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Abstract 

 Recently, several groups of researchers in music information retrieval have 

proposed and implemented systems to compute the timbral similarity of pieces of music. 

Ratings of timbral similarity can be useful for tasks such as online music 

recommendation and playlist generation. Unfortunately, the creation and evaluation of 

these systems involves a host of thorny issues, and some researchers have recently 

postulated the existence of an upper limit on the performance possible using current 

approaches to design. A deeper understanding of timbre, especially regarding humans’ 

perception and comparison, may allow for improved performance and greater usefulness 

of these systems. A set of questions is posed that, if answered by a unified theory of 

timbre, could lead to such improvements. 

 

Introduction 

Music information retrieval (MIR) encompasses a broad range of research 

endeavors and technological innovations. A relatively nascent discipline, it arises from 

the intersection of music, computer science, library and information science, business, 

and other fields (Downie 2003). MIR systems are quite diverse, but common goals 

include the facilitation of music searching, retrieval, distribution, and analysis (Downie 

2003, Foote 1999).  

Timbre has a great impact on MIR system goals, design, and performance. It may 

be explicitly related to system objectives and implementations, as is the case in the 

systems discussed in this paper. Or, timbre may be one of many features extracted from a 

musical signal and used toward other ends, such as classification based on genre or mood 

(e.g., Tzanetakis 2001). Even in systems where timbre is not explicitly measured or 

considered, such as beat-tracking and transcription (e.g., Pikrakis et al. 2004, Martin 

1996), assumptions are made regarding the instrumentation and short- and long-term 

timbral variability. These assumptions impact systems’ accuracy and their extensibility to 

a range of musical contexts. Timbre is an unavoidable consideration in any MIR system, 

just as timbre is an inextricable quality of music itself. 

 The success of current MIR systems, as well as the formulation and realization of 

new goals for the discipline, therefore hinges on a thorough understanding of timbre. 



Acoustics, psychoacoustics, cognition, music theory, composition, cultural studies, and 

numerous other fields can all inform such an understanding. A unified theory of timbre 

relating all such facets of timbre research would therefore prove invaluable to the 

advancement of MIR research and development. While such a unified theory does not yet 

exist, a foundation of empirical, qualitative, and creative work on timbre has arisen in 

recent years.  

 This paper will highlight such questions that, if and when they are answered by a 

unified theory of timbre, may prove crucial to improvements and innovations in MIR 

technologies. Systems that judge timbral similarity are discussed specifically, though 

many of the questions raised in their design and implementation are likely similar to 

those raised elsewhere in MIR research. Before exploring these questions, however, such 

discussion is motivated by a critical review of the goals, implementation, and 

performance of existing timbral similarity systems. 

 

Why Timbral Similarity? 

 Music similarity is an area of research within MIR that attempts to produce 

perceptually relevant ratings for the “similarity” of two or more segments or pieces of 

music. An often-cited application of these ratings is music recommendation systems, 

which suggest pieces of music that are similar to those in which a user has indicated an 

interest. Other applications, such as playlist generation systems that attempt to maintain a 

degree of uniformity among the pieces proposed, are certainly possible as well (Logan 

and Salomon 2001; Aucouturier and Pachet 2002a, 2002b).  

Similarity could be judged based on metadata; for example, two pieces listed in a 

database as appearing on the same album by the same artist might likely be similar. 

However, this is obviously not always the case, and systems such as peer-to-peer file-

sharing networks may contain music that is missing this information or is mislabeled. 

Another problem is that characteristics of a piece of music such as timbre, melody, or 

genre often lack standard representations (one notable exception is the MPEG-7 standard; 

see Herrera et al. 1999). 

 An alternative approach is the use of content-based techniques. The most widely-

used of these is collaborative filtering, which is based on analysis of data collected from 



user behaviors (Aucouturier and Pachet 2002a). As a very simple example, if User X 

enjoys Songs A and B, and User Y enjoys Song A as well, a system might recommend 

that User Y listen to Song B. One problem with this approach is that recommendations 

may be only superficially relevant (Aucouturier and Pachet 2002); another is that such 

systems essentially ignore new music (Logan and Salomon 2001). 

 A second content-based technique, which has the potential to circumvent the 

above problems, focuses on analysis of the musical signal itself. This approach has 

received much attention from the MIR community in recent years. Foote (1997) and 

Wold et al. (1996) proposed two of the first automated systems to measure “musical 

similarity,” without much elaboration of which musical characteristics were considered 

most important by their measures, and without a very thorough defense of their measures 

based on music perception or cognition. Nevertheless, according to the authors, these 

approaches produced promising results when incorporated into content-based retrieval 

systems. Welsh et al. (1999) created another early system, which extracted features 

intended to be specifically related to characteristics such as frequency content, volume, 

noise, rhythm and tempo, and “tonal transitions.” 

 Since then, MIR researchers have proposed other content-based measurements of 

musical similarity (e.g., Herre et al. 2003), as well as measurements for specific 

characteristics such as melody (e.g., Grachten et al. 2004), rhythm (e.g., Foote et al. 

