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B
lock-based physical modeling is a methodology for
modeling physical systems with different subsys-
tems. It is an important concept for the physical
modeling of real or virtual musical instruments
where different components may be modeled accord-

ing to different paradigms. Connecting systems of diverse
nature in the discrete-time domain requires a common inter-
connection strategy. This contribution presents suitable inter-
connection strategies that incorporate a wide range of modeling
blocks and considers the automatic implementation of block-
based structures. Software environments are presented, which
allow to build complex sound synthesis systems without burden-
ing the user with problems of block compatibility.

Physical modeling for digital sound synthesis evolved around
1990 [1]–[4] and has since then produced a variety of modeling

paradigms for all kinds of sound production mechanisms
[5]–[9]. Despite or because of this progress, modeling of real or
virtual musical instruments seems to be a more complex task
than ever. Since musical instruments consist of different com-
ponents with different physical nature, there is no best method
for physical modeling. However, choosing a different model for
each component leads to a mixture of different numerical meth-
ods that have to be carefully interfaced for a meaningful and
reliable real-time operation and control. 

A strategy well known from the simulation of dynamical sys-
tems is to separate the tasks of component modeling and model
interaction. Modeling a component of a physical system means
to identify the relevant quantities (force, deflection, pressure,
velocity, etc.), to set up a mathematical description based on
the basic laws of physics and to find a suitable discretization for
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the computational realization. At the end of this process stands
a discrete-time and possibly a discrete-space algorithm for the
real-time simulation of the corresponding system component.
Encapsulating the algorithm into an appropriate input-output
description leads to a component model that processes output-
samples from input-samples, preferably in real time and with
no latency. Such a component model is also called a block
because it acts as a building block for larger systems.

Creating the correct interaction between component models
means to provide a meaningful connection between the input
and output ports of each block in the system. This task is not as
easy as it might seem. The two major problems are port incom-
patibility and delay-free loops. Both types of problems are dis-
cussed in detail in “Signals, Ports, and Waves.”

Block-based modeling is an established method in the sim-
ulation of one-dimensional systems. A variety of simulation
languages and graphical simulation tools exists. However,
none of these considers all the special requirements imposed
by musical applications such as extension to distributed
parameter systems, interactive human control, real-time
operation, and low latency.

This article reconsiders block-based modeling [10] with spe-
cial emphasis on digital sound synthesis. Physically correct
descriptions of the various components of musical instruments
are assumed to be known [11]. Instead, the discretization of
given physical models and the interconnection of the resulting
discrete-time blocks are covered. These ideas have been devel-
oped in a joint project [12] with the aim of building a library of
component blocks such that the different components of musi-
cal instruments can be modeled with a canonic set of blocks.

BLOCK-BASED PHYSICAL MODELING WITH 
WAVE-BASED INTERCONNECTIONS

SIGNALS, PORTS, AND WAVES
When dealing with physical models and their realization with
discrete-time systems, it is important to distinguish the domain
of signals and systems from the domain of physics. Some views
and concepts from these domains are discussed in this section.
In particular, signals, ports, and wave variables are reviewed.

SIGNALS
Signals are variable quantities that carry information. They need
not have any immediate physical reality. However, for transmis-
sion, storage, and processing, signals are usually represented by
physical quantities like electrical voltage, magnetical flux, light
intensity, etc. Systems for signal processing are often described
by signal flow graphs, as shown in Figure 1. The assumption in
such a signal flow graph representation is that the output signal
x1(t) of Block 1 does not change its values when it is connected
to Block 2 as the input signal. The same holds for x2(t).

Signal flow diagrams are the basis for block-oriented simula-
tion programs such as Simulink [13] and many others. They are
also used for the graphical interface of signal-based computer
music programs like pure data (pd) [14].

Block 1-3 in Figure 1 may also be realized by physical sys-
tems, e.g., electrical circuits. However, care has to be taken not
to violate the above assumption. Using block realizations with
high-input impedance and low-output impedance ensures that
their output voltages are valid representations of the correspon-
ding signals.

