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STOCHASTIC COMPOSITION 
AND STOCHASTIC TIMBRE: 

GENDT3 BY IANNIS XENAKIS 

MARIE-HELENE SERRA 

ABSTRACT 

GENDY3 BY IANNIS XENAKIS is a stochastic music work entirely pro- 
duced by a computer program written in 1991 by the composer him- 

self at CEMAMu. The work GENDT3 is the continuation of the series of 
stochastic music works that Xenakis inaugurated in 1955 with Metastasis. 
In GENDT3, the use of stochastic rules is more deeply systematic, as the 
composer says in his recent publication (Xenakis 1991b). Not only is the 
musical structure of GENDT3 stochastic, but the sound synthesis is also 
based on a stochastic algorithm that Xenakis invented and called 
"dynamic stochastic synthesis." In this paper, we describe the whole pro- 
cess of the computation of GENDT3, from the low-level sound produc- 
tion to the high-level global architecture. We also take up aspects which 
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GENDY3 has in common with earlier stochastic works which Xenakis 
composed and described in Formalized Music (Xenakis 1971).1 The sto- 
chastic program that was used for the composition of GENDT3 is partly 
listed in the new edition of Formalized Music (Xenakis 1991a). 

INTRODUCTION 

Stochastic music emerged in the years 1953-55, when Iannis Xenakis 
introduced the theory of probability in music composition. First, proba- 
bility calculus was used in Metastasis,2 then in Pithoprakta,3 for the gen- 
eration of a great number of "speeds," which are represented as lines in 
the pitch-time space (Xenakis 1971). Then Xenakis decided to generalize 
the use of probabilities in music composition. The work Achorripsis4 was 
his first work towards this generalization. In Achorripsis, a small number 
of stochastic rules are applied to generate both the parameters of the 
notes and the global structure. The architecture of the piece can be read 
in a two-dimensional matrix that is defined in a space where seven rows 
representing seven groups of instruments evolve in time (see Example 1). 
The matrix represents the global distribution of the sound matter; only 
one parameter, the sound density, obeys a Poisson law in this two- 
dimensional space. The lower levels are also organized with stochastic 
functions; for instance, the durations and the pitches of the notes. At that 
time all the stochastic computations were made by hand or with the help 
of calculating machines that were rudimentary. 

In the 1960s, Xenakis started to use the computer to automate and 
accelerate the many stochastic operations that were needed, entrusting 
the computer with important compositional decisions that are usually left 
to the composer. For example, in the work ST10,5 the composition of the 
orchestra (expressed in percentages of groups of instruments) is com- 
puted by the machine, as well as the assignment of a given note to an 
instrument of the orchestra. At the end of the computation of the musi- 
cal work, the numerical results were transcribed into traditional notation 
so that the music could be played by an orchestra. At this time, speaking 
about the ST program, Xenakis declared: "Although this program gives a 
satisfactory solution to the minimal structure, it is, however, necessary to 
jump to the stage of pure composition by coupling a digital-to-analog 
converter to the computer"6 (Xenakis 1971). 

In the 1960s, Xenakis put forward the idea of extending the use of sto- 
chastic laws to all the levels of the composition, including sound produc- 
tion. This proposition was renewed in 1971: 
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Any theory or solution given on one level can be assigned to the 
solution of problems of another level. Thus the solutions in macro- 
composition (programmed stochastic mechanisms) can engender 
simpler and more powerful new perspectives in the shaping of 
microsounds than the usual trigonometric functions can . . . All 
music is thus homogenized and unified.7(Xenakis 1971) 

In the 1970s, at the University of Indiana, Xenakis experimented with 
new methods for synthesizing sounds based on random walks (Xenakis 
1971),8 the theoretical aspects of which are described in probability the- 
ory (Feller 1968). 

In 1991 Xenakis returned to his dream of making a music that would 
be entirely governed by stochastic laws and entirely computed. At 
CEMAMu,9 Xenakis wrote a program in Basic that runs on a PC. The 
program is called GENDY: GEN stands for Generation and DY for 
Dynamic; it generates both the musical structure and the actual sound. 
The sound is synthesized with a new algorithm called dynamic stochastic 
synthesis, with this algorithm one can generate a great variety of different 
families of timbres, as well as rich and living sounds. 

