5,0, 3,0.3,0, 4,0.25,0, 5,0.2,0, 6,0.16,0, 7,0.14,0, 8,0.125,0)
wave5 = maketable("wave3", 1000, 1,1,0, 3,0.14,0, 5,0.04,0, 7,0.02,0, 9,0.012,0, 11,0.008,0)
wavegamut = {wave1, wave2, wave3, wave4, wave5}
wavegamutlength = len(wavegamut)
wavecrossoverpoint = irand(0,1)
pan = 1

loop = 1.0
for(start = 0; start < 500; start += loop) {
 waveindex = trunc(irand(0,wavegamutlength))
 wave = wavegamut[waveindex]
 wavecrossoverpoint = irand(0,1)
 HALFWAVE(start, duration, pitch, amplitude*envelope, wave, wave, wavecrossoverpoint, pan*irand(0,1))

 waveindex = trunc(irand(0,wavegamutlength))
 wave = wavegamut[waveindex]
 wavecrossoverpoint = irand(0,1)
 pitch += (irand(-0.01,0.001) + trunc(irand(-2, 2)))
 HALFWAVE(start+2, duration+1, pitch, amplitude*envelope, wave, wave, wavecrossoverpoint,
 makeLFO("sine", 17, 0,1))

�204

 waveindex = trunc(irand(0,wavegamutlength))
 wave = wavegamut[waveindex]
 wavecrossoverpoint = irand(0,1) // 0-1
 pitch += (irand(-0.01,0.001) + trunc(irand(-2, 2)))

 HALFWAVE(start+3, duration+2, pitch, amplitude*envelope, wave, wave, wavecrossoverpoint,
 makeLFO("sine", 18, 0,1))
 loop = irand(0,5)
 pitch += (irand(-0.01,0.001) + trunc(irand(-2, 2)))
 duration = irand(0, 5)
 amplitude = irand(200, 700)
 rate = round(irand(4, 128))
 }

//Day 22
rtsetparams(44100, 2)
load("CLAR") //early clarinet physical model
load("MCLAR") //another
load("MBLOWHOLE") //another, with tonehole and register vent
seed = srand()
//--------------------//CLAR() parameters. Only create envelopes with makegen()
clarduration = 2 //Original physical model by Perry Cook
clarnoiseamp = 0.001
clarlength1 = 400 // sample length1 (0-500)
clarlength2 = 99 // sample length2 (0-500)
claramplitude = 1000// absolute in 16-bit (0-32768)
clargain = 0.9 // 0-1.0, oops. d2 gain(?) pitch is determined by comb.ofsample lenghts/d2
clarpan = spray_init(0, 10, seed) //unrepeated random numbers (table 0, 10 elements...)
//--------------------//MCLAR() parameters. Can use maketable() for envelope control
mclarduration = 2
mclaramplitude = 1051
mclarfrequency = makeLFO("sine", 0.5, pchcps(440),pchcps(9000))
mclarmaxpressure = 0.5
mclarreedstiffness = 1.0
mclarpan = spray_init(1, 10, seed)
mbreathpressure = maketable("random", 25, "gaussian", 0,1.0)
//--------------------//MBLOWHOLE() parameters. Adds tonehole/vent
mblowduration = 2
mblowamplitude = 1051
mblowfrequency = makeLFO("saw", 0.55, pchcps(110),pchcps(5000))
mblownoiseamp = 0.5
mblowmaxpressure = 0.75
mblowreedstiffness = 0.25
mblowtoneholestate = 0 //0 is closed, 1 is open
mblowventstate = 1 //same
mblowpan = spray_init(2, 10, seed)
mblowbreathpressure = maketable("random", 25, "low", 0,1.0)
for(start = 0; start < 25; start += 1){
 modifier = irand(0,1.0)
 panvalue = get_spray(0)
 pan = panvalue / 10
 CLAR(start, clarduration, clarnoiseamp, clarlength1, clarlength2, claramplitude, clargain*modifier,
 pan)
 panvalue = get_spray(1)
 pan = panvalue / 10
 MCLAR(start+2, mclarduration, mclaramplitude, mclarfrequency, mclarmaxpressure, mclarreedstiffness,
 pan, mbreathpressure*modifier)
 panvalue = get_spray(2)
 pan = panvalue / 10
 MBLOWHOLE(start+3, mblowduration, mblowamplitude, mclarfrequency, mblownoiseamp,
 mblowmaxpressure,mblowreedstiffness, mblowtoneholestate, pan, mblowbreathpressure*modifier)
 }

//Day 23
rtsetparams(44100, 2) // Risset bell demo, after Charles Dodge 2nd ed, p 105 -JG
load("WAVETABLE") // from John Gibon's RTcmix tutorial example, adapted JS
seed = srand()
control_rate(4)
env1 = maketable("expbrk", 1000, 1, 1000, .0000000002) // more attack
env2 = maketable("line", 1000, 0,0, 0.3,0.3, 0.6,0.3, 0.75,0.7, 1.0,0.0) //reverse ADSR
wavet = maketable("wave", 100, "sine");
durscale = 3
notes = {
// start dur amp freq
 { 0, 52, 3000, 82051 },
 { 2, 40, 4000, 91200 },
 { 5, 5, 2000, 74800 },
 { 7, 34, 1500, 50 },
 { 8, 26, 1000, 62576 },
 { 10, 11, 2000, 82709 },

�205

 { 11, 17, 2000, 95934 },
 { 13, 20, 4000, 1348 },
 { 14, 18, 1000, 60 },
 { 16, 22, 3000, 1102 },
 { 17, 28, 1500, 55626 },
 { 20, 7, 2500, 895 },
 { 22, 8, 2500, 880 },
 { 26, 16, 3500, 220 },
 { 28, 10, 2000, 110 },
 { 34, 13, 2000, 55 },
 { 40, 14, 1050, 110 },
 { 52, 2, 1000, 220 }
 }
numnotes = len(notes) // set up an array for the bell notes
paninit = spray_init(0, 10, seed)

loop = 1.0
for (i = 0; i < numnotes; i += 1) {
 note = notes[i]
 start = note[0]
 dur = note[1] * durscale
 amp = note[2] * env1
 freq = note[3]
 panvalue = get_spray(0)
 pan = panvalue / 10 //random panning between 0 and 1.0
 WAVETABLE(start, dur, amp, freq*.56, pan, wavet)
 WAVETABLE(start, dur*.9, amp*.67, freq*.56+1, pan, wavet)
 WAVETABLE(start, dur*.65, amp, freq*.92, pan, wavet)
 WAVETABLE(start, dur*.55, amp*1.8, freq*.92+1.7, pan, wavet)
 WAVETABLE(start, dur*.325, amp*2.67, freq*1.19, pan, wavet)
 WAVETABLE(start, dur*.35, amp*1.67, freq*1.7, pan, wavet)
 WAVETABLE(start, dur*.25, amp*1.46, freq*2, pan, wavet)
 WAVETABLE(start, dur*.2, amp*1.33, freq*2.74, pan, wavet)
 WAVETABLE(start, dur*.15, amp*1.33, freq*3, pan, wavet)
 WAVETABLE(start, dur*.1, amp, freq*3.76, pan, wavet)
 WAVETABLE(start, dur*.075, amp*1.33, freq*4.07, pan, wavet)
 loop = pan
 }

//Day 24
rtsetparams(44100, 2)
load("MMODALBAR")
load("DELAY")
load("IIR")
print_off()
reset(8)
srand()

bus_config("MMODALBAR", "aux 0-1 out")
bus_config("DELAY", "aux 0-1 in", "out 0-1")
loop = 0.125

//-------------------Modal Bar parameters
barstart = 0
barduration = 3.0
baramplitude = 20000
barnote = 44051
stickhardness = 1.0 //0.0-1.0
stickposition = 0.1 //0.0-1.0
barinstrument = 1 //wood...0marimba, 1vibe, 2agogo, 3wood1, 4reso, 5wood2, 6beats, 7twofixed, 8clump
barpan = makeLFO("sine", 20.2, 0,1)

//-------------------Delay parameters
delayinstart = 0
totalduration = 2
delayamplitude = 0.8
delaytime = 1.0 //seconds
delayfeedback = 0.8
ringdownduration = 1.0
inputchannel = 0
for(start = 0; start < 300; start += loop){
 makegen(1, 24, 1000, 0,1, 1, 1) // old school envelope
 MMODALBAR(start, barduration, baramplitude, barnote, stickhardness, stickposition, barinstrument,
 barpan)
 barnote -= irand(10, 30)

 MMODALBAR(start+2, barduration, baramplitude, barnote, stickhardness, stickposition, barinstrument,
 barpan-0.5)
 delaypan = random()

�206

 DELAY(start, delayinstart, totalduration, delayamplitude, delaytime, delayfeedback, ringdownduration,
 inputchannel, delaypan)
 loop += 0.015
 }

filteroutstart = 0
filterinstart = 1
filterduration = 40
filteramplitude = 20000
filterenvelope = maketable("window", 1000, "hamming")
filterpitch = 44
filterpan = 0.5
center1 = 300

for(i = 0; i < 100; i += 1.0){
 setup(center1,25.0,0.8, 1200.0,15.0,0.9) //CF1,BW1,AMP1, CF2,BW2,AMP2...
 PULSE(i, filterinstart, filterduration, filteramplitude*filterenvelope, filterpitch, filterpan)
 filterpitch += irand(10.0, 40.0)
 center1 += 100.0
 }

//Day 25
rtsetparams(44100, 2, 16)
load("MULTIWAVE") //Additive synthesis instrument
control_rate(32) //Adapted from JGs 3/10/05 help file

duration = 180
masteramp = 10000
minfreq = 220
maxfreq = 6000
glide = 20
quantum = 100 // quantize freqs to this number (in Hz)
waveform = maketable("wave3", 1000, 1,1,0, 3,0.14,0, 5,0.04,0, 7,0.02,0, 9,0.012,0, 11,0.008,0)
envelope = maketable("line", 1000, 0,0, 0.2,0.4, 0.6,0.4, 0.7,1, 1.0,0)
numwaves = 12
freq = {} // freq index
pan = {} // pan index

loop = 1
for (i = 0; i < numwaves; i += loop) {
 masteramp = irand(15000, 20000)
 lfofreq = 0.007 + (i * 1.4)
 rfreq = makeLFO("sine", lfofreq, min = 0.2 + (i * 0.03), min * 3.5)
 min = minfreq + (i * 10)
 max = maxfreq - (i * 70)
 rand = makerandom("linear", rfreq, min, max, seed = i + 1)
 freq[i] = makefilter(rand, "smooth", glide)
 if (quantum){
 freq[i] = makefilter(freq[i], "quantize", quantum)
 }
 min = mod(i, 2)

 if (min == 0){
 max = 1
 }
 else{
 max = 0
 }

 pan[i] = makeLFO("sawup", 0.007 + (i * 0.026), min, max)
 loop = irand(0,1)
 }

amp = makerandom("cauchy", 100, 0,1)
phase = makerandom("high", 100, 0,1)

MULTIWAVE(start = 0, duration, masteramp*envelope, waveform,
 freq[0], amp, phase, pan[0],
 freq[1], amp, phase, pan[1],
 freq[2], amp, phase, pan[2],
 freq[3], amp, phase, pan[3],
 freq[4], amp, phase, pan[4],
 freq[5], amp, phase, pan[5],
 freq[6], amp, phase, pan[6],
 freq[7], amp, phase, pan[7],
 freq[8], amp, phase, pan[8],
 freq[9], amp, phase, pan[9],
 freq[10],amp, phase, pan[10],
 freq[11],amp, phase, pan[11])

�207

//Day 26
rtsetparams(44100, 2, 512) //Sound vaguely like really bad Nintendo
load("WAVETABLE")
load("FLANGE")
control = 128
control_rate(control)
srand()
print_off()

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("FLANGE", "aux 0-1 in", "out 0-1")

envelope1 = maketable("line", 1000, 0,0, 5,1, 10,0)
envelope2 = maketable("line", 1000, 0,1.0, 5,0.5, 10,0)
waveform1 = maketable("random", 5, "gaussian", -1,1)
waveform2 = maketable("wave", 1000, "sawdown", 0,0, 1,0, 2,1, 3,1)
glissup = maketable("line", 1000, 0,0.1, 1.0,0)
glissdown = maketable("line", 1000, 0,0, 1.0,1)
pan1 = makeLFO("square",0.1, 0.1,0.5)
pan2 = makeLFO("sine", 5.25,0.5,1.0)
pan3 = makeLFO("buzz", 10.5, 0.0,1.0)
amp1 = 1000
amp2 = 1500
amp3 = 2000
for (st = 0; st < 1000; st += 1){
 WAVETABLE(st+irand(0, 1), 1, amp3*envelope1, .3, pan1, waveform2)
 WAVETABLE(st+irand(0.5, 2), 5, amp2*envelope2, 3, pan2, waveform2)
 WAVETABLE(st+irand(0.5, 3), 3, amp1*envelope1, .24*glissup, pan3, waveform2)
 WAVETABLE(st+irand(0.5, 1), 9, amp1*envelope2, 8*glissdown, pan1, waveform2)
 WAVETABLE(st+irand(0.5, 3), 4, amp2*envelope1, .7, pan2, waveform1)
 WAVETABLE(st+irand(0, 1), 2, amp3*envelope2, 5*glissup, pan3, waveform2)

 if(st%2 == 0){
 amp1 += 100
 amp2 += 100
 amp3 += 100
 }

 if(st%2 == 1){
 amp1 -= 100
 amp2 -= 100
 amp3 -= 100
 }

 flangedur = irand(0, 5)
 resonance = irand(0,1)
 lowpitch = irand(0,4)
 moddepth = irand(0,5)
 modspeed = irand(0,1)
 wetdrymix = irand(0,1)
 maxdelay = 1.0 / cpspch(lowpitch)

 FLANGE(st, 0, flangedur, 0.8, resonance, maxdelay, moddepth, modspeed, wetdrymix, "IIR", 0, pan=1,
 ringdur=0, waveform1)
 FLANGE(st, 0, flangedur*0.75, 0.8, resonance, maxdelay, moddepth, modspeed, wetdrymix, "IIR", 0,
 pan=0, ringdur=0, waveform2)

 control = pickrand(2, 4, 8, 16, 32, 64, 128, 256, 512)
 control_rate(control)
 loop = pickrand(2.5, 3, 1.0, 5.0, 0.1)
 }

//Day 27
rtsetparams(44100, 2, 128)
load("WAVETABLE")
load("MMODALBAR")
control = 44100
reset(control)
srand()
print_off()
//--------------cascading waveforms (weird, random, jaggedy looking things
st = 0
dur = 10
amp = 1000
env1 = maketable("line", 1000, 0,0, 0.1,1, 0.9,1, 1.0,0)
env2 = maketable("line", 1000, 0,0.8, 1,0.0)
freq = 22051
pan1 = makeLFO("sine", 60.5, 0,0.5)
pan2 = makeLFO("sine", 50.75, 0.5,1)
waveform = maketable("random", 8, "gaussian", -1,1)

�208

loop = 1

for(st = 0; st < 125; st += loop){
 dur = irand(5, 20)
 WAVETABLE(st, dur, amp*env1, freq, pan1, waveform)
 freq -= 100
 WAVETABLE(st+2, dur/2, amp-200*env2, freq/2, pan2, waveform)
 freq += 10
 WAVETABLE(st+3, dur/3, amp-400*env1, freq/3, pan1, waveform)
 freq -= 5
 WAVETABLE(st+4, dur/4, amp-600*env2, freq/4, pan2, waveform)
 freq += 2.5
 WAVETABLE(st+5, dur/5, amp-800*env1, freq/5, pan1, waveform)
 freq -= 100
 WAVETABLE(st+6, dur/6, amp*env2, freq/6, pan2, waveform)
 loop = irand(0, 1)
 control = pickrand(16, 32, 128, 256, 4096, 22050, 44100)
 control_rate(control)
 }
//---------------sort of a John Adams' Short Ride simple repeating block pattern
makegen(1, 24, 1000, 0,1, 1, 1)
start = 0
duration = 1.0
amplitude = 20000
frequency = 22051
hardness = 0.0
position = 0.4
instrument = 0 // 0marimba, 1vibe, 2agogo, 3wood1, 4reso, 5wood2, 6beats, 7fixed, 8clump
pan1 = makeLFO("square", 0.25, 0,0.6)
pan2 = makeLFO("sine", 0.3333, 0.4,1)

for (i = 0; i < 25; i +=1){
 hardness = 0.0
 for (ii = 0; ii < 50; ii += 1){
 MMODALBAR(start, duration, amplitude, frequency, hardness, position, i, pan1)
 hardness += 0.01
 start += 0.5
 frequency -= 0.5
 MMODALBAR(start*(ii/2), duration, amplitude, frequency, hardness, position, i, pan1)
 }
 MMODALBAR(start, duration, amplitude, frequency, hardness-0.4, position, i*2, pan2)
 frequency += 1.33
 MMODALBAR(start*(i/2), duration, amplitude, frequency, hardness-0.4, position, i, pan2)
 }

//Day 28
rtsetparams(44100, 2)
load("COMPLIMIT")
load("MOCKBEND")
load("PANECHO")
rtinput(“/path/to/file.aiff”)

bus_config("COMPLIMIT", "in 0-1", "aux 0-1 out") //needs to read in from 0-1?
bus_config("MOCKBEND", "aux 0-1 in", "aux 2-3 out")
bus_config("PANECHO", "aux 2-3 in", "out 0-1")

//-----------------compression stuff
start = 0
instart = 0
dur = DUR()
ingain = 18
outgain = 0
attack = 0.001
release = 0.02
threshold = -20
ratio = 4
lookahead = attack
windowlen = 128
detect_type = 0
bypass = 0
inchan = 0
pan = 0.5 //no further panning, input file is already interesting enough
COMPLIMIT(start, instart, dur, ingain, outgain, attack, release, threshold, ratio, lookahead, windowlen,
detect_type, bypass, inchan, pan)

//------------------MOCKBEND, uses old-style makegens
start = 0
instart = 0
dur = DUR()
amp = 0.7

�209

pan = 0.5
setline(0,0, 1, 1, 90, 1, 100, 0) // amplitude curve
makegen(-2, 18, 512, 1,.5, 512,-.11) //transpose up 5 semitones, then down 11
MOCKBEND(start, instart, dur, amp, 2, 0, pan)

//------------------ping-pong delay
start = 0
instart = 0
dur = DUR()
amp = 0.7
channel0delay = 2.12 // in sec
channel1delay = 0.55
regenerator = 0.8 // multiplier, ALWAYS less than 1!
ringdowndur = 7.2
makegen(1, 24, 1000, 0,1, 100, 1)
PANECHO(start, instart, dur, amp, channel0delay, channel1delay, regenerator, ringdowndur)

for(i = 0; i < 25; i += 1){
 channel0delay += irand(0,1)
 channel1delay = irand(0,1)
 regenerator = irand(0,1) - 0.1
 }