PORTS
Interconnections of physical models are described by ports. A
port is a pair of potential and flow variables (port variables) that
can be connected to a corresponding port of another model.
Typical port variables are voltage and current, pressure and flow,
or force and velocity. An interconnection of two ports is shown
in Figure 2 where the potential variable of each port is denoted
by u1 and u2, while the flow variables are i1 and i2.

The interconnection of two ports does affect the port vari-
ables of both ports. Their interdependence is given by the
Kirchhoff laws [15]. Therefore port variables are also called
Kirchhoff variables or shortly K-variables. In the simple case of
Figure 2, the Kirchhoff laws state that the potentials have to be
equal and the flows add up to zero

u1 = u2, i1 + i2 = 0 . (1)

PORT INCOMPATIBILITY AND DELAY FREE LOOPS
In Figure 2 and in (1), it has been tacitly assumed that the
physical nature of the port variables of both ports match, e.g.,
that both potentials are pressure variables. Otherwise, these
ports cannot be connected. This case is referred to as port
incompatibility. 

Another problem with interconnected ports arises when the
continuous-time variables u1(t), u1(t), i1(t), and i1(t) are
sampled. Denote the sampled signals for t = kT by
u1[k ] = u1(kT) where k is the discrete time index and T the
sampling interval. Further assume that the left block is approxi-
mated by a discrete-time model f , which computes the potential
u1[k ] from the flow sequence i1[k] by u1[k ] = f{i1[k ]}. An

[FIG1] Signal flow graph of a simple system.
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[FIG2] The interconnection of two one-ports described by the
physical port variables un and i n and alternatively by the incident
waves an and the reflected wave bn, n = 1, 2.
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example for a discrete model of a storage element is given below.
In a similar way, the right block is approximated by
i2[k ] = g{u2[k ]}. If both blocks contain a direct path between
the input and output, then the loop of commands

u1[k ] = f{i1[k ]}, u2[k ] = u1[k ],

i2[k ] = g{u2[k ]}, i1[k ] = −i2[k ] (2)

is not computable since the value i1[k ] computed by the last
instruction is already required by the first one. Such a chain of
commands is called a delay-free loop and is not realizable on
any digital signal processing system.

Thus, although the discrete-time models f and g may be cor-
rectly implemented, the blocks cannot be directly connected. A
naive way to break the delay-free loop is to insert a delay in the
interconnection, e.g., by computing u2[k ] = u1[k − 1], but this
crude measure changes the dynamics of the system in an 
unpredictable way.

WAVE VARIABLES
An approach to avoid delay-free loops is the transition from the
physical port variables to wave variables. It demonstrated for an
energy storage element, e.g., a cavity that can store air under a
certain pressure or a capacitor which can store charge under a
certain voltage. The Kirchhoff variable for pressure or voltage is
denoted by u(t) and for mass flow or electrical current by i(t).
They are related by integration with respect to time t,

u(t) = 1
C

∫ t

−∞
i(τ ) dτ , (3)

where the constant C denotes the storage capacity. Numerical
integration by the trapezoidal rule performs the time discretiza-
tion according to the bilinear transformation

u(kT) = u((k−1)T) + T
2C

[i(kT) + i((k−1)T)] . (4)

However, when this storage element is connected to another
element, both u and i are affected (see Figure 2 and (1)). It is
not possible to compute u(kT) and i(kT) simultaneously
from the known values of the previous time step (k − 1)T. To
avoid the resulting implicit equation (i.e., a delay-free loop)
the unknown quantities are sorted according to time (now
with u[k ] = u(kT) etc.)

u[k ] − T
2C

i [k ] = u[k − 1] + T
2C

i [k − 1] . (5)

Then, the so-called discrete wave variables are introduced

a[k ] = u[k ] + R i[k ] , b[k ] = u[k ] − R i[k ] , (6)

where a[k ] is the incident, b[k ] is the reflected wave and R is
the reference or port resistance [15], [16]. Expressing (5) in
terms of the wave quantities with the reference resistance
R = T/2C gives

b[k ] = a[k − 1] . (7)

Thus, the numerical integration (5) is computable by expressing
the reflected wave b[k ] at the time instant k by the incoming
wave a[k − 1] at the previous time k − 1.