This paper aims at a detailed description of the program GENDY, 
whose main aspect is its stochastic synthesis algorithm. Indeed, we will 
see that the form of the work has a very close affinity with older stochas- 
tic works. The description of the program GENDY is divided into two 
chapters: the microstructure-stochastic timbre-and the macrostruc- 
ture-stochastic architecture. 

Two works, each about twenty minutes long, have been created with 
this program using different input parameters: GENDT3 was premiered 
at Montreal (Canada) in October 1991 at the International Computer 
Music Conference, and GENDT301 was premiered at Metz (France) in 
November 1991 for the "Journees de Musique Contemporaine." 

I. STOCHASTIC TIMBRE 

For Xenakis, the question of the approximation of instrumental sounds 
and natural sounds is secondary. His primary intention is to (re)create 
the variety, the richness, the vitality, and the energy that make sounds 
interesting for music. 

As we know, a sound is completely defined by its curve of atmospheric- 
pressure variation in time. There are two ways to look at the problem of 
constructing sound. 

The first way is to synthesize the pressure-time curve by adding 
together the partial components of the sound. One can start with a set of 
partials stemming from a spectral analysis or from scratch. In such an 
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approach, the complexity of the sound is built by piling up and, if neces- 

sary, varying the individual sound components until the desired sound is 
reached. For instance, one can start with a group of sine harmonics and 
progressively inject aperiodicity into the sound by varying the frequency 
and the amplitude of the harmonics. 

For Xenakis this approach, based on Fourier analysis, is not adequate 
for (re)synthesizing the complexity inherent in sound. He prefers to take 
a global approach in which the sound synthesis is performed only in the 
time domain, without resorting to spectral decomposition. Instead of 

starting with a periodic sound and modifying it (including random varia- 
tions), he starts ". .. from a disorder concept and then introduce(s) 
means that would increase or reduce it" (Xenakis 1985). In other words, 
Xenakis proposes starting with an aperiodic sound (a random signal) into 
which different degrees of regularity are injected. 

In the early 1970s, at the Center for Mathematical and Automated 
Music (CMAM) at Indiana University, Xenakis experimented with vari- 
ous types of random walks for synthesizing sound (Xenakis 1971). The 
idea was to assign a given particle's position to the amplitude of each 
sample of the sound, which particle moved in an aleatory fashion on one 
axis; barriers (elastic or absorbing) were added for controlling the parti- 
cle's random positions. As will be shown, the concept of random walks, 
i.e. random motions and barriers, is also found in dynamic stochastic syn- 
thesis. 

1.1 THE PROGRAM GENDY 

The program GENDY computes a series of numerical samples and 
stores them in a sound file that can be played after the computation is 
over. The amplitude of one sample is the sum of the amplitudes given by 
several voices. A voice is characterized by a set of input parameters, 
including the stochastic synthesis parameters that control the sound. 
There are up to sixteen voices. Two sound files may be played at the same 
time, so that the number of voices can be increased and stereo effects can 
be integrated into the music. 

1.2 THE SYNTHESIS MODEL 

Many sounds, especially sounds coming from many musical instru- 
ments, may be viewed in a general way as a succession of waveforms 
which are repeated in time with more or less variation. For example, 
many instrumental sounds can be schematized in three parts: attack, 
sustain, and release. The sustain is a relatively stable part, often quasi- 
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periodic; it can be described as the repetition of a typical shape (the 
period) which is modified, mainly in amplitude but also slightly in 
frequency. In the attack part, there is no or very little periodicity. The 
attack can be modelled as a waveform whose modification from one rep- 
etition to another is very large. 

In the dynamic stochastic synthesis model, it is assumed that the sound 
is made of the repetition of an initial waveform and that at each repeti- 
tion the shape of the waveform is distorted according to both time and 
amplitude. The synthesis algorithm consists in computing each new 
waveform by applying stochastic variations to the previous one. 