PANECHO(start, instart, dur-4, amp, channel0delay, channel1delay, regenerator, ringdowndur-1.2)

//Day 29
rtsetparams(44100, 2) // from JG 6/3/2002
load("MIX")
load("VOCODE2")
rtinput(“/path/to/file.aiff”)

//------------- carrier for vocoder
bus_config("MIX", "in 0", "aux 0 out") // separate between channels
instart = 0
amp = 0.8
dur = DUR() - instart
MIX(0, instart, dur, amp, 0)
//------------- modulator for vocoder
bus_config("MIX", "in 0", "aux 1 out")
instart = 0
dur = DUR() - instart
amp = 0.8
MIX(0, instart, dur, amp, 0)
// ------------- vocoder
bus_config("VOCODE2", "aux 0-1 in", "out 0-1")
//list of center frequencies
cftabs = maketable("literal", "nonorm", 0, 3.00, 4.07, 5.06, 6.02, 7.01, 7.04, 7.11, 8.06, 9.01, 9.03)
numpitches = tablelen(cftabs)
outstart = 0
instart = 0
dur = DUR() + 2 // allow vocoder to ring, if nec.
maxamp = 1.0
amplitude = maketable("line", "nonorm", 1000, 0,maxamp, dur-1,maxamp, dur,0)
numfilt = 0 // number of filters. this is a flag, make sure its 0
transp = 0.2
freqmult = 4.02
cartransp = -0.02
bw = 0.008
resp = 0.0001

for(ii = 0; ii < 10; ii += 1){
 resp = random() / 10
 }

hipass = 0.1
hpcf = 5000
noise = 0.01
noisubsamp = 4

for(i = 0; i < 25; i += 1){
 transp += 0.01
 freqmult = random() + 3
 amp = add(amplitude, irand(0,1)) // add constant to table!
 cftab = modtable(cftabs, "shift", round(irand(1,4))) // shift contents

 VOCODE2(i, instart, 1, amp, numfilt, transp, freqmult, cartransp, bw, resp, hipass, hpcf, noise,
 noisubsamp, 0.5, cftab)
 }

pan = makeLFO("sine", 1.2, 0,1)

�210

VOCODE2(outstart , instart, dur, amp, numfilt, transp, freqmult, cartransp, bw, resp, hipass, hpcf, noise,
 noisubsamp, pan, cftab)

//Day 30
rtsetparams(44100, 2)
load("WAVETABLE")
load("JCHOR")
load("SPECTACLE2")
reset(22050)
print_off()
srand()

rtinput(“/path/to/file.wav“)

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("JCHOR", "in 0-1", "aux 0-1 out")
bus_config("SPECTACLE2", "aux 0-1 in", "out 0-1")

//------------------Wavetables
start = 0
dur = DUR()
amplitude = 1000.0
frequency = makeconnection("midi", 33025,89000, 33041, 90, 10, "cntl",13)
waveform = maketable("wave", "nonorm", "nointerp", 1000, "buzz")
panfreq = makeconnection("midi", 22051,34011, 0.5, 10, 10, "cntl",16)
pan = makeLFO("sine", panfreq, 0,1)
WAVETABLE(start, dur, amplitude, frequency, pan, waveform)
WAVETABLE(start, dur, amplitude, frequency - 10.5, 0.5, waveform)
//------------------Chorus
outskip = 0
outdur = 9
instart = 0.00
indur = 0.20
maintain_dur = 1
transposition = -0.05
nvoices = 10
minamp = 0.1
maxamp = 0.5
minwait = 0.00
maxwait = 0.60
seed = srand()
setline(0,0, .5,1, outdur/8,1, outdur,0)
makegen(2, 7, 1000, 0, 10, 1, 990, 0)
JCHOR(outskip, instart, outdur, indur, maintain_dur, transposition, nvoices, minamp, maxamp, minwait, maxwait,
seed)
//------------------Spectacle
inchan = 0
instart = 0
ringdur = 15
amp = 1.0
wet = 0.8
fftlen = 1024
winlen = fftlen * 2
overlap = 2
window = 0
ienv = maketable("line", 1000, 0,0, 1,1, 19,1, 20,0)// input envelope
oenv = maketable("curve", 1000, 0,1,0, 2,1,-1, 3,0)// output envelope
mineqfreq = 0
maxeqfreq = 0
eqtablen = 1000
eq = maketable("line", "nonorm", eqtablen, 0,-90, 200,0, 8000,-3, 22050,-6, 44100, 0)
deltablen = fftlen / 2
mindelfreq = 0
maxdelfreq = 0
mindt = .4 // Delay times
maxdt = 3
seed = srand()
deltime = maketable("random", "nonorm", deltablen, "even", mindt, maxdt, seed)
minfb = .1 // Feedback times
maxfb = .8
fbtime = maketable("random", "nonorm", deltablen, "even", minfb, maxfb, seed)
print_on()
panfrequency = makeconnection("midi", 0.1, 10.0, 0.5, 10, 10, "cntl",14)
print(panfrequency)
pan = makeLFO("saw", panfrequency, 0, 1) // sine for smooth, saw for clicks (later on)
SPECTACLE2(start, instart, dur, amp*oenv, ienv, ringdur, fftlen, winlen, window, overlap, eq, deltime, fbtime,
mineqfreq, maxeqfreq, mindelfreq, maxdelfreq, 0, wet, inchan, pan)

�211

//Day 31
rtsetparams(44100, 2)
control_rate(44100)
load("DCBLOCK")
load("TRANSBEND")
load("FIR")
load("DEL1")
load("REVERBIT")
load("WAVETABLE")
rtinput(“/path/to/file.aiff”)

bus_config("DCBLOCK", "in 0-1", "aux 0-1 out")
bus_config("TRANSBEND", "aux 0-1 in", "aux 2-3 out")
bus_config("FIR", "aux 2-3 in", "aux 4-5 out")
bus_config("DEL1", "aux 4-5 in", "out 0-1”)

//----------------DCBLOCK
start = 0
instart = 0
duration = DUR()
amplitude = 1.0
DCBLOCK(start, instart, duration, amplitude)
//----------------TRANSBEND
start = 0
instart = 0
duration = DUR() // length of soundfile
amplitude = 0.8
inchan = 0
pan = 0.5
setline(0,0, 1,1, 90,1, 100,0) // draws straight line segments into array
makegen(0, 18, 512, 1,0.3, 512,-0.6) // transpose from three semitones up, to six down
TRANSBEND(start, instart, duration, amplitude, inchan, pan)
//----------------FILTER
start = 0
instart = 0
duration = DUR()
amplitude = 0.8
//remaining calculations are filter coefficients
FIR(start, instart, duration, amplitude, 7,0.9,0.1,0.69,-0.49,0.314,0.2,0.09)
//----------------DELAY
start = 0
instart = 0
duration = 60
amplitude = maketable("spline", 1000, "closed", curvature = 25, 0,0.1, 0.5,0.9,1.0,0)
delaytime = 3.14 // R channel delay time, L is default
rightamp = 1.0 // amplitude of R relative to L
DEL1(start, instart, duration, amplitude, delaytime, rightamp)
//--------------REV
start = 0
instart = 0
duration = 60
amplitude = 0.8
revtime = maketable("line", 1000, 0,0.01, 0.5,0.1, 1.0,0.2) //keep these short
revamnt = 1 //0 is dry, 1 is wet
chandelay = 0.01 //R channel delay to L channel
cutoff = 1000 //LOP~ cutoff in Hz
REVERBIT(start, instart, duration, amplitude, revtime, revamnt, chandelay, cutoff)
//--------------WAVETABLE
st = 0
dur = 10
amp = 1000
env = maketable("line", 1000, 0,0, 0.1,1, 0.9,1, 1.0,0)
freq = 22051
pan1 = makeLFO("sine", 60.5, 0,0.5)
pan2 = makeLFO("sine", 50.75, 0.5,1)
waveform = maketable("random", 8, "gaussian", -1,1)
loop = 0.25
for(st = 0; st < 50; st += loop){
 dur = irand(5, 20)
 WAVETABLE(st, dur, amp*env, freq, pan1, waveform)
 freq -= 100
 WAVETABLE(st+2, dur/2, amp-250*env, freq/2, pan2, waveform)
 freq += 10
 loop = irand(0, 1)
 }

//Day 32
rtsetparams(44100, 2)
load("WAVETABLE")
load("PANECHO")

�212

load("PAN")
control_rate(44100) // how often to update values in the score
srand() // seeded random value generator, empty? seed to clock time

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("PANECHO", "aux 0-1 in", "aux 2-3 out")
bus_config("PAN", "aux 2-3 in", "out 0-1")

waveform1 = maketable("wave3", 10, 0,1, 1,1, 2,1, 3,0, 4,0.5, 5,1)
waveform2 = maketable("wave3", 1000, 0,1, 1,1, 2,1, 3,0, 4,0.5, 5,1)
waveform3 = maketable("wave", 1000, "sine")
waveform4 = maketable("wave", 1000, "saw99")
waveform5 = maketable("wave", 1000, "tri")
waveform6 = maketable("random", 20, "even", -1,1)
waveform7 = maketable("wave", 1000, "buzz")
waveform8 = maketable("wave", 10, "saw") //"bit crushed" waves
waveform9 = maketable("wave", 10, "sine")

wavearray = {waveform1, waveform2, waveform3, waveform4, waveform5, waveform6, waveform7, waveform8, waveform9}
wavelength = len(wavearray)

start = 0
duration = 14
amplitude = 20000 // typically between 1000 - 40000
envelope1 = maketable("line", 1000, 0,0, 0.3,1, 0.5, 0.7, 0.8,0.7, 1.0,0) //ADSR
envelope2 = maketable("random", 10, "gaussian", 0,1)
frequency = irand(10,2000)
pan = 0.5

for(start = 0; start < 1000; start += 1){

 if(start < 700){
 frequency = pickrand(7.00, 7.04, 7.07, 7.09, 8.00, 8.04, 8.07, 8.09) // A-7
 pan = makeLFO("sine", 0.0125, 0,1)
 WAVETABLE(start, duration, 1000*envelope1, frequency, pan, waveform1)
 }

 if(start >=250 && start <=700){
 waveindex = trunc(irand(0, wavelength))
 wave = wavearray[waveindex]
 frequency = pickrand(7.00, 7.04, 7.05, 7.09, 8.00, 8.04, 8.05, 8.09) //F maj 7
 amplitude = pickrand(100, 200, 250)
 pan = makeLFO("saw", 2, 0,1)
 duration = pickrand(1, 1, 2, 3, 5, 8, 13)
 WAVETABLE(start, duration, amplitude*envelope2, frequency, pan, wave)
 }

 if(start >=500){
 waveindex = trunc(irand(0, wavelength))
 wave = wavearray[waveindex]
 frequency = pickrand(6.10, 7.00, 7.02, 7.05, 7.07) // Bb pentatonic
 amplitude = pickrand(50, 75, 100)
 duration = irand(1,10)
 WAVETABLE(start, duration, amplitude*envelope1, frequency, pan, wave)
 }

 }

//------------------ping pong delay
start = 0
instart = 0
duration = 9*60 // three minutes long
amplitude = 0.8
envelope = maketable("line", 1000, 0,0, 0.5,1, 3.5,1, 7,0)
delaytimeleft = 3.14
delaytimeright = 1.07
feedback = 0.7
ringdownduration = 3
PANECHO(start, instart, duration, amplitude*envelope, delaytimeleft, delaytimeright, feedback,
ringdownduration)

//--------------------panning
start = 0
instart = 0
duration = 9*60
amplitude = 2.0
envelope = maketable("line", 1000, 0,0, 1,1, duration-1,1, duration,0)
inchannel = 0
panmode = 1 //0 for constant power pan, 1 for linear pan
dynamicpan = maketable("random", 20, "gaussian", -1,1)
paninvert = makefilter(dynamicpan, "invert", 0.5)

�213

pan = makefilter(paninvert, "fitrange", -1.0,1.0)
PAN(start, instart, duration, amplitude*envelope, inchannel, panmode, pan)

//Day 33
rtsetparams(44100, 2)
load("METAFLUTE") //flute physical model family of instruments
print_off()

//---------------------SFLUTE (most basic flute model)
start = 0
duration = 5
noiseamp = 0.01 //noise amplitude relative to overall
length1 = 20 //samples, between 5-200, lengths will alter pitch (documentation has a rough tuning-table)
length2 = 200
amplitude = 7000
pan = 0.5
/*
still uses the old style makegens for envelopes, one for noise amplitude and
another for the overall amplitude
*/
table = 1
gentype = 24 //
size = 1000
makegen(table, gentype, size, 0,1, 1.5,1)

table = 2
gentype = 24
size = 1000
makegen(table, gentype, size, 0,0, 0.05,1, 1.49,1, 1.5,0)

SFLUTE(start, duration, noiseamp, length1, length2, amplitude, pan)

//---------------------VSFLUTE (with vibrato)
start = 3
duration = 5
noiseamp = 0.1
length1lowvalue = 70 //create low and high values for vibrato depth
length1highvalue = 72
length2lowvalue = 40
length2highvalue = 43
amplitude = 7000
vibrato1freqlow = 0.5 //Hz
vibrato1freqhigh = 4.0
vibrato2freqlow = 1.9
vibrato2freqhigh = 3.2
pan = 0.5
/*
requires makegens
1) table 1 for noise amplitude envelope
2) table 2 for overall amplitude envelope
3) table 3 to build a waveform for length 1s frequencies
4) table 4 ditto, but for length 2
*/
table = 1
gentype = 7
size = 1000
makegen(table, gentype, size, 1, 1000, 1)

table = 2
gentype = 7
size = 1000
makegen(table, gentype, size, 1, 1000, 1)

table = 3
gentype = 10
size = 1000
makegen(table, gentype, size, 1)

table = 4
gentype = 10
size = 1000
makegen(table, gentype, size, 1)

VSFLUTE(start, duration, noiseamp, length1lowvalue,length1highvalue, length2lowvalue,length2highvalue,
amplitude, vibrato1freqlow,vibrato1freqhigh, vibrato2freqlow,vibrato2freqhigh, pan)

//---------------------BSFLUTE (with pitch bending)
start = 7.0
duration = 5
noiseamp = 0.1

�214

length1lowvalue = 90
length1highvalue = 100
length2lowvalue = 140
length2highvalue = 150
amplitude = 5000
pan = 0.5
//makegens are the same as for vibrato
table = 1
gentype = 7
size = 1000
makegen(table, gentype, size, 1, 1000, 1)

table = 2
gentype = 7
size = 1000
makegen(table, gentype, size, 1, 1000, 1)

table = 3
gentype = 10
size = 1000
makegen(table, gentype, size, 1)

table = 4
gentype = 10
size = 1000
makegen(table, gentype, size, 1)

BSFLUTE(start, duration, noiseamp, length1lowvalue,length1highvalue, length2lowvalue,length2highvalue,
amplitude, pan)

//Day 34
rtsetparams(44100, 2)
load("WAVETABLE")
load("MMODALBAR")
load("REV")
controlrate = control_rate(44100)
srand()
print_off()

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("MMODALBAR", "aux 0-1 out")
bus_config("REV", "aux 0-1 in", "out 0-1")

//---------------------------start with an array of control rates
rate_array = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}
rate_array_size = len(rate_array)
random_rate = trunc(trand(0, rate_array_size))
//current_rate = rate_array[random_rate]

//---------------------------now to get a few pitch arrays
Cmaj7_array = {7.00, 7.04, 7.07, 7.11}
Gmaj7_array = {7.02, 7.06, 7.07, 7.11} //put in second inversion to fit within one octave
Amin7_array = {7.00, 7.04, 7.07, 7.09} //foist inversion
Bbmaj7_array = {7.02, 7.05, 7.09, 7.10} // "

//---------------------------a few universals for the above
pitch_array = Cmaj7_array //or any of the others...
pitch_array_size = len(pitch_array)
random_pitch = trunc(trand(0, pitch_array_size))
current_pitch = pitch_array[random_pitch]

//---------------------------on to the wavetables
start = 0
duration = 10
amplitude = 2000
//envelope = maketable("line", 1000, 0,0, 0.5,1.0, 1.0,0)
pitch_array = Cmaj7_array
pan = 0.5
waveform = maketable("wave3", 100, 0,1,0, 1,1,0, 2,0.5,0, 3,0.5,0, 5,1.0,0, 8,0.5,0, 13,0.25,0, 21,0.001,0)

//---------------------------for modal bars
barstart = 0
barduration = 3.0
baramplitude = 80000
barnote = cpspch(8.09)
stickhardness = 1.0 //0.0-1.0
stickposition = 0.1 //0.0-1.0
barinstrument = 3
barpan = makeLFO("sine", 0.2, 0,1)
loop = 2.5

�215

for(start = 0; start < 200; start += 2.5){
 random_pitch = trunc(trand(0, pitch_array_size))
 current_pitch = pitch_array[random_pitch]
 pitch = current_pitch

 WAVETABLE(start, duration, amplitude, cpspch(pitch), pan, waveform)
 current_pitch = pitch_array[random_pitch]
 pitch = current_pitch

 WAVETABLE(start+1, duration, amplitude, cpspch(pitch)+1, pan, waveform)

 barpan = random()
 MMODALBAR(start, barduration, baramplitude, barnote, stickhardness, stickposition, barinstrument,
 barpan)

 if(start >= 75 && start <= 110){
 pitch_array = Gmaj7_array
 WAVETABLE(start, duration, amplitude, cpspch(pitch), pan, waveform)
 MMODALBAR(start+0.25, barduration, baramplitude, barnote, stickhardness, stickposition,
 barinstrument, barpan)
 }

 if(start >= 90 && start <= 150){
 pitch_array = Amin7_array
 WAVETABLE(start, duration, amplitude, pitch, pan, waveform)
 }

 if(start > 140){
 pitch_array = Bbmaj7_array
 WAVETABLE(start+0.9, duration, amplitude, pitch, pan, waveform)
 MMODALBAR(start, barduration, baramplitude, barnote, stickhardness, stickposition,
 barinstrument, barpan)
 }

 random_rate = trunc(trand(0, rate_array_size))
 current_rate = rate_array[random_rate]
 loop = random() + 2
 }

//---------------------------reverb
start = 0
instart = 0
duration = 60 * 5
amplitude = 0.9
type = 1 // 1 is Perry Cook's, 2 is John Chowning's, 3 is Michael McNabb's
rvbtime = 2.5
rvbpct = 0.5
inchan = 0
REV(start, instart, duration, amplitude, type, rvbtime, rvbpct, inchan)
REV(start+1, instart, duration, amplitude, type, rvbtime, rvbpct, inchan)

//Day 34
rtsetparams(44100, 2)
load("WAVETABLE")
load("MMODALBAR")
print_off()

rate_array = {2, 4, 8, 16, 32, 64, 128, 44100}
rate_length = len(rate_array)
rate = rate_array[trand(0, rate_length)]

fibonacci_array = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}
fibonacci_length = len(fibonacci_array)