The use of wave variables is the key element of the wave digi-
tal principle, which has been introduced as a method for design-
ing digital filters (wave digital filters, WDF) from analog
counterparts. A unifying treatment of theory and application of
wave digital filters is given in a classical paper by A. Fettweis
[16]. Modern descriptions of the wave digital principle as a tool
for numerical integration and modeling are given in [9], [15],
[17]. Wave variables are also called W-variables, and WD princi-
ple is used as shorthand for wave digital principle.

INTERCONNECTION OF PORTS WITH WAVE VARIABLES
Since the interconnection of two ports in Figure 2 forces the
port variables to obey the Kirchhoff laws, the wave variables also
have to satisfy certain relations. The definitions of the wave vari-
ables for Figure 2 and their sum and difference are compiled
below (the time index k is omitted)

an = un + Rnin, 2un = an + bn, n = 1, 2 ,

bn = un − Rnin, 2in = Gn(an − bn), Gn = R−1
n .

(8)

Expressing the Kirchhoff laws (1) for un and in in terms of the
wave variables an and bn results in the matrix equation

[
1 −1

G1 G2

] [
a1

a2

]
−

[−1 1
G1 G2

] [
b1

b2

]
=

[
0
0

]
. (9)

It can be solved for the incident waves an in terms of the
reflected waves bn as

[
a1

a2

]
=

([
α1 α2

α1 α2

]
− I2

)[
b1

b2

]
, αn = 2Gn

G1 + G2
, (10)

where I2 is the 2 × 2 identity matrix. Such relations between
incident and reflected waves are also called scattering relations.

When the ports in Figure 2 are not expressed in terms of the
port variables but in terms of the wave variables (wave ports), then
the validity of (10) has to be ensured by a special block. It can be
regarded as an impedance matcher between the port resistances
and is called adaptor. Figure 3 shows the two ports from Figure 2
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[FIG3] Interconnection of two wave ports with a parallel adaptor.
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as wave ports with the corresponding two-port adaptor. For the
adaptor, the roles of the incident and reflected waves are inter-
changed such that its defining equations are [see (10)]

b′
1 = (α1 − 1)a′

1 + α2 a′
2 , (11)

b′
2 = α1 a′

1 + (α2 − 1)a′
2 . (12)

Similar relations as for the two-port junction in Figures 2–3
hold also for junctions with multiple ports where general multi-
port adaptors are required. They can be assembled from three-
port serial and parallel adaptors according to Figure 4. The
adaptor equations are derived in a similar way as for the two-
port adaptor [see (8)–(10)].

INTERCONNECTION NETWORKS
Three-port adaptors and their combinations enable the building
of interconnection networks of arbitrary size. The advantage of
this approach is that delay-free loops are avoided and thus the
computability of the whole structure is ensured. A disadvantage
is that the class of compatible blocks is restricted to those that
communicate via wave variables. In other words, only blocks
with wave ports can be connected to the adaptors presented
above. This would exclude many physical modeling and non-
physical sound-synthesis approaches. 

Two different directions are presented to open the wave-
based interconnection strategy to other types of sound synthesis
methods:

■ The connection of blocks in state space representation to
the wave-based interconnection structure from above is
shown in the remainder of this section. Then an automated
synthesis procedure is described in “Automatic
Implementations of Block-Based Structures.”
■ The reformulation of the wave-based interconnections in
terms of signal inputs and outputs with so-called wave and
K-nodes is shown in “Block-Based Physical Modeling with
Wave and K-Nodes.”

In both cases, a so-called KW-converter is introduced to connect
blocks based on K-variables to blocks based on W-variables.

STABILITY CONSIDERATIONS
When different blocks are connected to form a network, the sta-
bility of the complete system has to be ensured. In physical mod-
eling, this problem is usually solved in the context of passivity.