In order to simplify the model and for computational efficiency, the 
waveform is polygonized, i.e. it is cut into several segments. Each seg- 
ment is determined by the coordinates of its two endpoints; the number 
of segment endpoints is less than the number of points that define the 
waveform (see Example 2). Only the segment endpoints are subject to 

P [Waveform 01 Waveform 1 

i- i-1 i-2 i -1 ti-2 

EXAMPLE 2: TWO SUCCESSIVE POLYGONIZED WAVEFORMS 
WITH TEN SEGMENTS 

stochastic variations. Between the endpoints the waveform samples are 
computed with a linear interpolation. 

1.3 DESCRIPTION OF THE STOCHASTIC SYNTHESIS ALGORITHM 

Computation of one waveform. We assume that the numerical sound is 
made up of a series of J successive polygonal waveforms. The polygonal 
waveform number j is defined with I endpoints of index i. In the follow- 
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ing, we note the coordinates of the endpoints (see Example 2) as 

(xi, Yi, j), 0 < i< I, 0 <j<J. 

The abscissae x. , are sample numbers.11 The ordinates i j are 16-bit 

integers.12 Continuity between two successive waveforms is guaranteed 
by stipulating that the endpoint number 0 (first endpoint) in waveform 

j+ 1 is equal to the endpoint number I- 1 (last endpoint) in waveform 

.: 

(Xo, j+ , ,j+) = (XI- 1, I-I ,j) (1) 

At this time, the number of endpoints Iin the waveform is supposed to 
be constant. Therefore, for any j, the number of endpoints in waveform 

j+ 1 is the same as in waveform j. The coordinates of each endpoint in 
waveform j+ 1 are obtained by adding a stochastic variation to the coor- 
dinates of the corresponding endpoint (endpoint of same rank) in wave- 
form j. We note this process by the set of expressions (2): 

xi,j+ = xij+fx() (2.1) 

Yi,j+ = Yi,j+fy(z) (2.2) 

where fx(z) and fy(z) are the values (positive or negative) returned by 
the stochastic functions fx and fy, for the argument z, which is itself a ran- 
dom number with uniform distribution. 

The duration di, in seconds of the segment lying between the two 

endpoints i and i+1 is proportional to the number of samples ni,j in the 

segment: 

di = (nij- 1)/Srate(sec) 

ni,j Xi+1,j+1 
- 

ij+1 + 

where Srate is the sampling rate, in our case 44100 samples per second. 
The total duration D of the waveform is equal to the sum of the seg- 
mental durations: 

I-1 

D = E di (3) 
i=0 
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If the abscissae xi were not subjected to any variation, we would get 
only a nonlinear amplitude variation of the waveform over time.13 Since 
both the abscissae xi j and the ordinates yi . of the segment endpoints 
vary, the polygonal waveform varies both in shape and in duration, lead- 

ing to amplitude, timbre, and frequency variations of the sound. 
Example 3 shows a nonlinear amplitude modification of a polygonal 

waveform containing ten segments. The endpoints in the initial polygon 
are represented with black dots. The distorted polygon is superimposed 
on the initial one and is represented with white squares. Example 4 and 

Example 5 show a distortion in both time and amplitude. In Example 4 
the duration of the waveform increases (i.e. the frequency decreases), 
whereas in Example 5 it decreases (i.e. the frequency increases). 

EXAMPLE 3: NONLINEAR AMPLITUDE DISTORTION 

OF A POLYGONIZED WAVEFORM 
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p 

EXAMPLE 4: AMPLITUDE AND TIME DISTORTION 

OF A WAVEFORM 

(THE TOTAL DURATION OF THE WAVEFORM INCREASES) 

p 

t 

EXAMPLE 5: AMPLITUDE AND TIME DISTORTION 

OF A WAVEFORM 

(THE TOTAL DURATION OF THE WAVEFORM DECREASES) 
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Elastic barriers or mirrors. There are physical constraints that the synthe- 
sis algorithm must take into account. The amplitudes of the sound 

samples must lie within the interval imposed by the digital-to-analog 
converter. At the CEMAMu the converters allow 16-bit resolution, so 
the signal amplitude must remain between the two boundaries -32767 
and 32767. 