2002; Paulus and Klapuri 2002), and timbre. The notion of timbral similarity 

measurement is particularly interesting, given that timbre itself is a complex 

phenomenon. There does not exist one standard method of quantifying the timbre of a 

musical signal. Studies on only single tones have shown timbre to be a perceptually 

multidimensional phenomenon, though the precise acoustic correlates proposed for its 

dimensions vary from study to study (see, for example, Plomp 1970; Wessel 1973; Grey 

1977; Krumhansl 1989). Furthermore, there is no established definition of “timbral 

similarity,” either among MIR researchers or the culture at large. The work discussed 

below tends to treat timbral similarity as something that makes songs “sound alike,” 

based on some similarity in the spectral content of the music, but which is distinct from 

melodic and rhythmic similarity. 



 The failure of timbral similarity systems to escape from a “wastebasket” 

definition of timbre as anything that is not pitch, rhythm, or loudness is only one problem 

of many contributing to the difficulty of creating such systems. However, because of 

timbre’s close relationship to genre, style, instrumentation, recording technology, 

expressiveness, and other interesting and meaningful characteristics of music, one might 

conclude that, if designed correctly, a “good” timbral similarity system could prove 

useful to music enthusiasts. 

 

Overview of Timbral Similarity Systems 

This section provides an overview of timbral similarity systems recently designed 

by the MIR and multimedia processing communities. Such systems tend to be similar in 

design: a song or clip is analyzed in some way to obtain a mathematical representation of 

its “timbre” or “sound,” and metrics are applied to calculate the distance between two 

representations and determine the similarity of the music. Often, these systems are tested 

by comparing their similarity ratings by those performed by a handful of human subjects. 

Alternatively, evaluation might be made using some assumption relating timbral 

similarity to qualities readily available in the metadata, such as genre: under the 

assumption that songs within a genre generally have similar timbres, a similarity measure 

is successful if it tends to rate same-genre songs as similar.  

It is important to note that some of the systems here specifically aim to measure 

timbral similarity (namely, those by Aucouturier and Pachet, Pampalk et al., and Liu and 

Huang), while others are concerned with musical similarity in general. Systems in this 

latter group were nonetheless selected for study either because they incorporate timbral 

similarity as an explicit component of musical similarity or because they use essentially 

the same metrics as the timbral similarity systems. Knowledge gained through study of 

these systems is therefore directly applicable to systems attempting to measure timbral 

similarity alone. Likewise, if timbral similarity systems are to be improved, general 

musical similarity systems stand to benefit as well. 

An in-depth discussion of an early system for the explicit measurement of timbral 

similarity will offer insight regarding how such a system might be designed and tested. 

Brief discussion of other systems will follow, with attention to the ways in which they 



differ from this example. The authors’ findings on the performance of their systems will 

be described superficially here, and following sections will offer more critical analyses of 

these systems as a group. 

 

An Example System: Aucouturier and Pachet 

 Aucouturier and Pachet’s (2002a, 2002b) first work toward a timbral similarity 

system is motivated by the growth of Electronic Music Distribution (EMD) and the 

problem it presents of helping online music enthusiasts efficiently browse through online 

music collections. They argue that musical taste is often associated with timbre, so a 

timbral similarity measure is quite relevant to EMD systems. 

 Their approach involves the computation of a high-level timbral descriptor for 

each musical selection in a database. Based on the knowledge that a “large part” of the 

timbre of instruments is explained by their spectral envelope, they choose Mel Frequency 

Cepstral Coefficients (MFCC’s) as the basis for these descriptors. Aucouturier and Pachet 

measure the cepstrum as the inverse Fourier transform of the log-spectrum: 

 
The mel-cepstrum is computed via mapping linear frequencies to the psychoacoustically-

based Mel scale. MFCC’s are typically computed using an ordered sequence of these 

coefficients, (c0, c1, …, ck), where k is chosen based on the desired resolution of the 

measure. Lower-ordered coefficients describe slow temporal changes in the spectral 

envelope, and higher-ordered coefficients describe increasingly fast variations. Higher-

ordered coefficients are therefore increasingly dependent on the pitches present in a 

signal. Aucouturier and Pachet choose 8 coefficients for their 2002 work. 

 A set of MFCC sequences is computed for subsequent 50ms windows on each 

musical selection. The total number of coefficients for even a short song can become very 

numerous, however (in the order of tens of thousands), so it is necessary to devise a more 

compact representation of each song’s set of MFCC’s. Aucouturier and Pachet choose to 

model this set using a Gaussian Mixture Model (GMM), which in this work is composed 

of three component Gaussian probability distributions.  



 The similarity of two sets of MFCC’s can be thought of as inversely related to the 

distance between their GMM’s. This is computed via a sampling process, in which 100 

random samples are taken from the GMM of one song (Song A), and the probability of 

these samples given the GMM of the other song (Song B) is calculated. Similarly, 

samples are taken from the GMM of Song B, and their probability is calculated given the 

GMM of Song A, resulting in a symmetric measure. The higher these probabilities, the 

more similar the songs are judged to be. 