For example, a WD network is stable if each block does not
return more energy than it receives and if the Kirchhoff laws are
obeyed through suitable adaptors at each interconnection. It is
also reasonable to expect such a condition for networks with
blocks that are designed according to other paradigms. However,
a formal proof for the general case of arbitrary nonlinear blocks
cannot be given. A recent approach in the context of port-
Hamiltonian systems appears to be too involved for sound syn-
thesis applications [18]. Practical approaches in sound synthesis
with nonlinear blocks are monitoring the internal energy bal-
ance [8], [19], or problem specific discretization schemes [20].

INTERCONNECTION OF STATE-SPACE
MODELS TO WD MODELS
Discrete-time state-space structures with the state-space matri-
ces A, B, C, and D, (see Figure 5) are a generic representation
for different kinds of modeling paradigms. When input and out-
put variables are given as flow and potential variables, then the
direct path has the physical dimension of an impedance. To con-
nect such a physical model in K-variables to an adaptor, it is
necessary to convert the K-variables to W-variables [21]. The
resulting KW-converter is now described.

The definition of the vectors of incident and reflected waves
a[k ] and b[k ] with the matrix of port resistances R and the iden-
tity matrix I is given in the first line of (13). This definition can be
solved for the quantities that should leave the KW-converter, i.e.,
for the input v[k ] of the state-space structure and for the reflected
wave b[k ] [(13) second line. The result defines a first version of
the KW-converter called KW-converter I. It is only applicable if
the direct path in the state space structure, i.e., the matrix D is
zero. Otherwise, a delay-free loop would result [see Figure 5(a)].

[
a[k ]
b[k ]

]
=

[
I R
I −R

] [
y[k ]
v[k ]

]
,

[
v[k ]
b[k ]

]
=

[−R−1 R−1

2I −I

] [
y[k ]
a[k ]

]
. (13)

The corresponding KW-converter for D �= 0 follows by
inserting the output equation of the state-space representation
into the definition of the wave variables (13). Setting the port
resistance R = D and solving for the input v[k ] and the reflect-
ed wave b[k ] yields the KW-converter II, which avoids delay free
loops [see Figure 5(b)].

[FIG4] (a) Three-port parallel adaptor and equivalent network with Kirchhoff variables. The direction of the wave variables is given with
respect to the connected block elements. (b) Three-port serial adaptor and equivalent network with Kirchhoff variables.
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The introduction of the KW-converter type I and II is the key
to the connection of models in state-space structure to wave
variables. Using the wave digital interconnection strategy, an
arbitrary number of such models may be connected with each
other, with wave digital equivalents of network elements, and
with other models using wave ports. Existing models also can be
reused when an appropriate KW-converter is attached.
Compared to the wave digital principle introduced before, the
range of possible blocks for model building is greatly enhanced. 

APPLICATION OF BLOCK-BASED PHYSICAL MODELING
WITH WD INTERCONNECTION STRATEGY
The block-based physical modeling approach presented before is
now discussed in more detail. It is shown how to construct com-
plex systems with different kinds of models using the WD inter-
connection strategy. 

Frequently used physical, K-variable models for strings,
membranes, and plates, etc., are modal synthesis [1], [22] and
functional transformation method (FTM) models [23]. FTM
models are a direct transformation of the underlying partial dif-
ferential equation (PDE) into the frequency domain and have a
number of advantages for digital-sound synthesis, like real-time
capability, stability, and parameter variation during runtime. It
is therefore of interest to investigate how the block-based mod-
eling methods presented before allow the use of an FTM model
as a building block in a larger structure. This investigation is
also valid for modal synthesis, since both methods lead to a sim-
ilar computational structure shown in Figure 6. For a detailed
comparison of FTM and modal synthesis, see [23].