Furthermore, if the stochastic variations are not confined within a 

given finite interval, the synthesis process leads to a very noisy signal or 
to white noise. Indeed, if the modification of the waveform is very large 
at each repetition, there will be a very weak similarity or no similarity at 
all between successive waveforms. It is necessary to find a compromise 
between stability (repetition with weak transformations) and instability 
(repetition with strong transformations). For this reason the program 
forces the stochastic values fx(z) and f(z) as well as the coordinates of 
the endpoints (xi, Yi j) to remain within predefined intervals by means 
of a specified procedure that is called a mirror. 

The mirror procedure is equivalent to two elastic barriers (Feller 
1968). The mirror procedure is notated here as a function MIR that 
takes three arguments, an input value and two barrier amplitudes, and 
returns a value that lies between the two given barriers. The function 
MIR behaves as a pair of optical mirrors and reflects input values that 
exceed the barrier amplitudes back into the barrier range. There are as 
many reflections as needed, so that the output value stands between the 
barriers. The computation (2) of one segment endpoint uses four differ- 
ent mirrors. A first pair of mirrors is applied to each stochastic value fx(z) 
and fy(z) before they are added to the coordinates xij and i j in (2). 
After (2) has been executed, a mirror is applied to the segment length 
n, j+ 1 and another one is applied to the ordinate Yi, j+ The list of the 
successive calls to the MIR function is given in (4): 

fx(z) - MIR (fx(z), fxmin, fxmax) (4.1) 

fy(z) - MIR (fy(z), fymin, fymax) (4.2) 

ni j+ 1 <- MIR (nij+ 1, Nmin, Nmax) (4.3) 

Yi, j+ 1 - MIR (Yi, j+ 1, min, Ymax) (4.4) 

where fxmin, fxmax are the limits of the stochastic value that is added to 
the abscissae; fimin, fimax are the limits of the stochastic value that is 
added to the ordinates; Nmin, Nmax are the minimum and maximum 
numbers of samples per segment; and Ymin, Ymax are the minimum and 
maximum values of the ordinates. 
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Example 6 shows a polygonal waveform before and after an amplitude 
reflection between Ymin and Ymax. The white dots that go outside the 
authorized interval have been reflected. The reflection on the segment 
durations is not represented here. 

p 

Ymax 

EXAMPL 6:APIUEYmIn ,,-- -- Ymin 

EXAMPLE 6: AMPLITUDE BARRIERS 

The values of the amplitude barriers Ymin and Ymax are within the 
range [-32767, 32767]. The minimum and maximum numbers of 
samples per segment Nmin and Nmax are such that: 

Srate / ( I Nmin) < Srate/2 and Srate / ( I Nmax) > Fmin 

where Srate is the sampling rate, I the number of segments, and 
[Fmin, Srate/2] the authorized frequency range.14 

At this point, we see that the synthesis algorithm is based on a process 
of stochastic variations of the polygonal waveform which is "filtered" by a 
set of mirrors whose function is to limit the amplitudes of the stochastic 
variations. But in fact, the mirrors are also used for sound control, since 
they act directly on the sound parameters, i.e. frequency, amplitude, and 
timbre. 
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For instance, the sound fundamental frequency, which is inversely pro- 
portional to the waveform duration Dj(3), depends on the total number 
of segments I, and on the two pairs of barriers, (fxmin, fxmax) and 
(Nmin, Nmax). A sound with a slightly varying pitch can be obtained by 
imposing a small variation interval (fxmin, fxmax) in conjunction with a 
reduced range (Nmin, Nmax). Nmin and Nmax are such that the inter- 
val (Srate/I. Nmax), (Srate/I- Nmin) contains the desired average 
frequency.15 In the same way, by increasing or decreasing the amplitudes 
of the barriers (Ymin, Ymax), we can control the amount of reflections 
which in turn control the signal's shape, and which naturally relates to 
the timbre. 

At this time we do not know exactly how to formalize and quantize the 
effect of the mirrors on the sound parameters. The mathematical aspect 
of the stochastic synthesis algorithm is at this time under study. 