//------------------------WAVETABLE
start = 0
duration = 1 //duration and amplitude taken care of by fibonacci array above
amplitude = 10000

env1 = maketable("line", 1000, 0,0, 0.4,1, 1,0.5, 10,0)
env2 = maketable("line", 1000, 0,0, 1,0.03, 2,0.1, 3,0.15, 4,0.2, 5,0.4, 6,0.6, 7,0.8, 7.5,1, 10,0)
env3 = maketable("line", 1000, 0,0, 1,0.1, 2,0.0, 3,0.4, 4,0.1, 5,0.6, 6,0.2, 7,0.9, 8,0.2, 9,1, 10,0)
env4 = maketable("line", 1000, 0,0, 5,1, 10,0)
env5 = maketable("line", 1000, 0,0, 1,0.1, 6,0.2, 9,1, 10,0)
env6 = maketable("line", 1000, 0,0, 0.4,1, 1,0.3, 2,0.1, 3,0.3, 4,0.1, 5,0.3, 6,0.1, 7,0.3, 8,0.1, 9,0.3, 10,0)

envelope_array = {env1, env2, env3, env4, env5, env6}
envelope_length = len(envelope_array)
envelope = envelope_array[trand(0, envelope_length)]

�216

white_keys = pickrand(8.00, 8.02, 8.04, 8.05, 8.07, 8.09, 8.11)
black_keys = pickrand(8.01, 8.03, 8.06, 8.08, 8.10)
Cmaj7 = pickrand(7.00, 7.04, 7.07, 7.11, 8.00, 8.04, 8.07, 8.11)
Gmaj7 = pickrand(7.07, 7.11, 8.02, 8.06, 8.07, 8.11, 9.02, 9.06)
Amin7 = pickrand(7.09, 8.00, 8.04, 8.07, 8.09, 9.00, 9.04, 9.07)
Dmin7 = pickrand(7.02, 7.05, 7.09, 8.00, 8.02, 8.05, 8.09, 9.00)
Bmin7 = pickrand(7.11, 8.02, 8.06, 8.09, 8.11, 9.02, 9.06, 9.09)
pitch_array = {white_keys, black_keys, Cmaj7, Gmaj7, Amin7, Dmin7}
pitch_length = len(pitch_array)
pitch = pitch_array[trand(0, pitch_length)]

wave1 = maketable("wave3", 10, 0,1, 1,1, 2,1, 3,0, 4,0.5, 5,1)
wave2 = maketable("wave3", 1000, 0,1, 1,1, 2,1, 3,0, 4,0.5, 5,1)
wave3 = maketable("wave", 1000, "sine")
wave4 = maketable("wave", 1000, "saw99")
wave5 = maketable("wave", 1000, "tri")
wave6 = maketable("random", 20, "even", -1,1)
wave7 = maketable("wave", 10, "buzz")
wave8 = maketable("wave", 10, "saw")
wave9 = maketable("wave", 10, "sine")
waveform_array = {wave1, wave2, wave3, wave4, wave5, wave6, wave7, wave8, wave9}
waveform_length = len(waveform_array)
waveform = waveform_array[trand(0, waveform_length)]

panL = maketable("random", 10, "low", 0,0.6)
panR = maketable("random", 10, "high", 0.4,1)

increment = 0.25

for(start = 0; start < 25; start += increment){
 rate = rate_array[trand(0, rate_length)]
 }

//left channel wavetable
for(start = 0; start < 525; start += increment){
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 envelope = envelope_array[trand(0, envelope_length)]
 pitch = pitch_array[trand(0, pitch_length)]
 waveform = waveform_array[trand(0, waveform_length)]
 panL = maketable("random", 10, "low", 0,0.6)
 WAVETABLE(start, duration, amplitude*envelope, cpspch(pitch), panL)
 }

//right channel wavetable
for(start = 0; start < 525; start += increment){
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 envelope = envelope_array[trand(0, envelope_length)]
 pitch = pitch_array[trand(0, pitch_length)]
 waveform = waveform_array[trand(0, waveform_length)]
 panR = maketable("random", 10, "low", 0,0.6)
 WAVETABLE(start, duration, amplitude*envelope, cpspch(pitch), panR)
 }

//---------------------------MODALBAR
start = 0
duration = 0.02 //seconds
amplitude = 30000 //absolute btwn 0-32768
pitch = 7.00
hardness = 1.0
position = 1.0
instrument = 4 //Agogo is 2
pan = 0.5

stagger = 0.01
increment = 0.25

for(start = 0; start < 525; start += increment){
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 pitch = pitch_array[trand(0, pitch_length)]
 hardness = irand(0.2, 1.0)
 MMODALBAR(start, duration, amplitude, cpspch(pitch), hardness, position, instrument = 4, 0)
 MMODALBAR(start+stagger, duration, amplitude, cpspch(pitch), hardness, position, instrument, 1)
 stagger += 0.5
 pitch = pitch - 1
 pan = trunc(random())
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)

�217

 MMODALBAR(start+stagger, duration, amplitude, cpspch(pitch), hardness, position, instrument, pan)
 instrument = pickrand(1, 2, 3, 4, 5, 6, 7, 8)
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 MMODALBAR(start, duration, amplitude, cpspch(pitch), hardness, position, instrument, pan)
 duration += 0.0002
 increment = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 MMODALBAR(start, duration, amplitude, cpspch(pitch), hardness, position, instrument, pan)
 }

//Day 35
rtsetparams(44100, 2)
load("WAVETABLE")
load("FREEVERB")
load("NOISE")
load("MOOGVCF")
load("MMODALBAR")
srand()
bus_config("WAVETABLE", "aux 0-1 out")
bus_config("FREEVERB", "aux 0-1 in", "out 0-1")
bus_config("NOISE", "aux 2-3 out")
bus_config("MOOGVCF", "aux 2-3 in", "out 0-1")

fibonacci_array = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233}
fibonacci_length = len(fibonacci_array)
total_duration = 360

//-----------------------------WAVETABLE
start = 0
duration = 5 //slight overlap
amplitude = 100
envelope = maketable("line", 1000, 0,0, 0.5,1, 1.0,0)
pan = 0.5
pitch_array = {"C4", "D4", "E4", "F4", "G4", "A4", "B4", "C5"}
pitch_length = len(pitch_array)

for(start = 0; start < total_duration; start += 1){
 pitch = pitch_array[trand(0, pitch_length)]
 pan = random()
 WAVETABLE(start, duration, amplitude*envelope, cpslet(pitch), pan)
 WAVETABLE(start+1, duration, amplitude*envelope, (cpslet(pitch) - irand(0.5,5)), pan)
 }

//-------------------Long reverb
start = 0
instart = 0
duration = total_duration
amplitude = 0.9
room = 0.9
predelay = 0.05
ringdur = 10
damp = 30
dry = 40
wet = 90
width = 100
FREEVERB(start, instart, duration, amplitude, room, predelay, ringdur, damp, dry, wet, width)

//------------------------------NOISE
start = 0
duration = total_duration
amplitude = 10000
envelope = maketable("line", 1000, 0,0, 0.6,0.7, 1,0)
pan = makeLFO("sine", 10.5, 0,1)
NOISE(start, duration, amplitude*envelope, pan)

//------------------------------MOOGVCF (for NOISE)
start = 0
instart = 0
duration = total_duration
amplitude = 0.3
envelope = maketable("random", 25, "gaussian", 0,1)
loophan = 0
pan = makeLFO("sine", 0.25, 0,1)
bypass = 0
lowcf = 50
highcf = 1000
lowres = 0.7
highres = 1.0

�218

cf = maketable("line", "nonorm", 2000, 0,lowcf, 10*.2,lowcf, 10*.5,highcf, 10,lowcf)
res = maketable("line", "nonorm", 2000, 0,lowres, 1,highres, 2,lowres)
MOOGVCF(start, instart, duration, amplitude*envelope, loophan, pan, bypass, cf, res)

//-------------------Long reverb
start = 0
instart = 0
duration = total_duration
amplitude = 0.9
room = 0.9
predelay = 0.05
ringdur = 10
damp = 30
dry = 40
wet = 90
width = 100
FREEVERB(start, instart, duration, amplitude, room, predelay, ringdur, damp, dry, wet, width)

//---------------------------MODALBAR
start = 0
duration = 0.02 //seconds
amplitude = 30000 //absolute btwn 0-32768
pitch = 7.00
hardness = 1.0
position = 1.0
instrument = 4 //Agogo is 2
pan = 0.5

stagger = 0.01
increment = 0.75

for(start = 0; start < total_duration; start += increment){
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 40)
 pitch = pitch_array[trand(0, pitch_length)]
 hardness = irand(0.2, 1.0)
 MMODALBAR(start, duration, amplitude, cpslet(pitch), hardness, position, instrument = 4, 0)
 MMODALBAR(start+stagger, duration, amplitude, cpslet(pitch), hardness, position, instrument, 1)
 stagger += 0.5
 pan = trunc(random())
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 MMODALBAR(start+stagger, duration, amplitude, cpslet(pitch), hardness, position, instrument, pan)
 instrument = pickrand(1, 2, 3, 4, 5, 6, 7, 8)
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 MMODALBAR(start, duration, amplitude, cpslet(pitch), hardness, position, instrument, pan)
 duration += 0.0002
 increment = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 duration = (fibonacci_array[trand(0, fibonacci_length)] / 10)
 amplitude = (fibonacci_array[trand(0, fibonacci_length)] * 10)
 MMODALBAR(start, duration, amplitude, cpslet(pitch), hardness, position, instrument, pan)
 }

//Day 36
rtsetparams(44100, 2) //EXTRA thanks to Joel Matthys for looping assistance
load("STRUM2") //karplus strong algorithm
load("REVERBIT")
load("STRUM") //older kp instrument
load("FLANGE")
load("MOOGVCF")
srand()

bus_config("STRUM2", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-1")
bus_config("STRUM", "aux 2-3 out")
bus_config("FLANGE", "aux 2-3 in", "aux 4-5 out")
bus_config("MOOGVCF", "aux 4-5 in", "out 0-1")

Cmaj7 = pickrand(7.00, 7.04, 7.07, 7.11, 8.00, 8.04, 8.07, 8.11)
Gmaj7 = pickrand(7.07, 7.11, 8.02, 8.06, 8.07, 8.11, 9.02, 9.06)
Amin7 = pickrand(7.09, 8.00, 8.04, 8.07, 8.09, 9.00, 9.04, 9.07)
Bmin7 = pickrand(7.11, 8.02, 8.06, 8.09, 8.11, 9.02, 9.06, 9.09)
pitch_array = {Cmaj7, Gmaj7, Amin7, Bmin7}
pitch_length = len(pitch_array)
pitch = pitch_array[trand(0, pitch_length)]
pitch_length = len(pitch_array)

//------------------------STRUM2
start = 0
duration = 0.125

�219

amplitude = 20000
pitch = pitch_array[1]
squish = 1.0 //how squishy is the plucking medium (think hard pick to finger pad)
decay = 1.0 //seconds
pan = random()

for(iteration = 0; iteration < 100; iteration += 1){
 for(index = 0; index < pitch_length; index += 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + 0.125 //change durations here
 }

 for(index = index-1; index >= 0; index -= 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + 0.125
 }
 }

//--------------REV
start = 0
instart = 0
duration = 60
amplitude = 0.8
envelope = maketable("line", 1000, 0,0, 0.612,1.0, 1.0,0)
revtime = maketable("line", 1000, 0,0.01, 0.5,0.1, 1.0,0.2) //keep these short
revamnt = 0 //0 is dry, 1 is wet
chandelay = 0.1 //R channel delay to L channel
cutoff = 10000 //LOP~ cutoff in Hz
REVERBIT(start, instart, duration, amplitude*envelope, revtime, revamnt, chandelay, cutoff)

//-------------STRUM (older, requires makegen and comes in several flavors
start = 0
duration = 0.25
pitch = pitch_array[1]
fundamentaldecaytime = 1.0
nyquistdelaytime = 0.1
amplitude = 5000
squish = 1.0

for(iteration = 0; iteration < 50; iteration += 1){

 for(index = 0; index < pitch_length; index += 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 START(start, duration, pitch, fundamentaldecaytime, nyquistdelaytime, amplitude, squish, pan)
 start = start + 0.25 //change durations here
 }

 for(index = index-1; index >= 0; index -= 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 START(start, duration, pitch, fundamentaldecaytime, nyquistdelaytime, amplitude, squish, pan)
 start = start + 0.25
 }
 }

//--------------------------FLANGE
start = 0
instart = 0
flangedur = 60
amplitude = 1.0
envelope = maketable("line", 1000, 0,0, 0.305,1.0, 1.0,0)
resonance = maketable("line", 1000, 0,0.2, 0.5,0.9, 1.0,0.2)
maxdelay = 5.0
lowpitch = cpspch(9.09)
moddepth = maketable("line", 1000, 0,10, 1,50)
modrate = maketable("line", 1000, 0,20, 1,12000)
wetdrymix = maketable("line", 1000, 0,0, 1,1)
panfrequency = 0.13// makeconnection("inlet", 3, 0.5)
pan = makeLFO("sine", panfrequency, 0,1)
ringdur = 0
waveform = maketable("wave3", 1000, 1,1,45)
FLANGE(start, instart, flangedur, amplitude*envelope, resonance, maxdelay, moddepth, modrate, wetdrymix, "FIR",
0, pan, ringdur, waveform)

//------------------------------MOOGVCF
start = 0

�220

instart = 0
duration = 60
amplitude = 0.3
loophan = 0
pan = makeLFO("sine", 0.25, 0,1)
bypass = 0
lowcf = 50
highcf = 1000
lowres = 0.7
highres = 1.0
cf = maketable("line", "nonorm", 2000, 0,lowcf, 10*.2,lowcf, 10*.5,highcf, 10,lowcf)
res = maketable("line", "nonorm", 2000, 0,lowres, 1,highres, 2,lowres)
MOOGVCF(start, instart, duration, amplitude, loophan, pan, bypass, cf, res)

//Day 37
rtsetparams(44100, 2)
load("STRUM2") //karplus strong algorithm
load("REVERBIT")
load("STRUMFB") //karplus with feedback and distortion
load("FLANGE")
load("MOOGVCF")
srand()

bus_config("STRUM2", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-1")
bus_config("STRUMFB", "aux 2-3 out")
bus_config("FLANGE", "aux 2-3 in", "aux 4-5 out")
bus_config("MOOGVCF", "aux 4-5 in", "out 0-1")

Cmaj7 = pickrand(7.00, 7.04, 7.07, 7.11, 8.00, 8.04, 8.07, 8.11)
Gmaj7 = pickrand(7.07, 7.11, 8.02, 8.06, 8.07, 8.11, 9.02, 9.06)
Amin7 = pickrand(7.09, 8.00, 8.04, 8.07, 8.09, 9.00, 9.04, 9.07)
Dmin7 = pickrand(7.02, 7.05, 7.09, 8.00, 8.02, 8.05, 8.09, 9.00)
pitch_array = {Cmaj7, Gmaj7, Amin7, Dmin7}
pitch_length = len(pitch_array)
pitch = pitch_array[trand(0, pitch_length)]
pitch_length = len(pitch_array)
//------------------------STRUM2
start = 0
duration = 0.25
amplitude = 20000
pitch = pitch_array[1]
squish = 1.0 //how squishy is the plucking medium (think hard pick to finger pad)
decay = 1.0 //seconds
pan = random()

for(iteration = 0; iteration < 100; iteration += 1){

 for(index = 0; index < pitch_length; index += 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + 0.125 //change durations here
 }

 for(index = index-1; index >= 0; index -= 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + 0.125
 }
 }
//--------------REV
start = 0
instart = 0
duration = 60
amplitude = 0.8
envelope = maketable("line", 1000, 0,0, 0.612,1.0, 1.0,0)
revtime = maketable("line", 1000, 0,0.01, 0.5,0.1, 1.0,0.2) //keep these short
revamnt = 0 //0 is dry, 1 is wet
chandelay = 0.1 //R channel delay to L channel
cutoff = 10000 //LOP~ cutoff in Hz
REVERBIT(start, instart, duration, amplitude*envelope, revtime, revamnt, chandelay, cutoff)
//-------------STRUMFB same as STRUM, but with feedback and decay
start = 0
duration = 0.25
amplitude = 5000
pitch = pitch_array[1]
feedbackpitch = pitch - 0.5
squish = 1.0
fundamentaldecaytime = 1.0

�221

nyquistdecaytime = 0.1
distortiongain = 5.0
feedbackgain = 0.05
cleanlevel = 0
distortionlevel = 1.0

for(iteration = 0; iteration < 100; iteration += 1){

 for(index = 0; index < pitch_length; index += 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 STRUMFB(start, duration, amplitude, pitch, feedbackpitch, squish, fundamentaldecaytime,
 nyquistdecaytime,distortiongain, feedbackgain, cleanlevel, distortionlevel)
 start = start + 0.25 //change durations here
 }

 for(index = index-1; index >= 0; index -= 1){
 pitch = pitch_array[index]
 pan = pickrand(0, 1)
 STRUMFB(start, duration, amplitude, pitch, feedbackpitch, squish, fundamentaldecaytime,
 nyquistdecaytime,distortiongain, feedbackgain, cleanlevel, distortionlevel)
 start = start + 0.25
 }
 }
//--------------------------FLANGE
start = 0
instart = 0
flangedur = 60
amplitude = 1.0
envelope = maketable("line", 1000, 0,0, 0.305,1.0, 1.0,0)
resonance = maketable("line", 1000, 0,0.2, 0.5,0.9, 1.0,0.2)
maxdelay = 5.0
lowpitch = cpspch(9.09)
moddepth = maketable("line", 1000, 0,10, 1,50)
modrate = maketable("line", 1000, 0,20, 1,12000)
wetdrymix = maketable("line", 1000, 0,0, 1,1)
pan = makeLFO("sine", 13.1, 0,1)
ringdur = 0
waveform = maketable("wave3", 1000, 1,1,45)
FLANGE(start, instart, flangedur, amplitude*envelope, resonance, maxdelay, moddepth, modrate, wetdrymix, "FIR",
0, pan, ringdur, waveform)
//------------------------------MOOGVCF
start = 0
instart = 0
duration = 60
amplitude = 0.3
loophan = 0
pan = makeLFO("sine", 0.25, 0,1)
bypass = 0
lowcf = 500
highcf = 2000
lowres = 0.2
highres = 1.0
cf = maketable("line", "nonorm", 2000, 0,lowcf, 10*.2,lowcf, 10*.5,highcf, 10,lowcf)
res = maketable("line", "nonorm", 2000, 0,lowres, 1,highres, 2,lowres)
MOOGVCF(start, instart, duration, amplitude, loophan, pan, bypass, cf, res)