 Aucouturier and Pachet evaluate the system by an informal analysis of the 

similarity matches it proposed. They note that many selections by the same artist or in the 

same genre were judged to be similar. They also note timbral matches such as a piece by 

Beethoven with a Beatles song. Rather than point to this as a failure of the measure, they 

describe these matches as “interesting,” arguing that it is precisely those matches that 

cannot be made on the basis of artist or genre metadata alone wherein the system 

demonstrates its usefulness. They also compared the system to human listeners’ 

judgments, and they found that the system agreed with the subjects 80% of the time. 

 

Other Approaches 

Liu and Huang (2000) also use MFCC’s and GMM’s to represent timbre, with the 

goal of facilitating indexing and retrieval based on audio content, though their focus is 

not restricted to music. A key difference with the work above is that they segment audio 

into relatively homogenous contiguous sections. This segmentation is performed 

automatically, and portions of the signal having low energy are considered as candidates 

for section boundaries. Rather than considering global timbre of entire audio stream or 

file, these segments are considered individually as potential timbral matches to a given 

query. In tests, this model tended to judge segments of recorded speech by one individual 

to be similar, regardless of the presence of background music or noise. 

 Logan and Salomon (2001) propose to measure music similarity using MFCC’s 

on subsequent frames. They use 19 MFCC’s, resulting in a measure that considered 

relatively fine detail compared to Aucouturier and Pachet’s (2002a, 2002b) measure. 

Instead of using a GMM, they represent the collection of MFCC’s using standard K-

means clustering, wherein each song is summarized by a “spectral signature” of 16 



typical MFCC sequences. Signatures are compared using Earth Mover’s Distance, a 

metric that calculates the amount of “work” needed to convert one song’s spectral 

signature into the other’s. Logan and Salomon conducted tests with human users, and 

they found that users tended to agree that, of the top five songs the system judged as 

similar to a seed, 2.5 songs were indeed similar. Baumann and Pohle (2003) implemented 

a very similar system, and they found loosely comparable performance among their 

system, Logan and Salomon’s, and Aucouturier and Pachet’s. 

Pampalk, Dixon, and Widmer (2003a) present several measures for musical 

similarity in the context of a music browsing system that allows a user to interactively 

decide which of the measures should be used. The measure that specifically addresses 

timbre employs a spectrum histogram, which is a relatively straightforward technique in 

comparison to Logan and Salomon (2001) and Aucouturier and Pachet (2002a, 2002b) 

use of MFCC’s and representative models. To create this histogram, a piece of music first 

undergoes psychoacoustically-informed preprocessing to convert it to a Sone/Bark 

representation, account for the effects of the outer and middle ear, and calculate the 

effects of masking. Each “bin” of the resulting histogram corresponds to a critical band, 

and it may take on one of fifty values representing the loudness in that band. This process 

is performed over a windowed version of the signal, and for each band, a count is taken 

of how many times some specified loudness threshold is exceeded. To compute the 

similarity between two songs, a simple Euclidean-distance measure is performed on the 

histograms. 

Herre et al. (2003) investigate a variety of frequency- and time-domain analysis 

techniques for musical similarity analysis, many of which are closely related to timbral 

qualities. They found that combining spectral flatness measure, normalized loudness, 

MFCC’s, Real Cepstral Coefficients (RCC’s), and temporal log-loudness derivatives 

yielded the best results in a small-scale music recommendation system. Herre et al. are 

the only group of researchers discussed here who explored such a wide range of signal 

metrics. They analyzed each metric individually for its correlation to listener judgments 

of similarity, and they also compared listener judgments with a final system that 

incorporated several measures. However, they did not investigate what perceptual 



qualities were actually evaluated by each measure in the given implementation or 

postulate perceptually-based reasons for the success of some measures over others. 

 Berenzweig, Ellis, and Lawrence (2003) use MFCC’s and their first-order 

differences to define an “anchor space.” Pieces of music are mapped to clusters in this 

space, and clusters are represented as GMM’s. The system measures similarity with 

respect to selected “anchor” points in this space, based on the recognition that people 

often describe music via its similarity to well-known “anchor” or “canonical” artists and 

genres.  

 

Performance of Existing Timbral Similarity Systems 

Several groups of researchers have undertaken larger-scale studies comparing the 

performance of the above systems and other variants on them. Pampalk et al. (2003b) 

reviewed work by Logan and Salomon (2001) and Aucouturier and Pachet (2002a, 

2002b) with their own spectrum histogram (as well as two other measures that deal more 

with rhythmic similarity than timbral similarity). They compared the systems based on 

their degree of match to album, artist, genre, style, and “tones” from the All Music Guide 

(All Media Guide 2005), using a sample database containing a variety of popular and 

classical music. The spectral histogram correlated with these characteristics the best, 

followed by Aucouturier and Pachet’s system, then by Logan and Salomon’s. Their 

findings suggested poorer performance of these other systems than their authors had 

reported. However, Pampalk’s measure was highly dependent on the music present in 

their own database, which was different from the test databases of the other researchers, 

so no firm conclusions regarding performance could be drawn. 