1.4 THE INPUT PARAMETERS OF STOCHASTIC DYNAMIC SYNTHESIS 

The input parameters of the sound synthesis model may be separated 
into two groups: 

(a) the number of segments in the waveform I 
the stochastic distributionfx 
the mirror boundaries (fxmin, fxmax), (Nmin, Nmax) 
(b) the stochastic distribution f 
the mirror boundaries (fymin, fymax), ( min, Ymax) 

The first group primarily controls the pitch whereas the second group 
controls the sound amplitude and timbre. 

This set of parameters is preestablished by the user for each voice in 
each section (see section II) and is constant over time. The experiments 
consist of varying the different input parameters so that we can identify 
different classes of effects on the sound results. 

In the next section we list the different types of stochastic distributions 
that Xenakis uses in his program, and explain the details of the computa- 
tion of the stochastic values fx(z) and fy(z). 

1.5 STOCHASTIC DISTRIBUTIONS 

We see from (2) that the program must generate two series of stochas- 
tic values that we expressed as fx(z) and fy(z) and that follow the given 
stochastic functions fx and fy. In order to clarify what the program does 
at this step of the computation, we first mention some fundamental 
results of the theory of probability (Feller 1968). 
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Sample space Q and random variable x. We can speak of probabilities in 
relation to a given sample space. The sample space fl is the set of all the 
elementary events of the experiment that we consider. For instance, in 
the coin-tossing game, the sample space Qf is made of two elementary 
events, "head" and "tail." Each elementary event in the sample space has 
its probability of occurrence. In the coin-tossing game the probability of 
heads is 1/2. The probability of combined events (events formed of 
unions, intersections of elementary events) may be computed from the 
probabilities of elementary events. 

A random variable is a numerical function that associates numerical val- 
ues to the events of Qf. A random variable is either continuous or dis- 
crete. It is discrete if it takes only a finite or countable set of values. It is 
continuous if it can take all real values in a given interval (or several inter- 
vals). For instance, in the coin-tossing game we can build a discrete ran- 
dom variable X that takes the value 1 if the event "head" is realized and 
the value minus 1 if the event "tail" is realized. 

The expression X = x designates the set of events in Q that are associ- 
ated to the value x by the function X. Similarly the expression X <= x 
designates the set of events in Q that take values ranging from -oo to x. 
A random variable is real if its values belong to the set of real numbers R. 
In the following we will consider continuous and real random variables. 

Distribution function of x and probability density of X. A continuous ran- 
dom variable is defined by the values it takes (often a mathematical func- 
tion) and also by the probabilities of getting those values, which are 
related to the probabilities of the events in math. 

The function that describes the probabilities of the values ofXis called 
the distribution function F(x). The distribution function F is defined by 
F (x) = P [ X x] , where P [ X< x] is the probability that the random 
variable X takes values ranging from -oo to x. 

If the distribution function F is differentiable, the random variable X 
admits a densityfunction f such that 

x 

F(x) = ff(t)dt. 

Examples of densityfunctions. In this section we list several density func- 
tions f (x) and their corresponding distribution functions F(x) that are 
used in the GENDY composition program (Feller 1968; Xenakis 1971). 

The uniform distribution on an interval [0, A]: 
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forx<Of(x) = 0 F(x) =0 

for O0<x<A f(x) = 1/A F (x) = x/A 

for x>A f(x) = O F (x) = 1. 

The Cauchy density centered at the origin is defined by: 

1 t 1 1 
for-oo<x<oo,f(x) = 1 2 ,F(x) = -+ 

t+ x 2 Ttan-1 (x/t) 

The logistic density: 
-ax- b f O ff ) -ae F () 1 

for a > 0, -0o <x< oo,f() = , F(x) = - 
-ax- b 2 + 

-ax-b 
(1+ l+e 

The exponential density: 

2 a2x -a2x for x 0,f(x) = ae- x,F(x) = l--a2 

for x< O,f(x) =0, F (x) =0. 

Simulation of a random variable. In the program we have to build a series 
of stochastic values X with a corresponding distribution F. This means 
that we have to generate a series of numbers X such that the probability 
that X < x is an approximation of a given distribution function F(x). For 
that purpose we use the following theorem (Bestougeff 1975): if Y is a 
random variable with a uniform distribution on [0,1] and if the function 
F is invertible, then the random variable X that follows the distribution 
function F is obtained with: 

x= F-1 (Y) (5) 

where F-1 is the inverse ofF. 