//Day 38
rtsetparams(44100, 2)
/*
Start by seeding the random number generator to CPU clock time
*/
srand()
/*
There are a few ways to generate random numbers in RTcmix
1. rand() will generate a random number between -1 and 1, useful for random waveforms
2. random() will generate a random number between 0 and 1, good for mapping later
3. irand() and trand() are one and the same, or so it seems, and allow a range to be chosen
*/
random_number_a = rand()
random_number_b = random()
random_number_x = irand(0, 10) // or trand() I suppose...
printf("1: %f \n", random_number_a)
printf("2: %f \n", random_number_b)
printf("3. %f \n", random_number_x)
/*
trand() or irand() returns a large number like 2.60620117188, so we could truncate it or round it...
*/
printf("The raw value of our random number is: %f \n", random_number_x)
x_truncated = trunc(random_number_x)
x_rounded = round(random_number_x)

�222

printf("Random number: %f \n", random_number_x)
printf("Truncated, it equals: %f \n", x_truncated)
printf("Rounded, it equals: %f \n", x_rounded)
/*
The only weighted distribution I know for now is taking the average of two random numbers, or
a "triangle" distribution.
*/
random_number_x = round(trand(0, 10))
random_number_y = round(trand(0, 10))
average_of_random_numbers = ((random_number_x + random_number_y) / 2)
print(random_number_x)
print(random_number_y)
printf("The average is: %f \n", average_of_random_numbers)
/*
So now, I could do this in a loop to get a wide variety of numbers, which will most likely point
to numbers near the middle of 0 and 10. I think.
*/
for(i = 0; i < 10; i += 1){
 print_off()
 random_number_x = round(trand(0, 10))
 random_number_y = round(trand(0, 10))
 average_of_random_numbers = ((random_number_x + random_number_y) / 2)
 print_on()
 print(average_of_random_numbers)
 }
/*
RTcmix has a built in makerandom() that will do the same thing, or a maketable() of random numbers
*/
triangular_distribution1 = makerandom("triangle", 10, 0,10) //10 values/sec
triangular_distribution2 = maketable("random", 10, "triangle", 0,10)
//plottable(triangular_distribution2)
/*
So Joel Matthys has a library of functions that will do some of the things found most commonly in
the C library of math functions. sin, cos, etc., but I'm interested in map, which works like the
[expr_scale] object in Pure Data.
*/
load("jfuncs")
print(sin(1))
print(cos(1))
print(lowrand()) //all fit in the range of 0-1
print(highrand())
print(trirand())
print(gaussrand())
print(constrain(5.3235,4.2,-98.543))
print(map(2,1,4,50,100))
print(prob(0.5,0.1))
/*
Using these, it's possible to generate random numbers from any given range
*/
srand() //these aren't reacting to srand()?
value = highrand() // random number between 0 and 1, weighted high
print(value)
value_mapped = map(value, 0,1, 0,25) //like [expr_scale], fit in range 0-25
print(value_mapped)
/*
Filling some panning values with a table of random numbers between 0 and 1, weighted toward R
*/
pan = maketable("random", 100, "high", 0,1)
//plottable(pan)
/*
Now put it to use in the PAN() instrument for more precise control
*/
load("WAVESHAPE")
load("PAN")
print_off()

bus_config("WAVESHAPE", "aux 0-1 out")
bus_config("PAN", "aux 0-1 in", "out 0-1")

//--------------------------------WAVESHAPE
start = 0
duration = 20
frequency = makeLFO("sine", 0.1, 40,22100)
mindistortionindex = 0.0
maxdistortionindex = 1.0
amplitude = 20000
envelope = makerandom("prob", 10, -1.0,1.0,0,0)
pan = 0.5 //pan later
wave = maketable("wave", 1000, "sine")
transferfunc = maketable("cheby", 1000, 0.9, 0.3,-0.2,0.6,-0.7)
indexguide = maketable("line", 1000, 0,0, 3.5,1, 7,0)

�223

WAVESHAPE(start, duration, frequency, mindistortionindex, maxdistortionindex, amplitude*envelope, pan, wave,
transferfunc, indexguide)

//--------------------------------PAN
start = 0
instart = 0
duration = 20
amplitude = maketable("line", 1000, 0,10.0, 0.8,0.5, 1.0,0)
inputchannel = 0
pantype = 1 //0 for constant power, 1 for linear
pan = maketable("random", 10, "high", 0,1)
//plottable(pan)
PAN(start, instart, duration, amplitude, inputchannel, pantype, pan)
/*
Now, modtable(normalize) will do the same thing as map, but with elements in a table
*/
random_numbers = maketable("random", "nonorm", 10, "gaussian", 0,50) //important to include "nonorm"
plottable(random_numbers)
table_mod = modtable(random_numbers, "normalize", 4000) //constrain between 0.0 and 4000
plottable(table_mod)

//---------------------------------WAVETABLE
load("WAVETABLE")
start = 20
duration = 10
amplitude = 3000
frequency = table_mod
pan = modtable(random_numbers, "normalize", 1)
WAVETABLE(start, duration, amplitude, frequency, pan)

//Day 39
rtsetparams(44100, 2) //A drum beat
load("WAVETABLE")
load("PAN")
load("REV")
load("FLANGE")
load("JCHOR")
control_rate(4)
print_off()
srand()

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("WAVETABLE", "out 0-1")

bus_config("PAN", "aux 0-1 in", "aux 2-3 out")
bus_config("PAN", "aux 0-1 in", "aux 4-5 out")
bus_config("REV", "aux 2-3 in", "out 0-1")

bus_config("FLANGE", "aux 4-5 in", "aux 6-7 out")
bus_config("JCHOR", "aux 6-7 in", "out 0-1")

totalduration = 360
//----------------------Bass Drum 1
start = 0
bd_duration = 1
bd_amplitude = 20000
bd_envelope = maketable("line", 1000, 0,1.0, 0.8,1.0, 1.0,0)
bd_frequency = 70
bd_pan = 0.5
bd_wave = maketable("wave", 1000, "sine")

bd_loop = 2
for(start = 0; start < totalduration; start += bd_loop){
 WAVETABLE(start, bd_duration, bd_amplitude, bd_frequency, bd_pan, bd_wave) //BD1

 if(start >= 36){
 WAVETABLE(start, bd_duration, bd_amplitude-15000, bd_frequency*2, bd_pan, bd_wave)
 }

 if(start >= 48){
 WAVETABLE(start, bd_duration, bd_amplitude-19999, bd_frequency*24, bd_pan, bd_wave)
 }

 }

//----------------------Hi Hat 1
start = 8
hh_duration = 0.01
hh_amplitude = 60000
hh_frequency = 3000

�224

hh_pan = random()
hh_wave = maketable("random", 5, "high", -1,1)

hh_loop = 0.5
for(start = 8; start < totalduration; start += hh_loop){
 WAVETABLE(start, hh_duration, hh_frequency, hh_pan = random(), hh_wave) //HH1
 }

//-----------------------Snare
start = 16
sd_duration = 0.025
sd_amplitude = 10000
sd_frequency = 54052
sd_pan = makeLFO("sine", 8.0, 0,1)
sd_wave = maketable("wave", 1000, "buzz")

sd_loop = 1
for(start = 16; start < totalduration; start += sd_loop){

 if(start%2 == 0){
 WAVETABLE(start+sd_loop, sd_duration, sd_amplitude, sd_frequency, sd_pan, sd_wave) //SD
 }

 }

//-----------------------Hi Hat 2
start = 24
hh_duration = 0.001
hh_amplitude = 15000
hh_frequency = 30000
hh_pan = random()
hh_wave = maketable("random", 5, "high", -1,1)

hh_loop = 0.25
for(start = 24; start < totalduration; start += hh_loop){
 WAVETABLE(start, hh_duration, hh_frequency, hh_pan = random(), hh_wave) //HH2
 }

//-----------------------Bass Drum 2
start = 36
bd_duration = 0.75
bd_amplitude = 0.2
bd_frequency = 630
bd_pan = random()
bd_wave = maketable("wave", 1000, "sine", 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) //lots of partials
bd_loop = 2
for(start = 36; start < totalduration; start += bd_loop){
 WAVETABLE(start, bd_duration, bd_frequency*3, bd_pan = random(), bd_wave) //BD2
 }

//----------------------PAN
start = 36
instart = 0
duration = totalduration
amplitude = 10.0
envelope = maketable("line", 1000, 0,0, 0.4,1.0, 0.9,1.0, 1.0,0)
inchannel = 0
panmode = 1 //0 for constant power pan, 1 for linear pan
pan = makeLFO("sine", 4.25, 0,1)
PAN(start, instart, duration, amplitude*envelope, inchannel, panmode, pan)

//-----------------------REV
start = 36
instart = 0
duration = totalduration
amplitude = 10.0
type = 1 // 1 is Perry Cook's, 2 is John Chowning's, 3 is Michael McNabb's
rvbtime = 0.25
rvbpct = 0.05
inchan = 0
REV(start, instart, duration, amplitude, type, rvbtime, rvbpct, inchan)

//--------------------FLANGE
start = 44
instart = 0 //again, 0 from auxiliary bus
duration = totalduration
flamplitude = 40.0
flenvelope = maketable("random", 100, "low", 0.3,1.0)
resonance = irand(0.3,1.0)
maxdelay = 5.0
moddepth = maketable("line", "nonorm", 100, 0,1, 5,5, 10,7)

�225

modspeed = maketable("line", 1000, 0,0.1, 1,0.9)
wetdrymix = 0.8
filtertype = "IIR"
inputchannel = 0
pan = makeLFO("sine", 4.0, 0,1)
ringdownduration = lowrand()
flangewave = maketable("wave", 2000, "sine")
FLANGE(start, instart, duration, flamplitude*flenvelope, resonance, maxdelay, moddepth, modspeed, wetdrymix,
filtertype, inputchannel, pan, ringdownduration, flangewave)

//--------------------CHORUS
start = 44
instart = 0.00
outdur = totalduration
indur = 0.01
maintain_dur = 1
transposition = -0.05
nvoices = 10
minamp = 0.1
maxamp = 0.5
minwait = 0.00
maxwait = 0.60
seed = srand()
setline(0,0, .5,1, outdur/8,1, outdur,0)
makegen(2, 7, 1000, 0, 10, 1, 990, 0)
JCHOR(start, instart, outdur, indur, maintain_dur, transposition, nvoices, minamp, maxamp, minwait, maxwait,
seed)

Day 40
RTcmix not only uses MINC as its parser, but also Python, a powerful programming language. There are
some differences in style (take for example the commenting...), but both MINC and Python work well
in creating new score files.

Remember, when executing RTcmix scripts in the Terminal, you need to call the command cmix followed
by the < symbol. (cmix < /path/to/scorefile.sco) In order to use Python, you first need to configure
RTcmix to interpret Python scrips (done by running ./configure --with-python during installation), and
then call pycmix < /path/to/scorefile.sco in the Terminal window.

First, pycmix score files need the following command to run...

from rtcmix import *

which allows Python to use the list of cmix commands. (I *think* Python comes preloaded on Mac OSX)

#Then the header of your file looks the same as it has using MINC

rtsetparams(44100, 2)
load("WAVETABLE")

#-----------------------------WAVETABLE
start = 0
duration = 5
amplitude = 90 #in dB
pitch = 7.09 #octave point pitch class
pan = 0.5
wavetype = maketable("wave", 1000, "sine")
WAVETABLE(start, duration, ampdb(amplitude), pitch, pan, wavetype)

The above preceding code produces a five second sine wave on the note A. Now, it's possible to set a
loop (looks a little different than MINC) and generate some random pitches.

start = 5
duration = 1
amplitude = 90 #in dB
pitch = 7.09 #octave point pitch class
pan = 0.5
wavetype = maketable("wave", 1000, "sine")

for start in range(5, 23):
 print_off()
 pitch = pickrand(7.00, 7.01, 7.02, 7.03, 7.04, 7.05, 7.06, 7.07, 7.08, 7.09, 7.10, 7.11)
 WAVETABLE(start, duration, ampdb(amplitude), pitch, pan, wavetype)
 print_on()
 print(midipch(pitch))

This type of loop uses range(), which is intrisnic to Python. In this case with range(5, 23) we are
asking for a loop that STARTS at 5, counts up incrementally to 22 by 1. There are other ways to use
range, such as range(0, 101, 2) which counts from 0-100 by 2 instead of by 1.# Conditional statements in
Python also look a bit different.

�226

Day 41
from rtcmix import *

rtsetparams(44100, 2)
load("WAVETABLE")

#-----------------------------WAVETABLE
start = 0
duration = 0.25
amplitude = 90 #in dB
pitch = 7.09 #octave point pitch class
pan = 0.5
wavetype = maketable("random", 16, "gaussian", -1,1)

Getting through loops with a floating point number. (Is there an easier way?) Similar to how I've been
using increment or loop as variables in MINC loops...
i.e - loop = 0.25; for(start = 0; start < 10; start += loop)

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

for i in drange(0.0, 11.0, 0.25):
 pitch = pickrand(7.00, 7.01, 7.02, 7.03, 7.04, 7.05, 7.06, 7.07, 7.08, 7.09, 7.10, 7.11)
 WAVETABLE(i, duration, ampdb(amplitude), pitch, pan, wavetype)

 random_number = trunc(irand(0, 10))

 if random_number == 5:
 pan = 0

 elif random_number < 5:
 pan = 0

 else:
 pan = 1

Day 42
Checking out arrays in Python, help from John Gibson's 02.13.2001 help file

from rtcmix import *

rtsetparams(44100, 2)
load("WAVETABLE")

#-----------------------------WAVETABLE
start = 0
duration = 0.0625
amplitude = 90 #in dB
pitch_array = [5.00, 5.001, 5.02, 5.03, 5.05, 5.07, 5.069, 5.10, 6.00]
pitch_array_length = len(pitch_array)
pan = 0.5
wavetype = maketable("random", 16, "gaussian", -1,1)

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

for i in drange(0.0, 11.0, duration):
 slot = int(random() * pitch_array_length * .999999)
 current_pitch = pchoct(pitch_array[slot])

 WAVETABLE(i, duration, ampdb(amplitude), current_pitch, pan, wavetype)

 random_number = trunc(irand(0, 10))

 if random_number == 5:
 pan = 0

 elif random_number < 5:
 pan = 0.5
 pitch = ampdb(9.01)

 else:
 pan = 1

�227

//Day 43
/*
The [rtcmix~] object in Pure Data now includes the ability to play sound from data stored in an array. It
requires two
messages...

1. First, a "bufset nameofarray" message needs to be banged FIRST. This points the [rtcmix~] object to the
array in
question. So, if my array is called 'array1' - or the name of the default array name in Pd - my message will
thus be
"bufset array1". If my array is called 'foo', I'll say "bufset foo", etc.

2. Lastly, your rtinput() message needs to say "PDBUF" and "nameofarray". Example below
*/

rtinput("PDBUF", “array1") //necessary "PDBUF" and "nameofarray", in this case 'array1'.

//-----------------------------STEREO for playback (MIX is another useful instrument here)
bus_config("STEREO", "in 0-1", "out 0-1")

start = 0
instart = 0
//your duration matches the length of 'sound' in your array. Here, I'm writing to the array for ten seconds.
duration = 10
amplitude = 1.0
pan = 0.5
STEREO(start, instart, duration, amplitude, pan)

/*
...now, to play it backwards...
*/

//----------------------------SCRUB
bus_config("SCRUB", "in 0-1", "out 0-1")
start = 10
instart = 10 //to play backwards, set instart to end of file, in this case ten seconds
duration = 10
amplitude = 1.0
speed = -1.0 //play backwards, 1.0 normal, 0.5 1/2 speed, -0.5 backwards 1/2 speed, 2.0
2X as fast...
sync_width = 16
oversampling = 40 //16 and 40 seem to be good defaults
inchannel = 0
pan = 0.5
SCRUB(start, instart, duration, amplitude, speed, sync_width, oversampling, inchannel, pan)

/*
... and have some "Meeblip-Y" fun with it!
*/

//---------------------------STEREO again
start = 20
instart = 0
duration = 0.75
amplitude = 1.0
pan = random()

loop = 0.5 //slight overlap for each iteration

for(start = 20; start < 100; start += loop){
 instart = irand(0.25,5.0)
 pan = random()
 STEREO(start, instart, duration, amplitude, pan)
 }

// Day 44
//generating rhythms to append with pitches

print_off()
srand()
rhythmgamut = {
 0.125, //eighth note
 0.25, //quarter note
 0.33, //triplet quarter note
 0.5, //half note
 1.0 //whole note
 }
rhythmgamut_length = len(rhythmgamut)

�228

octavegamut = {5, 6, 7}
octavegamut_length = len(octavegamut)

pitchgamut = {0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.10, 0.11}
pitchgamut_length = len(pitchgamut)

for(start = 0; start < 10; start += 1){
 //rhythms
 random_number_x = trand(0,rhythmgamut_length)
 random_number_y = trand(0,rhythmgamut_length)

 if(random_number_x >= random_number_y){
 placeholder = random_number_x
 }

 else{
 placeholder = random_number_y
 }

 nextrhythm = rhythmgamut[placeholder]

 //octave
 random_number_x = trand(0,octavegamut_length)
 random_number_y = trand(0,octavegamut_length)

 if(random_number_x >= random_number_y){
 placeholder = random_number_x
 }

 else{
 placeholder = random_number_y
 }

 octave = octavegamut[placeholder]

 //pitches
 random_number_x = trand(0,pitchgamut_length)
 random_number_y = trand(0,pitchgamut_length)

 if(random_number_x >= random_number_y){
 placeholder = random_number_x
 }

 else{
 placeholder = random_number_y
 }
 pitch = pitchgamut[placeholder]
 nextpitch = octave+pitch

 print_on()
 print(nextpitch)
 print(nextrhythm)
 print_off()
 }

//Day 45
rtsetparams(96000, 2)
load("HALFWAVE")
load("REVERBIT")
srand()
reset(8)

bus_config("HALFWAVE", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-1")

totalduration = 360

//------------------------HALFWAVE
start = 0
duration = 1.75

octavegamut = {2, 10, 11}
octavegamut_length = len(octavegamut)

pitchgamut = {0.00, 0.01, 0.04, 0.05, 0.06, 0.08, 0.10, 0.11}
pitchgamut_length = len(pitchgamut)

amplitude = 1000
envelope = maketable("line", 100, 0,0, 2,1, 9,0)
wave1 = maketable("wave3", 1000, 3.14,1,0, 6.28,1,0.5)
wave2 = maketable("wave3", 1000, 1.00,1,0, 2.00,1,0.5)