A MEMBRANE MODEL WITH THE
FUNCTIONAL TRANSFORMATION METHOD
The physical model of vibrating structures is derived
from basic laws of physics [11] and relates the input
force fe(�x, t) = γ0(�x − �xe) fe(t) at the excitation posi-
tion �xe (γ0(�x ) denotes the two-dimensional spatial delta-
impulse) with the deflection y(�x, t) of the
two-dimensional (�x = [x1 x2]T) vibrating body by

ÿ − c2∇ 2 y + S4∇ 4 y + d1 ẏ − d3∇ 2 ẏ = fe (14)

where ẏ denotes temporal derivative and ∇2 y denotes
the two-dimensional Laplace-operator, i.e., a second
order spatial derivative of the membrane’s deflection.

The model includes the lossless wave equation, with
the speed of sound c. Two additional damping terms with
the coefficients d1 and d3 model frequency independent
and frequency dependent damping. The fourth order
spatial derivative models the stiffness of the membrane.
It is scaled by the dispersion constant S4 , which is
derived from Young’s modulus, the thickness of the
membrane, the mass density of the membrane, and
Poisson’s ratio. The functional transformation method
converts the PDE together with suitable initial and
boundary conditions into a discrete-time algorithm
[23]–[25]. In detail, the vibration of the membrane is

modeled by the parallel arrangement of first-order systems with
complex frequencies βn, n = 1, . . . , N. With the weighting con-
stants bn and cn following directly from the application of the
functional transformation method [25], the output is calculated
by the discrete system

z[k ] =




e−β1 T 0 . . . 0
0 e−β2 T . . . 0
...

. . .

0 0 . . . e−βN T


 z[k − 1]

+




b1

b2
...

bN


 fe[k ]

ẏ[k ] = [ c1 c2 . . . cN ] z[k ] ,

which is also shown in Figure 6(a). Each first-order system is
driven by samples of the excitation fe[k ] and delivers a contri-
bution to the velocity of the vibration ẏ[k ]. However for the
communication with other blocks, the Kirchhoff variables
force fe[k ] and velocity ẏ[k ] have to be converted to the wave
variables a[k ] and b[k ]. 

Adding a KW-converter of type II, according to
“Interconnection of State Space Models to WD Models,” attaches
a wave port as shown in Figure 6(b). The constant D is the sum
of all N direct path gains from input to output (a), i.e.,
D = ∑N

n=1 bn · cn. The remaining paths from the input to the
delay elements are weighted with b̂n = bn · e−βn T. Thus, the
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[FIG5] (a) State-space structure (SSS) without direct feedback (D = 0)
and a KW-converter type I with an arbitrary port resistance R. (b)
Connection of a general linear K-variable model in state-space
structure to W-variables.
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discrete-time model that results from the functional transforma-
tion method can be connected to wave digital equivalents [26].

MODELS OF PERCUSSION INSTRUMENTS
The membrane model introduced in the previous section is
now used to model percussion instruments. The structure in
Figure 6(b) is used as a block model for a membrane. It is
implemented within a program called BCT, which has been
developed at the Politecnico di Milano [27], [28] in the course
of the European project ALMA [12].

Figure 7 uses the membrane as a basic building block. The
excitation mechanism is a felt-covered hammer. The inductor
and the resistor model the dynamics of the hammer motion.
The nonlinear block on the left contains the force-dependent
stiffness of the hammer felt. All these blocks are connected by
an interconnection network consisting of a series and a parallel
three-port adaptor. The motion of the hammer is triggered by
external events from a musical instrument digital interface
(MIDI) keyboard.

AUTOMATIC IMPLEMENTATION
OF BLOCK-BASED STRUCTURES
One aspect that has received less attention in the literature of
sound synthesis through physical modeling is the systematic
characterization of the interactions between existing models.
What generates and supports vibrational phenomena in a resonat-
ing structure is a nonlinear interaction between that structure
and another one. This problem was already approached and solved
for developing the Cordis-Anima system [29], which automated
interactions between elements of a limited class of elementary
building blocks. This section considers the more general problem
of modeling the interaction between a wider class of models.