For instance, the random variable X that follows the exponential distri- 
bution is computed with: 

X= -l/a -log(l - T). 
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From (4) we see that once we have a random variable Ywith a uniform 
distribution between [0,1], the computation of X is straightforward. In 
the program, we use the random generator in order to get a uniform ran- 
dom number that we called z in expression (2). Then we compute fx(z) 
and fy(z), where fx and fy represent the inverse functions of the desired 
stochastic distribution. 

1.6 RESULTS 

Very different families of timbres have been obtained with the dynamic 
stochastic algorithm. The sounds are usually very rich in harmonics and 
present a lively and dynamic quality that is noticeable. The polygoniza- 
tion of the waveform introduces discontinuities into the numerical signal 
that produce high partials, some of which will be aliased by the digital- 
to-analog conversion. Digital filtering can be applied in order to attenu- 
ate the aliasing, but then the signal may lose some variability that is valu- 
able for the dynamic quality. 

Examples 7 and 8 show two examples of sounds created with the 
dynamic stochastic algorithm. This method seems to be very attractive, 
and Xenakis is still working on it today. As we said, the number of seg- 
ments in the waveform, the mirror boundaries, and the distribution func- 
tions are constant parameters for each voice in each section. Xenakis's 
research is now turned towards exploring the variation of these global 
parameters, in order to get global sound modifications over time. 

II. STOCHASTIC ARCHITECTURE 

In this section we describe the macrostructural level of the composition. 
The structure of GENDT3 can be considered in a two-dimensional space 
where time is the horizontal axis and where the vertical axis is used for 
the layout of different voices. This space is similar to the one used in 
Achorripsis (see Example 1) and in the ST pieces (Xenakis 1971), where 
the instrumental groups are distributed along the vertical axis (rows) and 
where the time axis is divided into sequences or sections (columns). 

GENDT3 is a series of juxtaposed sections (time axis) in which we can 
find a different number of voices (vertical axis). On the time axis, the sec- 
tion itself is defined by a succession of time-intervals that are designated 
time-fields; the time-fields represent time portions where either silence or 
sound can be found; there is a different succession of time-fields for each 
voice. On the vertical axis, the section is defined by a voice-configuration. 
A voice-configuration is defined by the number of voices that play, the 

250 



GENDY3 by lannis Xenakis 

)&1flVJ ,~t, tw 

- -~~ - - - I, 

EXAMPLE 7: 87 MS OF A SOUND 
SYNTHESIZED BY DYNAMIC STOCHASTIC SYNTHESIS 
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EXAMPLE 8: 34 MS OF A SOUND 

SYNTHESIZED BY DYNAMIC STOCHASTIC SYNTHESIS 
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distribution of the voices on the vertical axis, and the assignment of a set 
of synthesis parameters to each voice. Example 9 shows a page taken 
from the score of GENDY3; this score was computed and displayed by a 
specific program. 

SOHN:S54;ysp.=: i,si=: i;,Pe: 2;cur,.in:Set: 2:25; tot.Kin Sec 2:25 
i , C 4 . I 6 78 80 5 t1B0 118 128 

. ,*. . . , ; . . . . 
.;... | 

. : a3 
.... . .: , .... . . I .. .. , i ... .. ..I . ... ,4 

. .... ' 

I .... .... ., ....... ... ..... ........ .... ,g. I .. .- i 

EXAMPLE 9: FIRST TWO MINUTES 

I .. OF THE FIRST SECTION OF GEND3' 

16 VOICES. TIME IN SECONDS 

2.1 TIME-FIELDS 

A time-field is defined by two parameters: duration, and a silence/ 
sound indicator (the starting time of a time-field is the end time of the 
previous time-field). 