 Berenzweig and Logan et al. (2003) performed a study evaluating the relative 

performance of MFCC’s (as used by Logan and Salomon 2001, for example) with anchor 

space (as used by Berenzweig, Ellis, and Lawrence 2003) and the effectiveness of various 

means of modeling and comparing feature distributions. To obtain ground truth data, they 

performed a user survey, consulted the All Music Guide (All Media Guide 2005), and 

obtained information from the internet on user playlist co-occurrence, user collection co-

occurrence, and textual data from documents describing music. They found that MFCC’s 

and anchor space techniques performed similarly and that the choice of modeling scheme 



and comparison method was somewhat dependent on the feature space being used. They 

also suggested personal music collection co-occurrence as the best ground truth measure 

(notably, however, they were interested in evaluating measurements of musical similarity 

in general, not timbral similarity only). 

 Aucouturier and Pachet (2004a, 2004b) performed an extensive, systematic study 

on the optimization of their 2002 timbral similarity system, incorporating techniques used 

by other researchers from MIR and speech processing. They experimented with changing 

parameters such as the audio sample rate, number of MFCC’s, number of GMM 

components, and window size, and they picked optimal parameters for each based on this 

experimentation. They also examined the use of Earth Mover’s Distance as an alternative 

to sampling for similarity calculation, tried using Hidden Markov Models instead of 

GMM’s, and experimented with a variety of front-end processing techniques. Using 

genre metadata for an intentionally simplified and conservative similarity ground truth, 

they were able to improve upon their original system to some extent. Most of this 

improvement arose from parameter fine-tuning; they found that substantial changes to 

their initial approach (e.g., the use of GMM’s) failed to improve performance 

substantially. After all improvements were implemented, Aucouturier and Pachet still 

found the system’s performance to be unsatisfactory, and they posited the existence of a 

ceiling on performance that might not be overcome using this basic system structure.  

Three main conclusions can be drawn from the above studies. First, any 

meaningful comparison of timbral or musical similarity measures is wrought with 

practical difficulties. Second, most of the similarity systems discussed above can perform 

reasonably well in certain contexts. Third, none of the approaches greatly outperforms the 

others, and it appears that there is an upper limit on the performance achievable using the 

general framework shared by these approaches to measure similarity. This observation is 

indicative of larger problems inherent to the construction and evaluation of timbral 

similarity systems as they have been conceived thus far. 

 

Larger Issues in the Construction and Evaluation of Timbral Similarity Systems 

 One serious issue that complicates the construction and evaluation of musical 

similarity systems is the lack of an operational definition of what is being measured and 



compared. For timbral similarity systems, there seems to be agreement among 

researchers that the “timbre” of a piece relates to its spectral content, and pieces whose 

spectra are somehow similar are more likely to sound similar than pieces whose spectra 

are different. This is a problem among more general music similarity systems as well; 

though there may be countless factors that contribute to perceptual similarity between 

two pieces of music, most researchers have not attempted to elaborate specifically what 

these factors are. Even when they incorporate spectral measures such as MFCC’s into 

their general similarity systems, they offer little discussion regarding why. The problem 

of definition is not a trivial one; studies on the perception of the timbre of single notes 

reveal its multidimensional perceptual nature (e.g., Grey 1977), so it is likely that the 

perception of the timbre of an entire piece of music is even more complex. 

 For that matter, most of these systems also assume that it is perceptually 

meaningful to assign an entire piece of music one representation of timbral similarity. 

Even considering that this representation might be a statistical distribution rather than a 

single point in a feature space, and even considering that much of the music of interest is 

only a few minutes long, this is quite problematic. A few researchers, such as Liu and 

Huang, do segment an audio signal into sections, but even they do not demonstrate firm 

evidence that the resulting segmentation is relevant to human perception.  

 Another drawback of these systems is their limited musical focus. Most systems 

are evaluated using Western popular music, and some incorporate Western common 

practice period music as well. The above difficulties regarding a lack of understanding of 

what the perceived timbre of a piece of music entails and whether it even make sense to 

discuss the timbre of a whole piece of music are problematic enough for this limited set 

of genres. However, they present even more challenges when non-Western music, 

electroacoustic music, and all other possible varieties are considered as candidates for 

timbral similarity measurements (as they should be). 

 A fourth, very serious problem of timbral similarity systems is the lack of ground 

truth for objective evaluation. This problem exists in part because of the lack of a 

definition for timbral similarity. It is exacerbated by the fact that human similarity 

judgments of music are likely influenced by a variety of musical and non-musical factors. 