�229

wave3 = maketable("wave3", 1000, 1,1,0, 3,0.3,0, 5,0.2,0, 7,0.05,0, 9,0.01,0, 11,0.001,0)
wave4 = maketable("wave3", 1000, 1,1,0, 2,0.5,0, 3,0.3,0, 4,0.25,0, 5,0.2,0, 6,0.16,0, 7,0.14,0, 8,0.125,0)
wave5 = maketable("wave3", 1000, 1,1,0, 3,0.14,0, 5,0.04,0, 7,0.02,0, 9,0.012,0, 11,0.008,0)
wavegamut = {wave1, wave2, wave3, wave4, wave5}
wavegamutlength = len(wavegamut)

wavecrossoverpoint = 0.5
pan = 0.5

increment = 0.5

for(start = 0; start < totalduration; start += increment){
 octave = octavegamut[trand(0,octavegamut_length)]
 nextpitch = pitchgamut[trand(0,pitchgamut_length)]
 pitch = nextpitch + octave

 if(octave == 2){
 duration = 5.0
 pan = makeLFO("sine", 1.25, 0,1)
 HALFWAVE(start, duration, cpspch(pitch)+0.04, amplitude*envelope, wave1, wave2,
 wavecrossoverpoint, pan)
 }

 wave1 = wavegamut[trand(0,wavegamutlength)]
 wave2 = wavegamut[trand(0,wavegamutlength)]

 random_number_x = round(trand(0, 10))
 random_number_y = round(trand(0, 10))
 average_of_random_numbers = ((random_number_x + random_number_y) / 2)
 wavecrossoverpoint = average_of_random_numbers / 10

 pan = random()
 HALFWAVE(start, duration, cpspch(pitch), amplitude*envelope, wave1, wave2, wavecrossoverpoint, pan)
 increment = average_of_random_numbers / 7
 }

//-----------------------REVERBIT
start = 0
instart = 0
duration = totalduration
amplitude = 1.0
envelope = maketable("line", 1000, 0,0, 0.4,1.0, 0.9,0, 1.0,0)
revtime = maketable("line", 1000, 0,1.0, 0.5,1.0, 1.0,0.2) //keep these short
revamnt = 1 //0 is dry, 1 is wet
chandelay = maketable("random", 100, "gaussian", 0.01,2.0)
cutoff = 2000 //LOP~ cutoff in Hz
REVERBIT(start, instart, duration, amplitude*envelope, revtime, revamnt, chandelay, cutoff)srand()

//Day 46
//building waveform from an array

amplitudes_array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

for(i = 0; i < 10; i += 1){
 randomnumber_x = irand(-1,1)
 randomnumber_y = irand(-1,1)
 partial_amplitude = (randomnumber_x + randomnumber_y) / 2

 amplitudes_array[i] = partial_amplitude
 }

waveform = maketable("wave3", 31, 1, amplitudes_array[1], 0,
 2, amplitudes_array[2], 0,
 3, amplitudes_array[3], 0,
 5, amplitudes_array[4], 0,
 8, amplitudes_array[5], 0,
 13,amplitudes_array[6], 0,
 21,amplitudes_array[7], 0,
 34,amplitudes_array[8], 0,
 55,amplitudes_array[9], 0,
 89,amplitudes_array[10],0)

plottable(waveform)

//Day 47
rtsetparams(44100, 2)
load("HALFWAVE")
srand()

amplitudes_array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

�230

for(i = 0; i < 10; i += 1){
 randomnumber_x = irand(-1,1)
 randomnumber_y = irand(-1,1)
 partial_amplitude = (randomnumber_x + randomnumber_y) / 2

 amplitudes_array[i] = partial_amplitude
 }

//------------------------HALFWAVE
start = 0
duration = 10

octavegamut = {2, 10, 11}
octavegamut_length = len(octavegamut)

pitchgamut = {0.00, 0.01, 0.04, 0.05, 0.06, 0.08, 0.10, 0.11}
pitchgamut_length = len(pitchgamut)

octave = octavegamut[trand(0,octavegamut_length)]
nextpitch = pitchgamut[trand(0,pitchgamut_length)]
pitch = nextpitch + octave

amplitude = 1000
waveform1 = maketable("wave3", 31, 1, amplitudes_array[1], 0,
 3, amplitudes_array[2], 0,
 5, amplitudes_array[3], 0,
 5, amplitudes_array[4], 0,
 7, amplitudes_array[5], 0,
 8, amplitudes_array[6], 0,
 11,amplitudes_array[7], 0,
 14,amplitudes_array[8], 0,
 15,amplitudes_array[9], 0,
 20,amplitudes_array[10],0)
waveform2 = makefilter(waveform1, "invert", 0)
wavecrossoverpoint = 0.5
pan = 0.5

HALFWAVE(start, duration, cpspch(pitch), amplitude, waveform1, waveform2, wavecrossoverpoint, pan)

//Day 48
rtsetparams(44100, 2)
load("HALFWAVE")
reset(8)
srand()

amplitudes_array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

for(i = 0; i < 10; i += 1){
 randomnumber_x = irand(-1,1)
 randomnumber_y = irand(-1,1)
 partial_amplitude = (randomnumber_x + randomnumber_y) / 2

 amplitudes_array[i] = partial_amplitude
 }

//------------------------HALFWAVE
start = 0
duration = 360

octavegamut = {1, 2, 3}
octavegamut_length = len(octavegamut)

pitchgamut = {0.00, 0.01, 0.04, 0.05, 0.06, 0.08, 0.10, 0.11}
pitchgamut_length = len(pitchgamut)

octave = octavegamut[trand(0,octavegamut_length)]
nextpitch = pitchgamut[trand(0,pitchgamut_length)]
pitch = nextpitch + octave

amplitude = 1000
waveform1 = maketable("wave3", 100, 1, amplitudes_array[1], -0.5,
 2, amplitudes_array[2], 1.0,
 6, amplitudes_array[3], 0.25,
 7, amplitudes_array[4], 0.0,
 9, amplitudes_array[5], -0.125,
 10,amplitudes_array[6], -0.33,
 11,amplitudes_array[7], 1.0,
 14,amplitudes_array[8], -1.0,
 15,amplitudes_array[9], 0.0,
 40,amplitudes_array[10],0.25)

�231

wavecrossoverpoint1 = maketable("line", 10, 0,0, 1.0,1.0)
pan1 = makeLFO("sine", 0.05, 0.0,0.6)

waveform2 = makefilter(waveform1, "invert", 0)
wavecrossoverpoint2 = maketable("line", 10, 0,1.0, 1.0,0)
pan2 = makeLFO("sine", 0.25, 0.4,1.0)

HALFWAVE(start, duration, cpspch(2.11), amplitude, waveform1, waveform2, wavecrossoverpoint1, pan1)
HALFWAVE(start, duration, cpspch(2.10)+0.01, amplitude, waveform1, waveform2, wavecrossoverpoint2, pan2)

//Day 49
rtsetparams(44100, 2)
load("WAVETABLE")
load("DELAY")
load("JFUNCS")
rate = pickrand(2, 4, 8, 16, 32, 128, 512, 1024, 22051, 44051)
control_rate(8)
seed = srand()

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("DELAY", "aux 0-1 in", "out 0-1")

//-------------------------------WAVETABLE
start = 0
total_duration = 360

maxdb = 90
mindb = 62
amplitude = ampdb(maxdb-mindb)
envelope = maketable("curve", 1000, 0,1,-5, 1,0)

maxfrequency = 44052
minfrequency = 22051
waveform = maketable("wave", 1000, "sine")

maxincrement = 0.4
minincrement = 0.05
increment = 0.1

for (start = 0; start < total_duration; start += increment){
 duration = increment * 0.2
 amplitude = ampdb(irand(mindb, maxdb))
 frequency = irand(minfrequency, maxfrequency)
 glissfactor = irand(0.2, 0.7)

 if (random() < 0.5){ // 50% probability of glissing up
 glissfactor += 1
 }

 gliss = maketable("curve", "nonorm", 1000, 0,1,-2, 1,glissfactor)
 pan = random()
 WAVETABLE(start, duration, amplitude*envelope, frequency*gliss, pan, waveform)
 WAVETABLE(start, duration, amplitude*envelope, frequency*gliss*1.01, 1-pan, waveform)

 increment = irand(minincrement, maxincrement)
 control_rate(rate)
 }

//---------------------------------DELAY
start = 0
instart = 0
duration = total_duration
amplitude = 1.0
envelope = maketable("window", 1000, "hanning")
deltime = makerandom("even", 0.5, 0.1, 2.2, seed)
delaytime = makefilter(deltime, "smooth", lag = 0)
feedback = maketable("line", 1000, 0,0.18, 0.5,0.62, 1.0,0.02)
ringdur = 0.5 // seconds to ring out delay line after note is finished
inputchannel = 0
pan = 1
DELAY(start, instart, duration, amplitude*envelope, delaytime, feedback, ringdur, inputchannel, pan)

deltime = makerandom("low", 2.5, 0.1, 3.3, seed)
delaytime = makefilter(deltime, "smooth", lag = 0)
inputchannel = 1
pan = 0
DELAY(start, instart, duration, amplitude*envelope, delaytime, feedback, ringdur, inputchannel, pan)

//Day 50
rtsetparams(44100, 2)

�232

load("MIX")
load("REV")
print_off()

rtinput(“/path/to/file.wav”)
bus_config("MIX", "in 0-1", "aux 0-1 out")
bus_config("REV", "aux 0-1 in", "out 0-1")

totalduration = 176 * 2

//-----------------------------MIX
start = 0
instart = 0
duration = 0.5
amplitude = 0.5
left = 0
right = 1

increment = 1.0

for(start = 0; start < totalduration; start += increment){
 instart = irand(1,176)
 left = irand(0,0.5)
 right = irand(0.5,1.0)
 MIX(start, instart, duration, amplitude, left,right)
 duration += 0.02
 }

//-----------------------------REV
start = 0
instart = 0
duration = totalduration
amplitude = 1.0
type = 3
rvbtime = 0.15
rvbpct = 0.08
inchan = 0

REV(start, instart, duration, amplitude, type, rvbtime, rvbpct, inchan)

//Day 51
rtsetparams(44100, 2)
load("STRUM2")

Cmajor = {7.00, 7.02, 7.04, 7.05, 7.07, 7.09, 7.11, 8.00}
arraylength = len(Cmajor)

//------------------------STRUM2
start = 0
duration = 0.5
amplitude = 20000
pitch = Cmajor[0]
squish = 1.0 //how squishy is the plucking medium (think hard pick to finger pad)
decay = 1.0 //seconds
pan = random()

transposition = 0.01

for(iteration = 0; iteration < 12; iteration += 1){

 for(index = 0; index < arraylength; index += 1){
 pitch = Cmajor[index] + transposition
 pan = pickrand(0, 1)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + 0.33 //change durations here
 }

 for(index = index-1; index >= 0; index -= 1){
 pitch = Cmajor[index] + transposition
 pan = pickrand(0, 1)
 STRUM2(start, duration, amplitude, pitch, squish, decay, pan)
 start = start + 0.33
 }

 transposition += 0.01
 }

//Day 52
rtsetparams(44100, 2)
load("SCRUB")
load("STEREO")

�233

rtinput("/Users/jerod_s/Desktop/movie_camera/scorefiles/nyman.wav")

//---------------------SCRUB meta
start = 0
instart = 0
amplitude = 10.0
width = 16
oversampling = 40
inchannel = 0

//-----tape head 1
durationL = 1.0
speedL = 1.0
panL = 1.0 //RTcmix panning is L = 1.0, center = 0.5, R = 0.0

//-----tape head 2
speedR = 0.90
panR = 0.0
durationR = durationL * speedR

for(start = 0; start < 100; start += 1.5){
 SCRUB(start, instart, durationL, amplitude, speedL, width, oversampling, inchannel, panL)
 SCRUB(start, instart, durationR, amplitude, speedR, width, oversampling, inchannel, panR)
 }

//Day 53
rtsetparams(96000, 2)
load("TRANS")
load("REVERBIT")

bus_config("TRANS", "in 0-1", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-1")

rtinput(“/path/to/file.wav”)

//-------------------TRANS
start = 0
instart = 0
duration = DUR()
amplitude = 1.0
transposition = maketable("line", 1000, 0,0.0, 0.5,-0.2, 1.0,-1.0)
inchannel = 0
pan = 0.5
TRANS(start, instart, duration, amplitude, transposition, inchannel, pan)

//-------------------REVERBIT(so it sounds like its in my glass mantle)
start = 0
instart = 0
duration = DUR()
amplitude = 1.0
reverbtime = 5.8
reverbpct = 0.9
channeldelay = 0.1
cutoff = 500
REVERBIT(start, instart, duration, amplitude, reverbtime, reverbpct, channeldelay, cutoff)

//SC193.sco 07.12.2013
rtsetparams(44100, 2) //guitar chorale
load("STRUM2")

soprano = {7.07, 7.09, 7.11, 8.00, 8.02, 8.00, 7.11, 8.07, 8.06, 8.04, 8.02, 8.00, 7.09, 7.06, 7.07}
alto = {7.02, 7.02, 7.02, 7.04, 7.02, 7.02, 7.02, 7.07, 7.09, 7.07, 7.07, 7.07, 7.04, 7.02, 7.02}
tenor = {6.11, 6.09, 6.07, 6.07, 6.09, 6.06, 6.07, 6.07, 7.02, 6.07, 6.07, 6.07, 6.07, 7.00, 6.11}
bass = {5.07, 5.06, 5.07, 5.04, 5.06, 6.02, 5.07, 5.11, 5.09, 6.00, 5.11, 6.04, 6.00, 6.02, 5.07}

//------------------------STRUM2
start = 0
duration = 2
amplitude = 20000
pitch = 8.00
squish = 0.3
decay = 3.0
pan = random()

placeholder = 1

for(start = 0; start < 15*duration; start += duration){
 pan = random()

 STRUM2(start, duration, amplitude, cpspch(soprano[placeholder]), squish, decay, random())

�234

 STRUM2(start, duration, amplitude, cpspch(alto[placeholder]), squish, decay, random())
 STRUM2(start, duration, amplitude, cpspch(tenor[placeholder]), squish, decay, random())
 STRUM2(start, duration, amplitude, cpspch(bass[placeholder]), squish, decay, random())

 placeholder += 1
 }

//Day 54
rtsetparams(44100, 2)
load("WAVETABLE")
load("MROOM")
control_rate(44100)

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("MROOM", "aux 0-1 in", "out 0-1")

soprano = {7.07, 7.09, 7.11, 8.00, 8.02, 8.00, 7.11, 8.07, 8.06, 8.04, 8.02, 8.00, 7.09, 7.06, 7.07}
alto = {7.02, 7.02, 7.02, 7.04, 7.02, 7.02, 7.02, 7.07, 7.09, 7.07, 7.07, 7.07, 7.04, 7.02, 7.02}
tenor = {6.11, 6.09, 6.07, 6.07, 6.09, 6.06, 6.07, 6.07, 7.02, 6.07, 6.07, 6.07, 6.07, 7.00, 6.11}
bass = {5.07, 5.06, 5.07, 5.04, 5.06, 6.02, 5.07, 5.11, 5.09, 6.00, 5.11, 6.04, 6.00, 6.02, 5.07}

//------------------------WAVETABLE
start = 0
duration = 2
amplitude = 10000
envelope = maketable("window", 1000, "hanning")
pitch = 8.00
pan = random()
waveform = maketable("wave", 1000, "sine")

placeholder = 1

for(start = 0; start < 15 * duration; start += duration){
 pan = random()

 WAVETABLE(start, duration, amplitude*envelope, soprano[placeholder]+1, random(), waveform)
 WAVETABLE(start, duration, amplitude*envelope, alto[placeholder]+1, random(), waveform)
 WAVETABLE(start, duration, amplitude*envelope, tenor[placeholder]+1, random(), waveform)
 WAVETABLE(start, duration, amplitude*envelope, bass[placeholder]+1, random(), waveform)

 placeholder += 1
 }

//-------------------------CHURCH HALL
start = 0
instart = 0
duration = 30
amplitude = 0.5
xdim = 500 //distance (feet) from middle of room to right wall
ydim = 800 //distance (feet) from middle of room to front
rvbtime = 25.0
reflect = 90.0 //amount reflected by walls
innerwidth = 4.0
inchan = 0
quantizationrate = 96000

timeset(0, 0-xdim, 0-ydim)
timeset(duration, xdim, ydim)

setline(0,0, duration/8,1, duration-.5,1, duration,0)
MROOM(start, instart, duration, amplitude, xdim, ydim, rvbtime, reflect, innerwidth, inchan, quantizationrate)

//Day 55
rtsetparams(44100, 2)
load("WAVETABLE")
load("FREEVERB")
srand()

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("FREEVERB", "aux 0-1 in", "out 0-1")

soprano = {7.07, 7.09, 7.11, 8.00, 8.02, 8.00, 7.11, 8.07, 8.06, 8.04, 8.02, 8.00, 7.09, 7.06, 7.07}
alto = {7.02, 7.02, 7.02, 7.04, 7.02, 7.02, 7.02, 7.07, 7.09, 7.07, 7.07, 7.07, 7.04, 7.02, 7.02}
tenor = {6.11, 6.09, 6.07, 6.07, 6.09, 6.06, 6.07, 6.07, 7.02, 6.07, 6.07, 6.07, 6.07, 7.00, 6.11}
bass = {5.07, 5.06, 5.07, 5.04, 5.06, 6.02, 5.07, 5.11, 5.09, 6.00, 5.11, 6.04, 6.00, 6.02, 5.07}

//------------------------WAVETABLE
start = 0
totalduration = 1000
amplitude = 10000

�235

envelope = maketable("window", 1000, "hanning")
pitch = 8.00
pan = random()
waveform = maketable("wave", 1000, "sine")

sopranoplaceholder = 0
altoplaceholder = 0
tenorplaceholder = 0
bassplaceholder = 0

sopranoduration = 10 //tendency to speed up
altoduration = 10 //starts fast and relaxes
tenorduration = 11 //pretty even keel, cool person
bassduration = 14 //strangely slow heart rate overall

for(start = 0; start < totalduration; start += sopranoduration){
 sopranoduration += irand(0,0.6)
 WAVETABLE(start, sopranoduration, amplitude*envelope, soprano[sopranoplaceholder]+1, random(),
 waveform)
 sopranoplaceholder += 1
 }

for(start = 0; start < totalduration; start += altoduration){
 altoduration -= irand(0,0.01)
 WAVETABLE(start, altoduration, amplitude*envelope, alto[altoplaceholder]+1, random(), waveform)
 altoplaceholder += 1
 }

for(start = 0; start < totalduration; start += tenorduration){
 tenorduration -= irand(0,0.01)
 WAVETABLE(start, tenorduration, amplitude*envelope, tenor[tenorplaceholder]+1, random(), waveform)
 tenorplaceholder += 1
 }

for(start = 0; start < totalduration; start += bassduration){
 bassduration += irand(-0.3,0.5)
 WAVETABLE(start, bassduration, amplitude*envelope, bass[bassplaceholder]+1, random(), waveform)
 bassplaceholder += 1
 }