Although the literature is rich with ad-hoc solutions for the
modeling of excitational interactions of various nature, no
attempts appear to have been made to develop systematic and
automatic strategies for modeling and implementing such inter-
actions between many pre-existing models in a simple and auto-
matic fashion. Situations of this sorts are encountered, for
example, in the sonification of acoustic events in virtual reality,

or just in the modeling of rich percussion sets. A rather general
approach to automated modeling of WDFs is given in [30], but it
bears no relations to the specific problems of sound synthesis.

Here, an overview of two approaches to the automated mod-
eling of block-wise interactions between physical models is pro-
vided. The first one is based on the iterative scanning of a
certain WD interconnection structure, the binary connection
tree (BCT) and is described in the remainder of this section. The
second one, a multi-paradigm, block-based software environ-
ment called BlockCompiler (BC), is described in “Block-Based
Physical Modeling with Wave and K-Nodes.”

IMPLEMENTATION OF BLOCK-BASED PHYSICAL
MODELING WITH WD INTERCONNECTION
Adopting a WD approach for the physical modeling of virtual
musical instruments can be seen as a problem of intercon-
necting WD blocks under specific interconnection con-
straints. As described in “Signals, Ports, and Wavs,” the
interconnection between one-port WD elements through par-
allel and serial adaptors gives rise to computable WD filters

[FIG6] (a) Structure of the membrane implementation with N complex harmonics. (b) Structure of the membrane implementation that
uses the wave variables a[k ] and b[k ] for input and output instead of the Kirchhoff variables fe[k ] and ẏ[k ].
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[FIG7] Example network to simulate the excitation of a
membrane with a mallet. The membrane is modelled by a
distributed parameter model according to Figure 6 (bottom left).
The mass of the mallet is represented by a lumped parameter
reactive element (bottom right) and the elasticity of the mallet
felt by a memoryless nonlinearity (top left). The dissipation of
the excitation mechanism is contained in a lumped parameter
resistive element (top right). The parallel and series adaptors are
the backbone of the interconnection network.

IEEE SIGNAL PROCESSING MAGAZINE [47] MARCH 2007



because the corresponding signal flow diagram does not con-
tain any delay-free directed loops [16], [31]. This condition of
realizability implies that any connection between two ports
gives rise to no delay-free directed loop and that no other delay-
free directed loop can be created via some outer path [16]. This
is indeed guaranteed if the network of adaptors has a tree-like
structure, which is always true with the sound-production
mechanisms that are encountered in musical acoustics.

The above considerations are valid not just for interconnec-
tions of standard WDF adaptors but also for more general net-
works of dynamic WD adaptors [32], [33], which are (parallel or
series) adaptors whose port resistances Ri are replaced by port
impedances Zi(z), therefore incident port waves are subject to
non-instantaneous (filtered) scattering caused by the reflection
filters. A tree-like network of such dynamic adaptors is here
referred to as a (dynamic) Macro-Adaptor (MA), and a port that
exhibits no instantaneous reflection is called adapted port. As
reflected waves at this port are either absent or delayed, this port
can be freely connected to another port without causing com-
putability problems. Realizability issues (a nonadapted port can
only be connected to an adapted one) imply that the MA can
only have up to one adapted port, just like the adaptors that it is
made of. The WD structures of interest in musical acoustics are
thus made of a number of two-ports connected together
through one of such MAs. The adapted port of the MA is
assumed to be connected to a NonLinear Element (NLE), which
models the nonlinear interaction between two WD subsystems
(e.g., a hammer and a string).

It was recently proved [34], [35] that a computable tree-like
interconnection of adaptors with memory is completely equiva-
lent to a memoryless macro-adaptor (a computable tree-like
interconnection of standard WDF adaptors, i.e., instantaneous
adaptors) whose outer ports are connected to mutators (two-
port adaptors with memory) [32], [33]. It is thus easy to define a
process of memory extraction from [35] that preserves the inter-
connection topology. This approach simplifies the implementa-
tion to WD structures based on one-port WD elements
(generally with memory) interconnected by a tree-like arrange-
ment of standard WDF adaptors. The nonlinear element is gen-
erally connected to the adapted port of the resulting
instantaneous MA, possibly through a mutator. A method [27],
[36] for automatically implementing a WD structure of this sort
through a direct inspection (scanning) of the tree-like topologi-

cal representation of the reference model (connection tree) is
described below.