For example, when user tests are conducted to assess the performance of a system, their 



similarity ratings might be highly influenced by whether they are familiar with the music 

played, but this is not accounted for in any of the studies. Furthermore, researchers have 

at some times pointed toward the convergence of timbral similarity measures with artist 

and genre similarity as a marker of success, and at other times they have claimed that the 

divergence of these measures indicates success (see specifically Aucouturier and Pachet 

2002a, 2002b). Even when artist and genre similarity is established as a baseline to which 

comparisons are made, bias is introduced by the fact that the system creators themselves 

have usually put together the databases for testing and have chosen which artists and 

genres to include. 

This is not to say that these systems are not measuring anything of relevance; 

many of the user tests indicate that these systems’ similarity judgments often correlate 

with human listeners’. But it is not clear whether this correlation is actually a result of the 

systems successfully measuring timbre or timbral similarity in a meaningful way. 

Without an understanding of which perceptual qualities are being measured and how 

measurements for different songs should be compared to best mimic human similarity 

judgments, “timbral similarity” measures can only claim to be heuristics of questionable 

applicability. 

Many, if not most, of these issues arise from a lack of understanding of 

perceptual, cognitive, and cultural aspects of timbre perception. This may come at little 

surprise, given the general lack of understanding of these issues by the wider academic 

music community itself. Fortunately, recent decades have seen an increase in the rigorous 

study of timbre in disciplines such as psychology, music theory, composition, and many 

others. One need only glance through the proceedings of the recent CIM Conference 

(Traube and Lacasse 2005) to appreciate that timbre research is an active and vibrantly 

diverse endeavor. A unified theory of timbre might elegantly link components from these 

different fields. Such a theory would have immense potential to guide MIR research 

around the above-mentioned pitfalls. It would open avenues for improved 

conceptualization and implementation of timbral similarity systems, as well as benefit 

broader MIR research. 

 

 



The Role of a Unified Theory of Timbre in Improving Timbral Similarity Systems 

The quest for improved, perceptually relevant timbral similarity systems might begin 

with six questions, each of which can be addressed to a large degree by a unified theory 

of timbre: 

 

1. What do we want to measure? (What aspects of timbre are we concerned with?) 

Existing timbral similarity work is vague with regard to the perceptual qualities of 

music it hopes to capture. A working definition of timbre as it is perceived in the 

context of entire musical selections is a necessary first step. 

2. What metrics are most appropriate to measure the qualities/quantities from 

Question 1? We must identify acoustic correlates to perceptually relevant 

measures and choose or invent means to compute and represent them in the 

context of these systems. 

3. How do humans perform timbral similarity comparisons? Given a mechanism for 

perceiving the timbre of a segment of music, we must understand which facets of 

the perceived timbre contribute to a judgment of similarity, and how. 

4. What approaches are most appropriate for performing human-like comparisons, 

using the metrics from Question 2?  

5. How can we best evaluate timbral similarity systems? We must be able to clearly 

identify shortcomings in systems in order to remedy them, and we must be able to 

evaluate systems against each other. 

6. How can we best incorporate timbral similarity measures into larger EMD 

systems so that they are useful and relevant to music enthusiasts?  

 

Of course, it is possible that the even the structure of these questions makes incorrect 

assumptions about human perception of timbre and timbral similarity. For instance, the 

act of perceiving or recognizing the timbre of a sound might itself involve a comparison 

with prototypical models. The above outline will nevertheless be used as a loose structure 

to organize the following discussion, and possible deviations from the model the outline 

presupposes will also be pointed out. 

 



What do we want to measure? 

 The first issue that a unified theory of timbre could address is whether, and for 

which types of music, it even makes sense to discuss a high-level, “global” timbre. 

Perhaps the idea of a global timbre can make sense when conceptualized as a range or 

distribution within the space of perceptible timbres rather than a single representative 

point. Perhaps the idea of a global timbre can make sense for a piece of music with little 

variation in instrumentation, texture, pitch, and loudness, If this is the case, the degree of 

variation of these parameters that is allowable before a piece of music is perceived as 

having multiple distinct high-level timbres should be understood. If a global timbre 

representation does have a perceptual basis, perhaps it is linked to timbre memory: the 

most distinct, characteristic, or otherwise memorable timbres would then be the ones a 

timbral similarity measure would need to capture and represent somehow. Or, perhaps 

one global timbre is too restrictive a notion for most pieces of music; in this case, it 

should be understood what constitutes a timbrally homogenous perceptual segment, and 

how the general timbral characteristics of diverse segments could be combined (or not) 

into a global average or distribution.  

Existing timbre research has already demonstrated people’s ability to discriminate 

among and compare the similarity of the timbre of single notes (e.g., Plomp 1970, Grey 

1977, Krumhansl 1989). We already have some understanding of the acoustic correlates 

of similarity measures at this very primitive level. A perceptually-informed timbral 

similarity measure would ideally mirror human performance on single-note similarity 

judgments. A music file containing one note played by a trombone should be rated as 

more similar to a music file containing one note on a trumpet than a music file containing 

one note on a kazoo. In order to answer the above questions regarding high-level timbre 

perception, perhaps the work on single-note timbre perception could be extended to 

consider musical segments of increasingly greater complexity. A unified theory of timbre 

could answer, for instance: What are the acoustic correlates of the perceived timbre of a 

chord or tone cluster, played with one instrument or many? How do the perceived timbres 

of temporally contiguous chords affect the overall perceived timbre of the group of 

chords? 