//-----------------------------FREEVERB
start = 0
instart = 0
duration = totalduration
amplitude = 0.3
room = 1.0
predelay = 0.0001
ringdur = 15
damp = 80
dry = 10
wet = 90
width = 100
FREEVERB(start, instart, duration, amplitude, room, predelay, ringdur, damp, dry, wet, width)

//Day 56
rtsetparams(44100, 2)
load("NOISE")
load("MULTICOMB")
load("PAN")
control_rate(44100)
srand()

bus_config("NOISE", "aux 0-1 out")
bus_config("MULTICOMB", "aux 0-1 in", "aux 2-3 out")
bus_config("PAN", "aux 2-3 in", "out 0-1")

//---------------------NOISE
start = 0
duration = 0.009
amplitude = 50000
envelope1 = maketable("line", 1000, 0,0, 5,1, 10,0)
envelope2 = maketable("line", 1000, 0,0, 7,0.5, 9,1, 10,0)
envelope3 = maketable("line", 1000, 0,0, 0.1,1, 0.5,0.05, 10,0)
pan = random()

//---------------------MULTICOMB
start = 0
instart = 0
combdur = duration
combamp = 0.5
combenv = maketable("line", 1000, 0,0, 0.1,0.8, 0.8,0.5, 1.0,0)

�236

low = cpspch(13.01)
high =cpspch(13.05)
revtime = 0.1 //seconds

//-----------------------PAN
start = 0
instart = 0
duration = duration
panamp = 1.0
inchannel = 0
panmode = 1 //0 for constant power pan, 1 for linear pan
pan = random()

loop = 0.001

for (start = 0; start < 250; start += loop){
 NOISE(start, duration, amplitude*envelope3, random())
 MULTICOMB(start, instart, duration+0.5, combamp*combenv, low, high, revtime)
 PAN(start, instart, duration, panamp, inchannel, panmode, random())

 step = irand(-0.2,0.3)
 loop += step

 if(loop >= 0.1){
 duration += 0.01
 revtime += 0.01
 }
 }

//Day 57
rtsetparams(44100, 2)
load("WIGGLE")
srand()

//-----------------------WIGGLE
start = 0
duration = 8.2
amplitude = maketable("line", "nonorm", 1000, 0,0, 0.1,2000, 5,4000, 10,2000)
envelope = maketable("curve", 2000, 0,0,2, 2.5,1,0, 13,1,-3, 25,0)

min = 2.00
max = 12.00
gliss = maketable("random", "nonorm", "nointerp", 500, "low", min, max)
pitch = 18.09
freq = makeconverter(octpch(pitch) + gliss, "cpsoct")

mod_depth_type = 1 // 0 is no mod, 1 is % of carrier, 2 is FM
filt_type = 2 // 0 is no filt, 1 is low, 2 is high
filt_steep = 2
balance = true // balance output and input signals
carrierwaveform = maketable("wave", 24051, "sine")
mod_wavetable = maketable("wave", 1000, "sine")
mod_freq = 200
mod_depth = 20
filt_cf = maketable("curve", "nonorm", 2000, 0,1000,-4, 1,1)
pan = random()

for(start = 0; start < 100; start += 5){
 pan = random()
 freq -= 10.2
 WIGGLE(start, duration, amplitude*envelope, freq, mod_depth_type, filt_type, filt_steep, balance,
 carrierwaveform, mod_wavetable, mod_freq, mod_depth, filt_cf, pan)
 }

//Day 58
rtsetparams(44100, 2)
load("GRANSYNTH")
seed = srand()

//---------------------GRANSYNTH
start = 0
duration = 10
amplitude = 10000
waveform = maketable("wave", 1000, "tri")
genv = maketable("window", 1000, "hanning")
ghop = maketable("random", 1000, "low", 0.01, 1.0)
goutjitter = 0.01
gdurmin = 0.0001 // longer durations = "pitchy"
gdurmax = 0.009 // shorter are "clicky"
gampmin = 0.2
gampmax = 1.0

�237

gpitches = {15.01, 19.03, 19.09, 19.11, 21.0, 23.08}
gplength = len(gpitches)
gtrans = maketable("literal", "nonorm", 0, 0.01, 0.03, 0.11, 1.0) // octpcs
gtransjitter = 1.0 // maximum random amount to shift current pitch
panmin = 0.0
panmax = 1.0

loop = 1.0 // for loop

for (start = 0; start < 25; start += loop){
 pitchindex = trand(gplength)
 gpitch = gpitches[pitchindex]
 GRANSYNTH(start, duration, amplitude, waveform, genv, ghop, goutjitter, gdurmin, gdurmax, gampmin,
 gampmax, gpitch, gtrans, gtransjitter, seed, panmin, panmax)
 goutjitter -= 0.01
 gpitch += 30
 }

//Day 59
rtsetparams(44100, 2)
load("WAVETABLE")
load("REVERBIT")

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("REVERBIT", "aux 0-1 in", "out 0-1")

//--------------------dates
age = 30
month = 7.00
date = 19

//--------------------meta
amplitude = age * 1000
envelope = maketable("line", 1000, 1,1, 9,1, 10,0)
pan = makeLFO("sine", age/100, 0,1)
waveform = maketable("wave3", 1000, 1,1,0, age/10,1,0, 5,1,0, month,1,0, date,1,0, age,1,0)

//--------------------melody in the key of "F"
pitchgamut = {month, month+.02, month+.04, month+.05, month+.07, month+.09, month+.10, month+1.00}

//--------------------durations
teenth = 0.275
sixdot = 0.6
quatre = 1.0

WAVETABLE(0, sixdot, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(0.625, teenth, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(1, quatre, amplitude*envelope, cpspch(pitchgamut[1]), pan, waveform)
WAVETABLE(2, quatre, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(3, quatre, amplitude*envelope, cpspch(pitchgamut[3]), pan, waveform)
WAVETABLE(4, quatre, amplitude*envelope, cpspch(pitchgamut[2]), pan, waveform)
WAVETABLE(6, sixdot, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(6.625, teenth, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(7, quatre, amplitude*envelope, cpspch(pitchgamut[1]), pan, waveform)
WAVETABLE(8, quatre, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(9, quatre, amplitude*envelope, cpspch(pitchgamut[4]), pan, waveform)
WAVETABLE(10, quatre, amplitude*envelope, cpspch(pitchgamut[3]), pan, waveform)
WAVETABLE(12, sixdot, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(12.625, teenth, amplitude*envelope, cpspch(pitchgamut[0]), pan, waveform)
WAVETABLE(13, quatre, amplitude*envelope, cpspch(pitchgamut[7]), pan, waveform)
WAVETABLE(14, quatre, amplitude*envelope, cpspch(pitchgamut[5]), pan, waveform)
WAVETABLE(15, sixdot, amplitude*envelope, cpspch(pitchgamut[3]), pan, waveform)
WAVETABLE(15.625, teenth, amplitude*envelope, cpspch(pitchgamut[3]), pan, waveform)
WAVETABLE(16, quatre, amplitude*envelope, cpspch(pitchgamut[2]), pan, waveform)
WAVETABLE(17, quatre, amplitude*envelope, cpspch(pitchgamut[1]), pan, waveform)
WAVETABLE(19, sixdot, amplitude*envelope, cpspch(pitchgamut[6]), pan, waveform)
WAVETABLE(19.625, teenth, amplitude*envelope, cpspch(pitchgamut[6]), pan, waveform)
WAVETABLE(20, quatre, amplitude*envelope, cpspch(pitchgamut[5]), pan, waveform)
WAVETABLE(21, quatre, amplitude*envelope, cpspch(pitchgamut[3]), pan, waveform)
WAVETABLE(22, quatre, amplitude*envelope, cpspch(pitchgamut[4]), pan, waveform)
WAVETABLE(23, quatre+1, amplitude*envelope, cpspch(pitchgamut[3]), pan, waveform)

//-------------------REVERBIT
start = 0
instart = 0
duration = age
amplitude = age/100
reverbtime = month+date
reverbpct = age/100+age/100+age/100
channeldelay = age/100
cutoff = age*100

�238

REVERBIT(start, instart, duration, amplitude, reverbtime, reverbpct, channeldelay, cutoff)

//Day 60
rtsetparams(44100, 2)
load("MIX")
load("COMBIT")
srand()

rtinput(“/path/to/file.wav”)

bus_config("MIX", "in 0-1", "aux 0-1 out")
bus_config("COMBIT", "aux 0-1 in", "out 0-1")

totalduration = DUR()

//-----------------------------MIX
start = 0
instart = 0
duration = 0.5
amplitude = 0.1
envelope = maketable("line", 1000, 0,0, 0.5,1, 1.0,0)
left = 0
right = 1

increment = 1.0

for(start = 0; start < totalduration; start += increment){
 instart = irand(0,30)
 MIX(start, instart, duration, amplitude*envelope, left,right)
 }

//----------------------------COMBIT
start = 0
instart = 0
duration = DUR()
amplitude = 10.0
ringtime = 1.1
inchan = 0

COMBIT(start, instart, duration, amplitude, cpspch(7.11), ringtime, inchan, random())
COMBIT(start, instart, duration, amplitude, cpspch(8.07), ringtime, inchan, random())
COMBIT(start, instart, duration, amplitude, cpspch(8.09), ringtime, inchan, makeLFO("sine", 4.075, 0,1))

//Day 61
rtsetparams(44100, 2)
load("VOCODESYNTH")
srand()

rtinput(“/path/to/file.aiff”)

//---------------------------VOCODESNTH
start = 0
instart = 0
duration = DUR()
amplitude = 15.0
envelope = maketable("line", 1000, 0,0, .1,0.5, 0.6,0.5, 1.0,0)
numbands = 50
lowcf = maketable("random", 1000, "gaussian", 300,500)
interval = 0.07
cartransp = 0.03
bw = maketable("random", 100, "low", 0,1) / 100

winlen = 0.2
smooth = 0.98
thresh = 0.0001
atktime = 0.001
reltime = 0.01
hipassmod = 0.03
hipasscf = maketable("line", 1000, 0,1000, 1.0,3000)
spacemult = cpspch(interval) / cpspch(0.0)
inchannel = 0
pan = 0.5
carwavetable = maketable("wave", 1000, "sine")
scale1 = 0.5
scale2 = 1.0
scalecurve = maketable("curve", "nonorm", 1000, 0,scale1,1, 1,scale2)

VOCODESYNTH(start, instart, duration, amplitude*envelope, numbands, lowcf, spacemult, cartransp, bw, winlen,
smooth, thresh, atktime, reltime, hipassmod, hipasscf, inchannel, pan, carwavetable, scalecurve)

//Day 62

�239

rtsetparams(44100, 2)
load("FMINST")
srand()

start = 0
duration = 0.05
amplitude = 5000
carrier = cpspch(7.00)
modulatorfrequency = 220
minindex = 10
maxindex = 30
pan = random()
waveform = maketable("wave", 1000, "sine")
guide = maketable("line", "nonorm", 1000, 0, 0, 5,1, 7, 0)

increment = 0.125

for(start = 0; start < 100; start += increment){
 duration = irand(0.01, 0.1)

 FMINST(start, duration, amplitude, carrier, modulatorfrequency, minindex, maxindex, pan = random(),
 waveform, guide)
 modulatorfrequency = carrier * 22051
 carrier = start * 0.14
 }

//Day 63
rtsetparams(44100, 2)
load("JGRAN")
srand()

//----------------------JGRAN
start = 0
duration = 2.0
amplitude = 1.0
randomseed = srand()
oscconfig = 0 // FM
oscphase = 0 // randomize osc phase? 0 is no; 1 is yes
grainenv = maketable("window", 1000, "hanning")
grainwaveclickhi = maketable("wave", 1000, "sine")
grainwaveclicklow = maketable("wave", 1000, "tri")
FMmult = maketable("random", 1000, "gaussian", 2.0, 100.0)
FMindex = maketable("line", 1000, 0,1.0, 1.0,30.0)
minfreq = 30
maxfreq = 22051
minspeed = maketable("line", "nonorm", 1000, 0,0.2, 1,0.001) // decreasing minimum
maxspeed = maketable("line", "nonorm", 1000, 0,0.001, 1,0.2) // increasing maximum
mindb = 0
maxdb = 90
density = maketable("random", 1000, "gaussian", 0,10)
pan = random()
panrand = maketable("random", 1000, "gaussian", 0,1)

loop = 0.0125

for (start = 0; start < 80; start += loop){
 JGRAN(start, duration, amplitude, randomseed, oscconfig, oscphase, grainenv, grainwaveclickhi, FMmult,
 FMindex, minfreq, maxfreq, minspeed, maxspeed, mindb, maxdb, density, pan = random(),
 panrand)
 }

//Day 64
rtsetparams(44100, 2)
load("STEREO")
load("PVOC")
load("PAN")

rtinput(“/path/to/file.aiff”)
bus_config("STEREO", "in 0-1", "aux 0-1 out")
bus_config("PVOC", "aux 0-1 in", "aux 2 out")
bus_config("PAN", "aux 2 in", "out 0-1")

totalduration = DUR()

//-----------------------------STEREO
start = 0
instart = 0
duration = 1.0
amplitude = 0.5

�240

envelope = maketable("line", 1000, 0,0.25, 0.2,1.0, 0.9,1.0, 1.0,0.25)
pan = 0.5

increment = 0.25

for(start = 0; start < totalduration; start += increment){
 instart = irand(0, totalduration)
 STEREO(start, instart, duration, amplitude*envelope, pan = random())
 duration += 0.02
 }

//------------------------------PVOC
start = 0
instart = 0
duration = totalduration
gain = 1.0
fftsize = 1024
winsize = fftsize * 2
decim = 1024
interp = 16
pitch = 0.0

PVOC(start, instart, duration, gain, 0, fftsize, winsize, decim, interp, pitch)

//-------------------------------PAN
start = 0
instart = 0
duration = 1.0
amplitude = 1.0
inchannel = 0
pantype = 1
pan = random()

for(start = 0; start < totalduration; start += increment){
 PAN(start, instart, duration, amplitude, inchannel, pantype, pan = random())
 }

//Day 65

srand()
print_off()
pitchgamut = {"C", "C#", "D", "Eb", "E", "F", "F#", "G", "Ab", "A", "Bb", "B", "C"}
octavegamut = {"3", "4", "5"}

octaveplaceholder = 0
pitchplaceholder = 0

for(start = 0; start < 15; start += 1){
 /*random_number_x = irand(0,11)
 random_number_y = irand(0,11)

 if(random_number_x >= random_number_y){
 pitchplaceholder = random_number_x + 1
 }

 else{
 pitchplaceholder = random_number_y + 1
 }*/

 //pitchplaceholder = ((random_number_x + random_number_y) / 2)

 pitchplaceholder = irand(0,11)

 random_number_a = irand(0,3) + 1
 random_number_b = irand(0,3) + 1

 octaveplaceholder = ((random_number_a + random_number_b) / 2)

 //adjust pitches to stay within soprano sax range
 /*if(octaveplaceholder < 1){
 pitchplaceholder += 1
 }*/

 /*if(octaveplaceholder >= 2){
 pitchplaceholder += trunc(irand(0,3))
 }*/

 //now put them together
 octave = octavegamut[octaveplaceholder]
 pitch = pitchgamut[pitchplaceholder]

�241

 nextpitch = pitch+octave
 print_on()
 print(nextpitch); print_off()
 }

//Day 66
rtsetparams(44100, 2)
load("AMINST")

start = 0
duration = 0.15
amplitude = 40000
carrierfrequency = 22051
modulatorfrequency = 44100
pan = random()
modulatoramplitude = maketable("line", 1000, 0,0, 1,1, 2,0)
carrierwave = maketable("wave", 1000, "sine")
modulatorwave = maketable("random", 20, "gaussian", -1,1)

increment = 0.45

for(start = 0; start < 250; start += increment){
 random_value = trand(0,10)
 if(random_value <= 6){
 carrierfrequency += 2
 modulatorfrequency += 4
 }
 if(random_value >= 6){
 carrierfrequency -= 3
 modulatorfrequency -= 2
 }
 pan = random()
 AMINST(start, duration, amplitude, carrierfrequency, modulatorfrequency,
 pan, modulatoramplitude, carrierwave, modulatorwave)
 increment = irand(0,1) / 2
 }

//Day 67
/*
spray_init() and get_spray() are similar to the Pd object [urn].
It returns a series of random numbers, but doesn't repeat a number that has been chosen.
Thus, "unrepeated random number."
*/

spray_table = 1
spray_size = 10
seed = srand()

spray_init(spray_table, spray_size, seed) // initialize table 3 with 7 elements

for (i = 0; i < spray_size; i += 1) {
 current_value = get_spray(spray_table) + 1
 print(current_value)
 }

//Day 68
rtsetparams(44100, 2)
load("MBRASS")

Cmajor = {7.00, 7.02, 7.04, 7.05, 7.07, 7.09, 7.11, 8.00}
arraylength = len(Cmajor)

//-------------------Trumpet-ish
start = 0
duration = 1
amplitude = 40000
pitch = Cmajor[0]
slide_length = 103
lip_filter = 140
max_pressure = 0.045
pan = 0.5
breath = maketable("line", 1000, 0,0, 0.05,1, 3.0,3, 3.5,0)

transposition = 0.01
loop = 0.125

for(iteration = 0; iteration < 12; iteration += 1){

 for(index = 0; index < arraylength; index += 1){

�242

 pitch = Cmajor[index] + transposition
 slide_length -= 4
 lip_filter += 10
 max_pressure += 0.155
 pan = pickrand(0, 1)
 MBRASS(start, duration, amplitude, pitch, slide_length, lip_filter, max_pressure, pan,
 breath)
 start += loop //change durations here
 }

 for(index = index-1; index >= 0; index -= 1){
 pitch = Cmajor[index] + transposition
 slide_length += 4
 lip_filter -= 10
 max_pressure -= 0.155
 pan = pickrand(0, 1)
 MBRASS(start, duration, amplitude, pitch, slide_length, lip_filter, max_pressure, pan,
 breath)
 start += loop
 }
 transposition += 0.01
 }

//Day 68 //Tweet script
rtsetparams(44100,2)load(“WAVETABLE")f=140g=maketable("expbrk",10,0,1,10,9) for(i=0;i<50;i+=5){f+=i*20
WAVETABLE(i,20,1750,i*g,random())}

//Day 69 //Tweetable
rtsetparams(44100,2)
load("WAVETABLE")
load("JFUNCS")
reset(8)for(i=0;i<1000;i+=1){WAVETABLE(i,i/2,500,abs(sin(i)*220.5),sin(i))WAVETABLE(i/2,i/
3,500,abs(sin(i)*441),cos(i))}

//Day 70
rtsetparams(44100, 4) //four channels
load("WAVETABLE")
load("NPAN")

bus_config("WAVETABLE", "aux 0 out")
bus_config("NPAN", "aux 0 in", "out 0-3")

//----------------------START
start = 0
duration = 30
amplitude = 10000
frequency = 440
pan = 0 //send everything through channel 0
waveform = maketable("random", 50, "gaussian", -1,1) //noisy waveform to hear spatialization

for(start = 0; start < 25; start += 1){
 WAVETABLE(start, duration, amplitude, frequency, pan, waveform)
 frequency += irand(10,50)
 }