AN INTRODUCTORY EXAMPLE OF CONNECTION TREE
Consider a chain of L adaptors (see Figure 8), each connected to
the adapted port of the previous one, except for adaptors at the
extremes of the chain, which are connected to one-port elements.
In particular, the adapted port is connected to a 
nonlinear element (NLE). This particular situation helps to intro-
duce the method in the more general case of tree-like structures.

Now compute the vector of reflected waves b from the known
elements of the vector of incident waves a. One should keep in
mind that the only elements of a that are known are those that
correspond to the ports connected with linear two-ports

■ ai[k ] = 0, when the two-port is an adapted resistor;
■ ai[k ] = Vi, when the two-port is an adapted real generator;
■ ai[k ] = ±bi(k − 1), if the two-port is a reactance.
The steps for computing b from the known elements of a are
1)  once the model is initialized, the vector of incident waves
will be

a = [a1, a2, ā3, ā4, a5, ā6, . . . , a3L−1, ā3L]T

where āi denotes an unknown, while ai represents a known
variable.
2)  Then start from the first adaptor, which is the only one in
which both the inputs of the nonadapted ports (a1 and a2) are
known. The output of the adapted port can be readily comput-
ed as b3 = f(a1, a2) = k11 a1 + k12 a2 , k11 and k12 being
appropriate transmission coefficients that depend on the refer-
ence resistances of the other two ports of the adaptor. Notice
that b3 does not depend on a3 because port 3 is adapted.
3)  Port 3 is connected to port 4, therefore both a5 (from the
two-port) and a4 = b3 are computed in the previous step.
4)  Now, repeat steps 1 and 2 until the last adaptor is reached.
This way, some of the elements of a and b are computed:

a = [a1, a2, ā3, a4, a5, ā6, . . . , a3L−2, a3L−1, ā3L]T

b = [b̄1, b̄2, b3, b̄4, b̄5, b6, . . . , b̄3L−2, b̄3L−1, b3L]T.

5)  Using the characteristic of the nonlinear element gives
a3L = fNLE(b3L).
6)  Now, compute, if necessary, b3L−1 and/or b3L−2 and go

through the whole model computing
b3i−1 and b3i−2 until the first adaptor.
Notice that not all the reflected waves
b3i− j ( j = 1, 2) need to be computed.
For example, the reflection at those non-
adapted ports that are connected to a
resistor (no reflection) can be skipped.
7)  Once b is specified, it is possible to
update a using the I/O descriptions of
the two ports. Then go back to the
beginning of the procedure to compute
the next value of b.
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[FIG8] Chain structure: each adaptor is connected to at least one two-port, and there is no
branching.
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BUILDING THE CONNECTION TREE
As already said earlier, the WD structures in which we are inter-
ested are obtained by interconnecting WD blocks through a
tree-like network of standard WDF adaptors. As any parallel
(series) N-port adaptor can always be implemented as a chain of
N − 2 parallel (series) three-port adaptors connected together,
we can generally assume that our tree-like interconnection is
only made of three-port parallel and/or series adaptors.

The chain-like model described above can be generalized by
allowing the other two nonadapted ports to be connected to
adapted ports of other three-port junctions. The topology
remains tree-like, and it is built only with three-port adaptors.