At increasingly higher temporal levels, the questions of which acoustic properties 

might be important to the notion of a “general” timbre (that is, “global” within the bounds 

of the segment), and whether a general timbre may exist at this level, becomes 

increasingly complicated. Temporal variations in timbre at the note level (such as occurs 

in hocket, for example) are likely to have different effects on perception than the 

microtemporal variations that occur within a single note. Temporal variations in timbre at 

the measure level are likely to have another effect. A theory of timbre informed by 

physiology, music perception, and cognition is necessary to predict the effect on any 

perceived general timbre as the temporal scale of spectral variation changes from low to 

high.  

Even considering relatively short and homogenous segments of music, the 

question of the contribution of timbral variance to a general timbre (or its preclusion of 

the perception of a general timbre) is complicated by the question of auditory streaming 

and its impact on timbre perception. A very short music clip might be perceived as 

containing multiple streams if sufficient variation in pitch, localization, dynamics, timbre, 

or other characteristics are present. Supposing there is indeed a way to represent the 

general timbre of a stream of music given constraints on time and timbral variability, 

what happens when two or more streams combine? The complexity of the perceptual 

mechanisms that operate in auditory stream segregation and auditory scene analysis 

(Bregman 1990) and the multidimensional nature of timbre perception at the note level 

both suggest that any perceived general timbre of a sound containing multiple streams 

might not be computed by the sum of its parts. Perhaps it no longer makes sense at all to 

discuss any sort of general timbre at the level of complexity where multiple streams are 

perceived. In any case, a theory of timbre informed by an understanding of human 

auditory scene analysis might further describe how distinct component streams contribute 

to a perceived general timbre and delimit when the perception of a general timbre might 

occur at all. 

Knowledge regarding the factors that contribute to some timbres being more 

salient than others would also benefit timbral similarity systems. In popular music, for 

example, the timbre of the singer’s voice might have a greater effect on the perceived 

general timbre than the background instrumentation. Sounds that are surprising or seem 



out of place might also have effects on the perceived general timbre that are out of 

proportion to their relative temporal or dynamic prominence in the music. Of course, in 

the event that there is no perceptual basis for a general or global timbre at all, a timbral 

similarity system that considered the individual timbres of greatest salience, such as a 

singer’s voice, might still be very useful. 

The perception of any general timbre and the perception of component timbres as 

more salient than others are also likely dependent on genre. Timbre plays very different 

roles in the organization of punk rock, Javanese gamelan, and electroacoustic music, for 

example. It might make more sense to consider a general timbre of a short rock piece 

with static instrumentation than a modern Western art music piece wherein timbre is a 

primary bearer of form. A unified theory of timbre that explained the function of timbre 

in such different contexts and its impact on perception would be necessary for a timbral 

similarity tool to handle a wide variety of music. 

 

What metrics are appropriate? 

After it is clear what aspects of the signal should be measured, that is, what is 

perceptually relevant to the formation of a general timbre for a segment of music, it is 

necessary to choose a set of metrics for computing these from the audio signal. Current 

systems that use MFCC’s only measure stationary spectral envelopes computed over 

short, successive time windows. Information we already know to be important to timbre 

perception, such as attack time and spectral fluctuation characteristics, is not captured 

well by this metric. In order to take into consideration the myriad of factors that influence 

the perception of a general or global timbre, it is likely that multiple metrics will be 

necessary. 

One approach to combining metrics is to take measurements of different signal 

qualities (for instance, MFCC’s 1-10, spectral flux, and attack time) and concatenate 

them in a “feature vector” describing a timbre from several semi-independent 

perspectives. A vector of n measurements would describe a timbre point in an n-

dimensional space. This type of data representation is common to many pattern 

recognition systems. However, its link to human perception is questionable.  



A unified theory of timbre that accounted for the interaction of many levels of 

human sensing, perception, and cognition could result in a more informed approach to 

signal analysis. Perceptually-informed blackboard systems have been used with some 

success in the transcription of polyphonic music (e.g., Martin 1996, Bello and Sandler 

2000). These systems attempt to combine bottom-up and top-down processing in 

meaningful ways. In polyphonic transcription, for example, the presence of energy in a 

critical band exerts bottom-up pressure for the perception of a note or partial with a 

corresponding frequency, and the recognition of a chord exerts top-down pressure for the 

perception of a particular frequency that fits into that chord. Temporal information can 

also be incorporated into these systems: for example, a blackboard system for Western 

tonal music could “expect” to find a tonic chord following a dominant chord and 

therefore exert top-down pressure to seek out the tonic if it exists. One might imagine a 

blackboard model of timbre perception that used understanding of low-level sensing of 

the inner ear all the way up to cognitive models of expectation to “hone in” on the aspects 

of a signal that are most important to timbre perception at each particular moment in a 

piece. 