The silence/sound decision. The decision that a particular field is to be 
silent or not is made by the computer with the simulation of a random 
Bernoulli trial. A Bernoulli trial (Feller 1968) is the general name for ran- 
dom experiments that have only two possible results, usually called suc- 
cess and failure. For instance, the coin-tossing game is a Bernoulli trial. If 
the probability of success (on one trial) is p (number between 0 and 1), 
then the probability of failure q is 1 - p. 
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The computer simulation of such an aleatory experiment is carried out 

by the following method (Bestougeff 1975; Maurin 1975): given the 
probability of success p and given a random number z (between 0 and 1) 
with uniform distribution between [0,1], the draw is successful if z is less 
than or equal to p. In GENDY a success means that the field is not silent. 
The silence/sound indicator is 1 (sound) if the draw is successful (z <= p) 
and 0 (silence) if the draw fails (z > p). 

The choice of p, probability that the field is sound, controls the bal- 
ance between sound and silence. For example, if p is 1/2 (and if the 
number of trials tends to the infinite), the number of sound fields will be 
equivalent to the number of silent fields. Ifp is less than 1/2, the number 
of sound fields will be less than the number of silent fields. With p differ- 
ent from 1/2, the Bernoulli trial that the program simulates is analogous 
to a coin-tossing game where the coin is loaded. The parameter p is an 
input parameter of the program that is fixed for each voice in each sec- 
tion. 

The durations. The durations of the time-fields are automatically com- 
puted with the exponential law (see section 1.5). We use the formula (7): 

d = (-1/D)log (1 - z), (7) 

where D is the mean duration of the time-fields, and z a random number 
with uniform distribution between [0,1]. The mean duration D is an 
input parameter of the program that is fixed for each voice in each sec- 
tion. 

Xenakis has often used the exponential law for building a random dis- 
tribution of durations assigned to a set of notes or to a set of arbitrary 
sonic events, as in Achorripsis and in ST10 (Xenakis 1985). The exponen- 
tial density is related to Poisson's law which governs random events 
occurring in time, but with a constant mean density (number of events 
per unit of time). Radioactive disintegrations or incoming calls at a tele- 
phone exchange are examples of such phenomena. The exponential law is 
the law that governs time intervals in the Poisson process. 

III. NOTES 

The macrostructure of GENDT3 is closely linked to the older stochastic 
works like Achorripsis and the STpieces. This time organization of juxta- 
posing sections is found again in GENDY3. The groups of instruments in 
Achorripsis and in the ST pieces are replaced here by sound voices that 
correspond to different synthesis parameters. 
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The cells of the Achorripsis matrix (Example 1) are differentiated by 
only one global parameter, the sonic density (number of sonic events per 
unit of space). In GENDY3 the sonic density is not controlled directly, 
but with the probability of silence/sound (one for each voice), the mean 
duration (one for each voice), and the number of voices in each section. 

CONCLUSION 

In summary, everything in the conception of GENDT3 is within the con- 
trol of the computer except the voice-configuration in each section 
(number of voices and assignment to a particular set of synthesis parame- 
ters) and the choice of the input parameters. The program is based on an 
extensive use of stochastic laws. This creates a homogeneous composition 
in which the microstructure and macrostructure are conceived through 
the same perspective, i.e. filling sonic space with sound material and 
structuring this space are accomplished with similar means. 
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NOTES 

1. Chapter I: "Free Stochastic Music," and Chapter V: "Free Stochastic 
Music by Computer." 

2. Composed in 1953-54 and premiered in 1955. 

3. Written in 1955-56 and performed for the first time in 1957. 

4. Composed in 1956-57 and performed for the first time in 1958. 

5. Composed and premiered in 1962. 

6. Conclusion of Chapter V: "Free Stochastic Music by Computer." 

7. Preface. 

8. Chapter IX: "New Proposals in Microsound Structure." 

9. Centre d'Etudes de Mathematique et Automatique Musicales 
(France). 

10. Chapter IX: "New proposals in Microsound Structure." 

11. Between 0 and the total number of samples in the digital signal. 

12. Between -32767 and +32767. 

13. Since the variation is not the same for all the endpoints. 

14. Fmin can be set to the minimal audible frequency (around 16 Hz). 

15. For I=5, Nmin=7 and Nmax=8, the fundamental frequency is 
between Srate/40 (44100/40=1102Hz) and Srate/35 (44100/ 
35=1260Hz). 
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