//---------------------NPAN
NPANspeakers("polar",
 45, 1, // left front
 -45, 1, // right front
 135, 1, // left rear
 -135, 1) // right rear

start = 0
instart = 0
duration = 60
amplitude = 1.0
mode = "xy" //or "polar"
x = maketable("random", 100, "high", -1,1)
y = maketable("random", 100, "low", -1,1)
NPAN(start, instart, duration, amplitude, mode, x, y)

//Day 71
rtsetparams(44100, 4) //QPAN, similar to NPAN, but specific for quad sound
load("WAVETABLE")
load("QPAN")

bus_config("WAVETABLE", "aux 0 out")
bus_config("QPAN", "aux 0 in", "out 0-3")

//----------------------START

�243

start = 0
duration = 30
amplitude = 10000
frequency = 440
pan = 0 //send everything through channel 0
waveform = maketable("random", 50, "gaussian", -1,1) //noisy waveform to hear spatialization

for(start = 0; start < 25; start += 1){
 WAVETABLE(start, duration, amplitude, frequency, pan, waveform)
 frequency += irand(10,50)
 }

//----------------------QPAN
start = 0
instart = 0
duration = 60
amplitude = 1.0
x = maketable("random", 100, "high", -1,1)
y = maketable("random", 100, "low", -1,1)
QPAN(start, instart, duration, amplitude, x,y)

//Day 72
load("JFUNCS")

values_array = {380, 383, 660, 504, 512, 265, 212, 185, 184, 202, 204, 201, 978, 1008, 234}
num_values = len(values_array)

values_in_table = maketable("literal", "nonorm", (num_values * 2) + 1,
 0, values_array[0],
 1, values_array[1],
 2, values_array[2],
 3, values_array[3],
 4, values_array[4],
 5, values_array[5],
 6, values_array[6],
 7, values_array[7],
 8, values_array[8],
 9, values_array[9],
 10,values_array[10],
 11,values_array[11],
 12,values_array[12],
 13,values_array[13],
 14,values_array[14])
plottable(values_in_table)

values_constrained = modtable(values_in_table, "normalize", 1.0)
plottable(values_constrained)

//"center" all values between the mean value
sum = 0

for(i = 0; i < num_values; i += 1){
 sum += values_array[i]
 }

mean_raw = sum / num_values
mean = map(mean_raw, 184,1008, 0,1)
print(mean)

//mean = 407.466, in this instance, scaled to 0.27 via map()

//okay, so now have values "reflect" over the mean, creating a waveform
waveform = makefilter(values_constrained, "invert", mean)
//plottable(waveform)

//Day 73
include /path/to/a/previous/scorefile.sco

load("WAVETABLE")
srand()

//---------------------WAVETABLE
start = 0
duration = 3
amplitude = 10000
envelope = maketable("window", 1000, "hanning")
frequency = 0 //initialize
pan = random()
wave = waveform

for(start = 0; start < 30; start += 2){

�244

 WAVETABLE(start, duration, amplitude*envelope, values_array[start / 2], pan = random(), wave)
 }

//Day 74
rtsetparams(44100, 2)
load("STEREO")
load("WAVESHAPE")
load("JFUNCS")
srand()

rtinput("/Users/jerod_s/Desktop/Script_Cal/input-sounds/brook-sounds.aif")

bus_config("STEREO", "in 0-1", "aux 0-1 out")
bus_config("WAVESHAPE", "aux 0-1 in", "out 0-1")

//take values and / 100 to get between 0 and 1
values_array = {.380, .383, .660, .504, .512, .265, .212, .185, .184, .202, .204, .201, .978, 1.008, .234}
num_values = len(values_array)

//------------------------WAVESHAPE
start = 0
duration = 10
frequency = 0 //taken from array when in for() loop
min_distortion_index = 0.0
max_distortion_index = 1.0
amplitude = 3000.0
envelope = maketable("window", 1000, "hanning")
pan = random()

waveform = maketable("wave3", (num_values * 2) + 1,
 0, values_array[0],0,
 1, values_array[1],0,
 2, values_array[2],0,
 3, values_array[3],0,
 4, values_array[4],0,
 5, values_array[5],0,
 6, values_array[6],0,
 7, values_array[7],0,
 8, values_array[8],0,
 9, values_array[9],0,
 10,values_array[10],0,
 11,values_array[11],0,
 12,values_array[12],0,
 13,values_array[13],0,
 14,values_array[14],0)

transferfunc = maketable("cheby", 1000, 0.9, 0.3,-0.2,0.6,-0.7)
indexguide = maketable("line", 1000, 0,0, 3.5,1, 7,0)

for(start = 0; start < 30; start += 2){
 WAVESHAPE(start, duration, (values_array[start / 2] * 2), min_distortion_index, max_distortion_index,
 amplitude*envelope, pan = random(), waveform, transferfunc, indexguide)
 }

//Day 75
rtsetparams(44100, 2)
load("WAVETABLE")
seed = srand()

//-----------------------WAVETABLE
start = 0
duration = 10
amplitude = 500
envelope = maketable("line", 1000, 0,0, 0.1,1, 0.9,1, 1.0,0)
frequency = 7.00
pan = 0.5

loop = 1

for(start = 0; start < 20; start += loop){
 frequency = pickrand(8.00, 8.04, 8.07, 8.11)

 phase1 = makerandom("even", 1000, 0,1, seed)
 wavetype = maketable("wave3", 1000, 1,1,phase1)
 pan1 = random()
 WAVETABLE(start, duration, amplitude*envelope, frequency, pan1, wavetype)

 frequency = pickrand(8.00, 8.04, 8.07, 8.11)
 phase2 = (1.0 - phase1)
 pan2 = (1.0 - pan1)

�245

 wavetype = maketable("wave3", 1000, 1,1,phase2)
 WAVETABLE(start, duration, amplitude*envelope, frequency, pan2, wavetype)

 if(pan1 <= 0.10){
 pan3 = makeLFO("sine", 1.25, 0,1)
 WAVETABLE(start, duration, amplitude*envelope, 6.00, pan3, wavetype)
 }
 }

//Day 76
rtsetparams(44100, 4)
load("MIX")
load("QPAN")
load("JFUNCS")
srand()

rtinput("/Users/JerodSommerfeldt/Desktop/rocks.wav")

bus_config("MIX", "in 0-1", "aux 0-1 out")
bus_config("QPAN", "aux 0-1 in", "out 0-3")

/*
Quad panning with tendency for front speakers to stay to the right
and rear speakers to stay to the left

[1] [2] speaker array

 me

[3] [4]

Recall that RTcmix panning for QPAN looks like this

[-1] [1] front

 still me
 [0]

[-1] [1] rear
*/

//--------------- MIX
start = 0
instart = 0
duration = 0.125
amplitude = 1.0
pan = random()

//--------------- QPAN
start = 0
instart = 0 //reading from aux bus, must be 0
duration = 0.125
amplitude = 1.0
srcX = -1
srcY = 1

increment = 0.125

for(start = 0; start < 100; start += increment){
 instart = irand(0,DUR())
 MIX(start, instart, duration, amplitude, 0,1)

 randomtest1 = highrand()
 srcX = map(randomtest1, 0,1, -1,1)

 randomtest2 = lowrand()
 srcY = map(randomtest2, 0,1, -1,1)
 QPAN(start, instart = 0, duration, amplitude, srcX, srcY)
 }

//Day 77
rtsetparams(44100, 2)
load("MIX")
load("STEREO")

rtinput(“/path/to/file.wav”)

/*

�246

Going for the "doubling" effect to boost signal, -0.0015 to 0.004 sec delay (Pellman)
*/

//------------- MIX
start = 0
instart = 0
duration = DUR()
amplitude = 0.9
MIX(start, instart, duration, amplitude, 0,0)
MIX(start + 0.004, instart, duration, amplitude, 1,1)

/*
Compare with simply STEREO()
*/
STEREO(start+DUR(), instart, duration, amplitude, 0.5)

//Day 78
rtsetparams(44100, 2)
load("DCBLOCK")
load("TRANS")
srand()

rtinput(“/path/to/file.wav”)

bus_config("DCBLOCK", "in 0-1", "aux 0-1 out")
bus_config("TRANS", "aux 0-1 in", "out 0-1")
//---------------- DCBLOCK
start = 0
instart = 0
duration = DUR()
amplitude = 1.0
DCBLOCK(start, instart, duration, amplitude)

//---------------- TRANS
start = 0
instart = 0
duration = DUR()
amplitude = 0.8
//transposition
x = random()
y = random()
transpositionL = (((x + y) / 2) / 10)
transpositionR = ((1 - transpositionL) / 10)
panL = 0
panR = 1
TRANS(start, instart, duration, amplitude, transpositionL, inchan = 0, panL)
TRANS(start, instart, duration, amplitude, transpositionR, inchan = 1, panR)

//Day 79
/*
This is an example .c file for a very basic RTcmix function, which can be accessed and used in any
MINC score file. It will be called squareme and after creating and compiling it in your RTcmix build,
you'll be able to use it as myfunction(pfield1)

As advertised, all squareme will actually do is take an input number (x) and multiply it by itself.
*/

//------- 1. Load header files to include in this function.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <ugens.h>
#include <math.h>

#define DEBUG //debug

//-------- 2. Define your function and declare what it will do.
double myfunction (float p[], int n_args, double pp[]){
 double inputvalue;
 inputvalue = (inputvalue * pp[0]);
 return(inputvalue);
}

//-------- 3. Create a profile for your function, so you can call on it in your score.
int profile(){
 UG_INTRO("squareme", squareme);
 return 0;
}

//Day 80

�247

// Writing window functions for RTcmix, using C++. These would be used in maketable("window")

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <ugens.h>

#define DEBUG

// John Gibson's Hanning and Hamming windows from table.cpp in RTcmix bin folder (lines 1384-1427)

static int _window_table(const Arg args[], const int nargs, double *array, const int len){
 int window_type = 0;

 if (len < 2)
 return die("maketable (window)", "Table length must be at least 2.");

 if (nargs != 1)
 return die("maketable (window)", "Missing window type.");

 if (args[0].isType(StringType)) {
 if (args[0] == "hanning")
 window_type = 1;

 else if (args[0] == "hamming")
 window_type = 2;

 else if(args[0] == "rectangular")
 window_type = 3;

 else if(args[0] == "lanczos")
 window_type = 4;

 else
 return die("maketable (window)", "Unsupported window type \"%s\".", (const char *)
 args[0]);
 }

 else if (args[0].isType(DoubleType)) {
 window_type = (int) args[0];
 }

 else
 return die("maketable (window)",
 "Window type must be string or numeric code.");

 switch (window_type) {
 case 1: // hanning window
 for (int i = 0; i < len; i++){
 array[i] = -cos(2.0 * M_PI * (double) i / (double) len) * 0.5 + 0.5;
 }
 break;

 case 2: // hamming window
 for (int i = 0; i < len; i++) {
 double val = cos(2.0 * M_PI * (double) i / (double) len);
 array[i] = 0.54 - 0.46 * val;
 }
 break;

 case 3: // rectangular window
 for (int i = 0; i < len; i++) {
 array[i] = 1;
 }
 break;

 case 4: // lanczos window
 for (int i = 0; i < len; i++){
 array [i] = sinc(2.0 * (double) i / (double) len - 1.0);
 }
 break;

 default:
 return die("maketable (window)", "Unsupported window type (%d).”, window_type);
 }

 return 0;
 }

�248

//Day 81
srand()

//three coins, heads = 0 and tails = 1
coin1 = 0
coin2 = 1
coin3 = 0
a = 0
b = 0
c = 0

for(i = 0; i < 3; i += 1){
print_off()
coin1 = pickrand(0,1)
coin2 = pickrand(0,1)
coin3 = pickrand(0,1)

if(coin1 == 0){
 a = 2
 }
 else{
 a = 3
 }

if(coin2 == 0){
 b = 2
 }
 else{
 b = 3
 }

if(coin3 == 0){
 c = 2
 }
 else{
 c = 3
 }

sum = a + b + c
print_on()
printf("%d", sum);

if(sum%2 == 0){
 printf("--------");
 }
 else{
 printf("--- ---");
 }
}

//Day 82
// Generating "mixtures" in Stockausen's Studie II
rtsetparams(44100, 2)
load("WAVETABLE")

frequency = 690 //fundamental frequency in mixture 67, which starts the work
frequency_rounded = frequency

//These were all rounded due to Stockhausen's rounding of frequencies for his frequency tables.
row1_ratio = 1.07
row2_ratio = 1.14
row3_ratio = 1.21
row4_ratio = 1.29
row5_ratio = 1.38

frequency_array = {0, 1, 2, 3, 4}

for(i = 0; i < 5; i += 1){
 print(frequency_rounded)
 frequency *= row4_ratio //this is where mixture 67 lies in tables of frequencies
 frequency_rounded = trunc(frequency + 0.5)
 frequency_array[i] = frequency_rounded
 }

//---------------- WAVETABLE, generating first mixture in the score, with envelope
start = 0
duration = 1.56167 //again, roughly. Stockhausen specifies 1 sec = 76.2 cm of tape
amplitude = ampdb(70) //score is in dB and this gesture starts at -15
envelope = maketable("line", 100, 0,1.0, 1.0,0) //looks to me like the slope is linear
frequency = 1 //only initializing here

�249

pan = 0.5
waveform = maketable("wave", 1000, "sine")

WAVETABLE(start, duration, amplitude*envelope, frequency_array[0], pan, waveform)
WAVETABLE(start, duration, amplitude*envelope, frequency_array[1], pan, waveform)
WAVETABLE(start, duration, amplitude*envelope, frequency_array[2], pan, waveform)
WAVETABLE(start, duration, amplitude*envelope, frequency_array[3], pan, waveform)
WAVETABLE(start, duration, amplitude*envelope, frequency_array[4], pan, waveform)
print(amplitude)

//Day 83
// Adding reverb to previous score, for authenticity (albeit digital...)
rtsetparams(44100, 2)
load("WAVETABLE")
load("REV")

bus_config("WAVETABLE", "aux 0-1 out")
bus_config("REV", "aux 0-1 in", "out 0-1")
rtoutput("/Users/jerod_s/Desktop/mixture.aiff")
frequency = 690 //fundamental frequency in mixture 67, which starts the work
frequency_rounded = frequency

//These were all rounded due to Stockhausen's rounding of frequencies for his frequency tables.
row1_ratio = 1.07
row2_ratio = 1.14
row3_ratio = 1.21
row4_ratio = 1.29
row5_ratio = 1.38

frequency_array = {0, 1, 2, 3, 4}

for(i = 0; i < 5; i += 1){
 print(frequency_rounded)
 frequency *= row4_ratio //this is where mixture 67 lies in tables of frequencies
 frequency_rounded = trunc(frequency + 0.5)
 frequency_array[i] = frequency_rounded
 }

//---------------- WAVETABLE, generating first mixture in the score, with envelope
start = 0
mixture_duration= 1.56167 //again, roughly. Stockhausen specifies 1 sec = 76.2 cm of tape
amplitude = ampdb(70) //score is in dB and this gesture starts at -15
envelope = maketable("line", 100, 0,0, 0.9,1.0, 1.0,0) //trying it reversed
frequency = 1 //only initializing here
pan = 0.5
waveform = maketable("wave", 1000, "sine")

WAVETABLE(start, mixture_duration, amplitude*envelope, frequency_array[0], pan, waveform)
WAVETABLE(start, mixture_duration, amplitude*envelope, frequency_array[1], pan, waveform)
WAVETABLE(start, mixture_duration, amplitude*envelope, frequency_array[2], pan, waveform)
WAVETABLE(start, mixture_duration, amplitude*envelope, frequency_array[3], pan, waveform)
WAVETABLE(start, mixture_duration, amplitude*envelope, frequency_array[4], pan, waveform)

//------------------ REVERB, digital, so not super accurate
start = 0
instart = 0
rvbtime = 2.0
duration = mixture_duration * rvbtime
amplitude = 1.0
type = 1 // 1 is Perry Cook's, 2 is John Chowning's, 3 is Michael McNabb's
rvbpct = 0.5
inchan = 0
REV(start, instart, duration, amplitude, type, rvbtime, rvbpct, inchan)

//Day 84
/*
Pauline Oliveros' Sonic Rorschach truncated to nine minutes
*/
rtsetparams(44100, 2)
load("NOISE") //white noise
load("WAVETABLE") //loud, short pulse

//------------------------ NOISE
start = 0
noiseduration = 60 * 9
amplitude = 2000
envelope = maketable("line", 1000, 0,0, 0.01,1.0, 0.9,1.0, 1.0,0)
NOISE(start, noiseduration, amplitude*envelope)

//------------------------ WAVETABLE
start = noiseduration / 2

�250

duration = 1.25
amplitude = 50000
frequency = 2000
pan = 0.5
waveform = maketable("wave", 1000, "buzz")
WAVETABLE(start, duration, amplitude, frequency, pan, waveform)

//Day 85
rtsetparams(44100, 2)
load("FILTSWEEP")
srand()

rtinput(“/path/to/file.aiff”)

start = 0
instart = 0
duration = DUR()
amplitude = 0.75
envelope = maketable("random", 10, "high", 0.1,1.0)

ringdur = 0.5
balance = 0
steepness = 1

lowcf = 30
highcf = 4000
narrowbw = -0.5
widebw = -0.0125

inputchannel = 0
pan = makeLFO("sine", 8.75, 0,1)
bypass = 0
cf = maketable("line", "nonorm", 1000, 0,lowcf, 0.5,highcf, 1.0,lowcf)
bw = maketable("random", 10, "even", narrowbw,widebw)
FILTSWEEP(start, instart, duration, amplitude*envelope, ringdur, steepness, balance, inputchannel, pan, bypass,
cf, bw)

//Day 86
rtsetparams(44100, 2)
load("IIR")
load("JFUNCS")

//------------- PULSES
start = 0
duration = 0.075
amplitude = 40000
envelope = maketable("window", 1000, "hanning")
firstpitch = cpsmidi(100)
pan = random()

centerfreq = 400
bandwidth = 0.25
filteramp = 10.0

for(start = 0; start < 500; start = start + 0.1) {
 cf = highrand(start, centerfreq)
 bw = highrand(start / 10, bandwidth)
 setup(cf, bw, filteramp)
 pitch = sin(firstpitch)
 PULSE(start, duration, amplitude*envelope, abs(pitch), pan)
 }

//Day 87
rtsetparams(44100, 2)
load("JFUNCS")
//more random distributions

srand()

x = random() //between 0 and 1
y = random()

//------- triangle
trianglenumber = ((x + y) / 2)

//------- gaussian
num_elements = 14
halfnum_elements = (num_elements / 2)