Any representation of timbre constructed by a system might also need to be 

compacted to make storage manageable (if it is to be stored in a database rather than 

computed on-the-fly). For instance, many existing systems use GMM’s to approximate 

large sets of MFCC’s instead of storing all the MFCC’s explicitly. The choice of how the 

complexity is to be reduced should be as informed by human perception as possible. If 

work in timbre perception does suggest that a general timbre arises from some 

distribution of temporally local timbres, than the use of GMM’s makes some sense. 

Otherwise, alternative representations should be explored. If research indicates that 

longer or more timbrally heterogeneous pieces are perceived has having distinct 

segments, each with a general timbre, perhaps more states could be used for their GMM’s 

than for more homogenous pieces. Notably, Toiviainen et al. (1995) suggest that the 

representation of timbre (or of other phenomena) in the brain is essentially a projection 

from a multidimensional to a less-dimensional space. This suggests that a timbral 

similarity system might also perform reductions of dimensionality without a degradation 

of performance. 



 

How do humans perform timbral similarity comparisons? 

Similarity comparisons of the timbre of single notes have been helped to form a 

foundation for timbre perception research since Plomp’s work (1970). User studies done 

by MIR timbral similarity researchers (e.g., Logan and Salomon 2001) indicate that 

humans do tend to agree on what sounds similar at the song level, as well. Assuming, 

therefore, that there is some perceptual and cognitive mechanism for timbre comparison, 

a unified theory of timbre should explain this mechanism in greater detail. 

One fundamental question regarding timbral similarity judgments of musical 

selections is symmetry. Aucouturier and Pachet’s 2002 system treats timbral similarity as 

symmetrical: the system will respond identically to “How similar is Song A to Song B?” 

and “How similar is Song B to Song A?” A unified theory of timbre should address 

whether this is always in fact the case for human judgments.  

A related issue is the very relevance of any question formulated as “How similar 

is Song A to Song B?” In their later work (2004a), Aucouturier and Pachet note studies 

indicating that human comparisons involve a choice between two models (“A sounds like 

B” and “A does not sound like B”) rather than by testing the significance of a hypothesis 

(“A sounds like B”). A unified theory of timbre perception would elucidate how this 

finding applies to timbral comparisons. 

Berenzweig, Ellis, and Lawrence (2003) note that the All Music Guide (All Media 

Guide 2005) describes the “sound” of artists in relation to standard “anchor” artists. 

Perhaps high-level timbral similarity is assessed with respect to “anchor” timbres that are 

common (e.g., “full string orchestra” or “jazz combo”) or distinctive (e.g., “Louis 

Armstrong playing the trumpet”). The similarity of two non-anchor timbres might be 

mediated with respect to their similarity to an anchor timbre. Perhaps timbre perception 

and recognition is directly linked to similarity judgments with an anchor timbre or a 

timbral/temporal template, as is suggested for sound recognition by the information 

processing approach to psychology (described in McAdams 1993). 

A practical issue that must be addressed is the effect of audio compression, 

sampling rates, noise, and other factors that can alter the perception of a signal without 

changing the music itself. Perhaps it is a safe assumption to say that, if Song A and Song 



B sound very similar, then down-sampled or noisy versions of Song A and Song B will 

still sound similar, as long as the signals are not degraded too much. But, what if Song A 

is down-sampled, compressed, transmitted over a telephone line, or otherwise modified, 

and Song B is not? How robust is human timbre perception to these modifications? In 

large music databases where the music is likely to come from a variety of different 

sources, might be encoded in several different formats, and is certainly recorded and 

mixed using a variety of technologies, this question is quite relevant. A unified theory of 

timbre should account for how such changes to audio signals affect similarity judgments. 

 A unified theory of timbre should also elucidate the role of culture and familiarity 

in timbral similarity judgments. One might imagine a Western listener judging all Indian 

classical music to be very timbrally similar, while a trained Indian sitar player considers 

this music to be quite heterogeneous based on variants in instrumentation, playing style, 

etc. These two listeners may use quite different strategies to characterize the timbre of 

this music and compare the “sound” of pieces within this genre. 

 

What similarity metrics can be used? 

The similarity metrics used should reflect, to the greatest extent possible, the 

strategy used by humans in similarity judgments of large-scale timbre. Aucouturier and 

Pachet’s method of sampling using GMM’s might be appropriate, for instance, when the 

similarity judgment is assumed to be symmetrical. Berenzweig et al.’s anchor model is 

more appropriate for anchor-based judgments. Still other metrics may be suggested by 

further research into timbre perception and timbral similarity. 

 

How can timbral similarity systems be evaluated? 

 Currently there is no established method of formally evaluating timbral similarity 

systems. However, it is necessary to gain an understanding of how closely a system 

mimics human perception and where its shortcomings are, if one is to be able to improve 

upon it and predict the contexts in which it would be a useful tool. A unified theory of 

timbre could point toward the best approaches to evaluating timbral similarity systems. 

 Most basically, a theory of timbre could offer understanding regarding the relative 

importance and interdependence of timbre, melody, pitch, rhythm, familiarity with an 



artist or song, etc. in humans’ similarity judgments. Any test comparing system similarity 

ratings with human judgments that uses real music should consider which of these other 

factors should be held constant. An understanding of the nature of similarity judgments 

would also aid in test design; for instance, if people make timbral similarity judgments 

based on two competing models (i.e., “This sounds like X” and “This doesn’t sound like 

X”), this should be reflected in any written surveys used for testing. 

 A unified theory of timbre could also point to other means of analyzing human 

similarity judgments. Toiviainen et al. (1998) have shown that measured electrical brain 

activity correlates well with human similarity judgments on single tones. Perhaps it is 

possible to analyze similarity perception of larger segments of audio via direct physical 

measurements as well. 

 

How should timbral similarity systems be embedded in larger EMD systems?  

 If the above work is to yield fruitful results, we must gain an understanding of the 

most effective ways of incorporating timbral similarity measures into electronic music 

distributions so that they are actually helpful to music enthusiasts. A unified theory of 

timbre might predict aspects of user behavior, or it could aid in the design of usability 

experiments. Some key questions that must be answered are, How would people use 

timbral similarity-based queries for electronic music databases, if such queries were 

possible? Would people be interested in using them only to find pieces of music with 

similar instrumentation, or would they come up with more novel applications? If the 

system operated by returning a list of closest matches to a seed query (as most existing 

systems do), does the user expect the returned matches to also have similar mood or 

genre to the seed? Will the user be intrigued by matches that are from very different 

genres, or will she or he feel that the system failed? These questions address very 

complex issues regarding how people think of timbre as a useful way to describe music 

and whether they view it as something that can truly be separated from other 

characteristics of music.  

 A unified theory of timbre that lent insight into such complexities of the social 

aspect of timbre could also lead to the design of new interfaces for timbral query systems. 

Instead of having to provide a timbral similarity-based recommendation system with a 



seed song, perhaps people would find it useful to vocally imitate some timbre. The 

system could record their voice and return audio samples based on knowledge of how 

people tend to mimic certain non-vocal sounds. Or, an understanding of how people use 

language to describe timbre could lead to a system that would allow queries as simple as, 

“Find me music with a rough sound,” or “Find me music with a trumpet-like synthesized 

sound.” 

 Aucouturier and Pachet (2002b) recognized that users might want different 

recommendation strategies depending on various factors. In their 2002 system, they 

therefore included a feature called an “AHA slider,” which gave the user a degree of 

control over the novelty or “interestingness” of the results returned. The user could 

request to see only timbral matches that also correlated strongly with a seed’s recorded 

metadata, or they could request that the system return more interesting results. Deeper 

knowledge of how people view timbre as relevant to their music browsing and musical 

taste could lead to the implementation of other such controls. 

 

New Avenues in MIR 

 It is clear that a deeper understanding of timbre could lead to numerous 

improvements in timbral similarity systems and their integration into electronic music 

distribution systems. Improvements in automated, perceptually-informed measurements 

of timbre and timbral similarity could also be applied elsewhere in MIR. Knowledge 

regarding auditory stream segregation and what contributes to the salience of certain 

timbres in a complex sound would be very useful for polyphonic transcription. McKay 

(2004) has shown that timbral information—specifically instrumentation—can be very 

useful in MIDI genre classification; however, currently the technology does not exist to 

extract such detailed timbral information from audio signals. Answers to many of the 

questions above would be helpful in the design of such a system. An understanding of the 

role of timbral variance in creating perceived sectional boundaries of a piece of music, as 

well as knowledge regarding the salience of certain timbres, could be employed for 

automatic theme extraction. New research on timbre could undoubtedly also spark 

innovative music information retrieval technologies that have not yet been imagined. 

 



Conclusions 

 The above discussion has highlighted the motivation behind construction of 

timbral similarity systems in MIR, described implementations of existing systems and 

their shortcomings, and posed key questions answerable by a unified theory of timbre. A 

more thorough knowledge of timbre informed by research in music perception, cognition, 

usability, linguistics, cultural studies, and other areas can lead to more useful, 

perceptually-based measurements for timbre and timbral similarity. It can also point 

toward the best means of integrating timbral similarity measures into electronic music 

distribution systems to make online music most easily accessible to music lovers.  

Currently, timbre research cannot answer many of the questions posed here. 

Several of these questions are so complex that it is unlikely they will be answered soon. 

However, one should view the illumination of these holes in timbre research as a starting 

point for future work rather than a proclamation of the inadequacy of existing work. As 

ongoing timbre research continues to incrementally improve our understanding of the 

above issues, music information retrieval stands to benefit from each new insight. MIR 

researchers should therefore keep abreast of, support, and participate in timbre research to 

the best of their abilities. 
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