�251

for(i = 0; i < num_elements; i += 1){
 randomnumber = random()
 randomnumber += random()
 }

gaussiannumber = abs(((0.166666 * 1) * (randomnumber - halfnum_elements))+ 0.5)

/*
added the following to Joel's JFUNCS library...

double m_tan(float p[], int n_args, double pp[])
{
 double val;
 val = tan(pp[0]);
 return(val);
}
*/

//------- cauchy
pi = 3.1415927
x = random() * pi
randomnumber = (sin(x) / cos(y)) //tangent, or *should* be able to use tan(x)
cauchynumber = ((0.0628338 * randomnumber) + 0.5)
print(randomnumber)
print(trianglenumber, gaussiannumber, cauchynumber)

//Day 88
rtsetparams(44100, 2)
load("MSITAR")

//------------- MSITAR
start = 0
duration = 1.25
amplitude = 20000
pluck_amp = 0.5
pan = 0.5
amplitude_envelope = maketable("line", 1000, 0,0, 0.5,1.0, 1.0,0)

//long hand MIDI-to-frequency conversion

midinote = 60
num_halfsteps = 24 //quarter-tones, now that 8ve is divided by 24
A4 = 440 //in Hz
frequency = (pow(2, ((midinote - 69) / num_halfsteps)) * A4)

loop = 0.125
for(iteration = 0; iteration < 50; iteration += 1){

 for(index = 0; index < num_halfsteps; index += 1){
 frequency = (pow(2, ((midinote - 69) / num_halfsteps)) * A4)
 MSITAR(start, duration, amplitude, frequency, pluck_amp, pan, amplitude_envelope)
 midinote += 1
 start += loop //change durations here
 }

 for(index = index - 1; index >= 0; index -= 1){
 frequency = (pow(2, ((midinote - 69) / num_halfsteps)) * A4)
 MSITAR(start, duration, amplitude, frequency, pluck_amp, pan, amplitude_envelope)
 midinote -= 1
 start += loop
 }

 }

#Day 89
One advantage that I'm finding with using Python in conjunction with RTcmix (instead)
of MINC is the ability to import and use a variety of Python-specific libraries.

from rtcmix import * # Remember that this is needed in all scores that use Python

Using cauchy distribution with Python's math library

#import libraries
import math
import random

x = random.random()
randomnumber = (x * math.pi)

cauchynumber = ((0.0628338 * math.tan(randomnumber)) + 0.5)
print cauchynumber

�252

Or high and low random distributions?

x = random.random()
y = random.random()

if x > y:
 low_rand = y

if x < y:
 low_rand = x

print "number weighted low is %s!" % low_rand

if x < y:
 high_rand = y

if x > y:
 high_rand = x

print "number weighted high is %s!" % high_rand

#Day 90
from rtcmix import *

rtsetparams(44100, 2)
load("WAVETABLE")

import time
import math
import random

divisor = pow(10,8)
x = time.clock()
y = time.time() / divisor

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

#---------- WAVETABLE
start = 0
duration = 2.5
amplitude = 32768
frequency = 30
pan = 0.5
waveform = maketable("wave", 1000, "sawup")

loop = 0.125
for start in drange (0, 50, loop):
 duration = random.random() / 100
 pan = abs(math.sin(start))
 frequency = ((math.sin(y) * x) + y)
 WAVETABLE(start, duration, amplitude, frequency, pan, waveform)
 loop = random.random() * 2

#Day 91
Here is the origingal 3n + 1 score, now in Python

from rtcmix import *

rtsetparams(44100, 2)
load("WAVETABLE")

import random
random.seed() # seed random numbers, like srand() in MINC

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

#---------- WAVETABLE stuff, initializing p-fields
start = 0
duration = 1
amplitude = random.randint(5000, 20000)
envelope = maketable("line", 1000, 0,0, 0.1,1, 0.3,0.7, 0.7,0.7, 1.0,0)

�253

pitch = 60

increment = 0.1515
n = trunc(random.randint(1000, 1000000))

for start in drange(0.0, 100.0, increment): # Boundaries and step size
 if n%2 == 0: # if n is even...
 n = trunc(n * 3 + 1) # do a 3n + 1 operation
 transp = 1.0 # and transpose up and octave
 amplitude = random.randrange(10000, 20000)# louder amplitude values
 pan = 0

 elif n%2 == 1: # if n is odd
 n = trunc(n / 2) # divide n by 2
 transp = -1.0 # and transpose down an octave
 amplitude = random.randint(5000, 10000) # quieter, and integers only
 pan = 1

 if n == 1: # if n equals 1
 exit() # stop

 if pitch > 128:
 pitch = pitch - 127

 pitch = cpsmidi(n) # translate n to pitch in MIDI
 dB = dbamp(amplitude)
 constpowpan = boost(pan) / 2
 WAVETABLE(start, increment * 0.8, amplitude * envelope, pitch, constpowpan)
 print n

#Day 92
from rtcmix import *

rtsetparams(44100, 2)
load("MBANDEDWG")

import random
srand()

#------------ MBANDEDWG
start = 0
duration = 0.125
amplitude = 8000
pitch = cpsmidi(70)
strikeposition = 0.3
pluck = 0
maxvelocity = 0.5
instrument = 1
pressure = 0.0
resonance = 0.9
constant = 0.8
pan = makeLFO("sine", 0.2, 0.0,1.0)

x = random.randint(40,70)
cutoff = 5

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

for start in drange(0, 15, 0.125):
 rand_num = random.randint(0,10)

 if (rand_num < cutoff):
 x += 4 # Go up by major third

 elif (rand_num >= cutoff):
 x -= 3 # Go down by minor third

 pitch = cpsmidi(x)

 if (pitch < 32):
 pitch = pitch + x * 10

 MBANDEDWG(start, duration, amplitude, pitch, strikeposition, pluck, maxvelocity, instrument, pressure,
resonance, constant, pan)

#Day 93
from rtcmix import *

�254

rtsetparams(44100, 2)
load("WAVETABLE")

import random
random.seed()

#----------- WAVETABLE
start = 0
duration = 5
amplitude = 700
frequency = 200
pan = makeLFO("sine", "nointerp", 0.2, 0,1)
waveform = maketable("wave", "nonorm", "nointerp", 2000, "buzz")

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

increment = 1.4

for start in drange(0, 41, increment):
 randomtest = random.randint(0, 100)

 if randomtest < 80:
 duration = 3

 elif randomtest >= 80:
 duration = 10

 WAVETABLE(start, duration, amplitude, frequency, pan, waveform)
 WAVETABLE(start, duration, amplitude, frequency - abs(randomtest/50), pan, waveform)

#Day 94
from rtcmix import * # create a list of pseudo-random numbers from a for loop

rtsetparams(44100, 2)
load("WAVETABLE")

import random
srand()

my_list = [] # declare list of elements, say MIDI notes
num_elements = 10
for i in range(num_elements + 1):
 my_list.append(random.randrange(50,101,1))

print my_list

for start in range(num_elements + 1):
 WAVETABLE(start, 1.25, 20000, cpsmidi(my_list[start]), random.random())

#Day 95
from rtcmix import *
import random
import math

rtsetparams(44100, 2)
load("WAVETABLE")

notes = []
num_notes = 12

for i in range(num_notes + 1):
 notes.append(random.uniform(60,62)) #use uniform for random floating pt nums

print notes[2]

def pitch_in_Hz(current_note): # long-hand MIDI to frequency conversion
 octave = num_notes
 raw_conversion = 440 * (math.pow(2, ((current_note-69) / octave)))
 return round(raw_conversion, 0)

#-------- WAVETABLE
start = 0
duration = 0.25
amplitude = 20000
pan = random.random()

�255

waveform = maketable("random", 18, "cauchy", -1,1)

def drange(start, stop, step):
 r = start
 while r < stop:
 yield r
 r+= step

loop = 1
for start in drange(0,num_notes,loop):
 x = random.random()
 WAVETABLE(start*x, duration, amplitude, pitch_in_Hz(notes[start]), pan, waveform)

#Day 96
from rtcmix import *

import math
import random

lowest_note = 45
highest_note = 96

rawnotes = []
num_notes = 4 # generating four mallet chords

for i in range(num_notes):
 rawnotes.append(random.uniform(lowest_note,highest_note))

note_gamut = [round(elem, 0) for elem in rawnotes]
print note_gamut

now, make them ascending and descending, like SATB-ish
note_gamut_ascending = sorted(note_gamut)
note_gamut_descending = sorted(note_gamut, reverse = True)
print "gamut ascending: %s" % note_gamut_ascending
print "gamut descending: %s" % note_gamut_descending

#Day 97
from rtcmix import *

import math
import random
random.seed()
------- distributions
random.uniform(low, high)
random.triangular(low, high, mode)
random.gauss(mu, sigma)
SEVERAL more (lognormvariate, expovariate, betavariate

lowest_note = 45 # range of instrument, but need to be cognizant of range of each hand
highest_note = 96
mode = highest_note - lowest_note

rawnotes = []
num_notes = 4

for i in range(num_notes):
 rawnotes.append(random.triangular(lowest_note,highest_note, mode)) #focus toward middle

note_gamut = [round(elem, 0) for elem in rawnotes]
print note_gamut

note_gamut_ascending = sorted(note_gamut)
print "gamut ascending: %s" % note_gamut_ascending

to be safe, range of spread on each hand is one octave or less

s = note_gamut_ascending[3]
a = note_gamut_ascending[2]
t = note_gamut_ascending[1]
b = note_gamut_ascending[0]

if s - a > 12 or t - b > 12: # this is quite slick, just writing "or"
 s = s - 12
 t = t - 12

gamut_in_range = [b, t, a, s]
print "gamut in spread range: %s" % gamut_in_range

#Day 98

�256

from rtcmix import *
import math

trichordone = [1, 3, 7]
trichordtwo = [2, 10, 6]
hexachord = trichordone + trichordtwo

ascending normal order
hexachord_no = sorted(hexachord)
print hexachord_no

reversed
def reversed(input_list):
 return input_list[::-1]

print reversed(hexachord_no)

palindrome
def palindrome(input_list):
 return input_list + input_list[::-1]

print palindrome(hexachord_no)

palindrome elided
def palindrome_elided(input_list):
 return input_list + reversed(input_list)[1:]

print palindrome_elided(hexachord_no)

transpose
def transpose(input_list, transposition_value):
 return [mod(element+transposition_value, 12) for element in input_list]

print transpose(hexachord_no, 5)

rotate
def rotate(input_list, rotation):
 return input_list[rotation:] + input_list[:rotation]

print rotate(trichordone, 2)

#Day 99
more LISP --> Python
from rtcmix import *
import random

first LISP example, although abs() is intrinsic to Python
def absolute_value(x):
 if x >= 0:
 x = x
 elif x <= 0:
 return x * -1

x = -1
print absolute_value(x)

exploring conditional tests
def conditional_example(y):
 if y > 5:
 return y * 10
 elif y <= 5:
 return y * 5

y = random.uniform(0,10)
print y
print conditional_example(y)

fibonacci number, when nth number is given (1=0, 2=1, 3=1, 4=2, etc...)
def fibonacci(nth_num):
 if nth_num == 1:
 return 1
 elif nth_num == 0:
 return 0
 else:
 return fibonacci(nth_num - 1) + fibonacci(nth_num - 2)

print fibonacci(7) #seventh number in the fibonacci series
construct a series, up to a given iteration
def fibonacci_series(iterations):
 a, b = 0, 1

�257

 for _ in xrange(iterations):
 yield a
 a, b = b, a + b

print list(fibonacci_series(13)) # return thirteen numbers in the fibonacci series

#Day 100
from rtcmix import *
from random import randrange

rtsetparams(44100, 2)
load("WAVETABLE")

trichordone = []
trichordtwo = []
num_elements = 3
for i in range(num_elements):
 trichordone.append(randrange(10))
 trichordtwo.append(randrange(10))

 print trichordone
 print trichordtwo
 hexachord = trichordone + trichordtwo

def reversed(input_list):
 return input_list[::-1]

def palindrome_elided(input_list):
 return input_list + reversed(input_list)[1:]

def hexachord_to_midi(pitches, range):
 return [x + range for x in pitches]

pitches = hexachord_to_midi(palindrome_elided(hexachord), 60) # 0 = C, 1 = C#, etc..
print pitches

#------ WAVETABLE
start = 0
duration = 1.5
amplitude = 20000
envelope = maketable("line", 1000, 0,0, 0.3,1.0, 0.5,0.5, 0.75,0.5, 1.0,0)
pitch = cpsmidi(pitches[start])
pan = 0.5

for start in range(0,12):
 pitch = cpsmidi(pitches[start])
 WAVETABLE(start, duration, amplitude*envelope, pitch, pan)

�258

|| Afterword ||

 I first dreamed up the idea for this book in the spring of 2011 as I was finishing

my Doctoral work at CCM. Back then, the only way to interact with RTcmix was

through the command line or the [rtcmix~] object for Max 5. I remember very vividly

when Brad Garton came to give a guest lecture to our electronic music studio and

excitedly announced the release of his standalone application, which we encountered

back at the beginning of this book.

 Since that time, RTcmix has continued to evolve and change and improve and

adapt to our fast-changing world of digital technology. In the roughly four years that I

spent researching and writing this book, RTcmix has been adapted for use with Max 6,

Max 7, and Pure Data, has been used as the primary audio engine for apps in iOS and

Android, seen enhanced Python functionality via Oort, been introduced as CMixRun,

moved to GitHub, and is, as of this writing, seeing exciting enhancements added to the

MINC parser.

 This is all to say that you shouldn’t expect to always use or interact with RTcmix

the exact same way every time for the rest of time. Though the program will continue to

grow and adapt, its core functionality will remain the same. Whether you are designing

the next great iOS app for generative music, working on an acousmatic “tape”

composition, or writing a work for percussion and interactive electronics, RTcmix will

always provide you with an array of powerful instruments to call upon and an amalgam

of commands to execute. The sounds hidden within RTcmix are the same classic sounds

that helped design some of the most indelible music of the 1990s and 2000s and will

continue to enhance the landscape of new music for electronics and computers for years

to come.

 Those of you who’ve started to realize some of your own potential in the world of

computer programming might want to take your work with RTcmix to the next level

and begin designing your own instruments and functions. You’ll find example

�259

documentation for just such tasks in /path/to/RTcmix/docs/sample_code. While you

might not at first grasp all of the C++ code that constitutes these instruments and

functions, my guess is that at first glance you won’t be completely baffled by their

syntax, which speaks to how far we’ve all come over the course of our work together.

Moreover, they are full of helpful comments to guide you in your design.

 The RTcmix community is never far away should you have questions regarding

your work. This is a close knit group of like-minded composers and programmers who

are excited to continue curating RTcmix for use by any and all who are interested in

learning more about it. It goes without saying that the book and much of my music

wouldn’t be possible for their time, care, and invaluable efforts in seeing RTcmix

succeed. I am incredibly grateful.

�260

|| Useful links in the world of RTcmix ||

 What follows are a list of helpful links that I hope you’ll seek out as you continue

your work with RTcmix.

1. RTcmix website - http://rtcmix.org

 If you’re like me, you’ll probably be referencing this site often. In fact, when I’m

working in our main studio at Crane with dual monitors, I’ll have the RTcmix website

open on one screen with TextWrangler and my Terminal window on another. It’s

“Reference” section is an invaluable resource for fully understanding the ins and outs of

each instrument or command at hand. Moreover, this will point you in the direction of

some useful tutorials and links to music, artist pages, and examples from users in the

RTcmix community.

2. RTcmix GitHub page - https://github.com/RTcmix/RTcmix

 The transition to hosting RTcmix on GitHub is a relatively recent occurrence, in

that it was completed in the aforementioned four years that went into this text. A huge

advantage of GitHub is the ability to test our experimental releases of the program,

called “branches.”

3. RTcmix mailing list - http://music.columbia.edu/cmc/RTcmix/

 This is by far the best way to keep up to date on all things RTcmix. The original

authors are still highly active and are never more than an email away from answering

any questions that you might have, though I of course hope that many of your questions

regarding downloading, installing, implementing, etc have been covered in some way. I’m

on the mailing list, too, so you’ll find me in the conversation as well. There is a separate

mailing list for RTcmix developers, which really should be reserved for build questions,

architectural inquiries, and potential “bugs” and fixes.

�261

http://rtcmix.org
https://github.com/RTcmix/RTcmix
http://music.columbia.edu/cmc/RTcmix/

4. Soundcloud page - https://soundcloud.com/groups/rtcmix

 Your one stop shop for music made with RTcmix! This is a motivated, active

group that cares deeply about and is interested in your music. Any new works that are

created with RTcmix are welcome to be hosted on the group page and we would of

course love to see that community grow, so please join us!

 A number of works were mentioned throughout this text and I’d like to formally

list them here, along with other sources that were used for the research of this book.

 Burns, Christopher. “Music 680: Special Topics in Music - Compositional

Algorithms (Fall 2007).” https://pantherfile.uwm.edu/cburns/www/680-fall-2007/

 Dodge, Charles and Thomas Jerse. Computer Music: Synthesis, Composition, and

Performance, 2nd edition. New York, NY: Schirmer, 1997.

 Garton, Brad and Dave Topper. “RTcmix - Using CMIX in Real Time.” http://
www.music.columbia.edu/cmix/rtrealtime.html

 Holmes, Thom. Electronic and Experimental Music: Technology, Music, and

Culture, 4th edition. New York, NY: Routledge, 2012.

 Hosken, Dan. An Introduction to Music Technology, 2nd edition. New York, NY:

Routledge, 2014.

 McElhearn, Kirk. The Max OS X Command Line: Unix Under the Hood.

Alameda, CA: Sybex, 2005.

 Pellman, Samuel. Introduction to the Creation of Electroacoustic Music. New

York, NY: Wadsworth, 1994.

�262

https://soundcloud.com/groups/rtcmix
https://pantherfile.uwm.edu/cburns/www/680-fall-2007/
http://www.music.columbia.edu/cmix/rtrealtime.html

 Pope, Steven Travis. “Machine Tongues XV: Three Packages for Software Sound

Synthesis.” Computer Music Journal, Vol. 17, no. 2. Summer, 1993. pg. 23-54.

 Puckette, Miller. The Theory and Technique of Electronic Music. Hackensack, NJ:

World Scientific, 2007.

 Roads, Curtis. The Computer Music Tutorial. Cambridge, MA: MIT Press, 1996.

 Roads, Curtis and Max Mathews. “Interview with Max Mathews.” Computer

Music Journal, Vol. 4, no. 4. Winter, 1980. pg. 15-22.

 Shaw, Zed. Learn Python the Hard Way, 3rd edition. Boston, MA: Addison-

Wesley Professional, 2013. Online at http://learnpythonthehardway.org/book/

 Zelle, John. Python Programming: An Introduction to Computer Science, 2nd

edition. Portland, OR: Franklin, Beedle, and Associates, 2010.

�263

http://learnpythonthehardway.org/book/

|| Index of score file instruments and commands ||

�264