Given a binary connection tree (BCT) that describes the
interconnection topology of a WD structure, an automatic
implementation strategy for the WD model is defined by assign-
ing a hierarchical ordering to the elements of the tree according
to the following rules:

■ The root of the binary tree corresponds to the adaptor to
which the nonlinear (NL) element connects.
■ The nodes of the tree are three-port standard WDF adap-
tors, and the branching topology matches the actual adap-
tor’s interconnection topology.
■ The leaves correspond to the linear two-ports.
The method for the chain-like model can be readily extended

to this new situation by defining a forward scan (from the leaves
towards the NLE) and a backward scan (from the NLE towards
the leaves). In fact, the computation starts from the leaves of the
tree, which contain the “memory elements” with the initial con-
ditions. The computation then proceeds by following a forward
scan and, when the working point of the NLE is found, the back-
ward scanning propagates the computation back toward the
leaves, where all memory cells are refreshed.

Figure 9 shows that the adapted port of a junction is either
connected to a nonadapted port of another
adaptor or to a nonlinear element. If there are
no nonlinearities, then there is a spare adapt-
ed port, or one degree of freedom in the
choice of the reflection filters. Algorithms
described by a BCT can be implemented effi-
ciently since their computational cost and
their memory requirements increase linearly
with the number of adaptors. 

INITIALIZATION ISSUES
The leaves of the connection tree usually
represent dynamic elements such as capac-
itors (springs) or inductors (masses). This
means that the corresponding memory
cells need to be assigned values that corre-
spond to the initial  conditions of the
model. They are determined from the volt-
age/current pair that corresponds to the
element’s port. Notice that the initial con-
dition on that element specifies only one
variable of the pair, therefore the other one

needs to be determined. One way to do so is to solve the
model in which all the dynamic elements have been replaced
by ideal generators to set the corresponding K variable.

As reactances are now formally replaced by ideal genera-
tors, it is not possible to use wave variables directly, otherwise
the structure would turn out to be noncomputable. However,
the tree structure that describes the model topology can still
be used, regardless of whether we are working in the wave
domain or in the K domain. In particular, it is quite simple to
compute the potential/flow characteristic of the subtree at a
generic node, given those of the two “children nodes.” In fact,
as the model portion described by the subtree is linear, such
characteristics are lines that can be modeled according to the
Thevenin or Norton equivalent model corresponding to the
subtree. Such equivalent is specified by a pair of parameters:
the magnitude associated to the ideal generator (intersection
with one of the axes), and the resistance/conductance of its
internal resistor (slope of the line). Knowing the lines that
model the two subtrees and the type of node that combines
them (series or parallel), the line that describes the combina-
tion of such two-ports is computed. More details about initial-
ization issues can be found in [36].

MANAGING TIME-VARYING STRUCTURES
Physical models in musical acoustics are quite obviously
expected to be time-varying. Temporal changes in such mod-
els usually concern the nonlinearity that models the interac-
tion or the current/voltage produced by properly defined
generators. Although infrequently, there may be changes in
port impedances with the result of having time-varying reflec-
tion filters. In this last case, a parametric change may affect
many other parameters as they are all bound to satisfy global
adaptation conditions. Temporal changes of port resistances

[FIG9] Two examples of BCTs: a generic one (a) and that of a chain-like model (b). The
circular box represents an instantaneous adaptor, in which the adapted port is clearly
specified. This particular notational choice simplifies the drawing of connection trees
with a great deal of branching.
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are, in fact, implemented through a recomputation of the
model parameters on the behalf of a process that works in
parallel with the simulator. Using the BCT method, when the
value of a leaf changes, the adaptors that need to be updated
can be limited only to those that lie on the path that links the
leaf to the root (Figure 10).

BLOCK-BASED PHYSICAL MODELING 
WITH WAVE AND K-NODES
WD components, state-space models with wave port inter-
faces, and three-port interconnection adaptors discussed so
far satisfy the requirements of block-based physical modeling
with wave variables. This strategy can be extended to accom-
modate physically-inspired models, such as commuted syn-
thesis, as well as terminal-based nonphysical blocks such as
DSP filters and effects [37]. For instance, a quasi-physical
wavetable can be defined as a voltage source that reads and
outputs the content of a wavetable, and its port resistance
can be used to control the gain. This new element, in turn,
can be imported to BCT (see “Automatic Implementation of
Block-based Structures”) as a plug-in.

However, it is also desirable to keep the terminal-based
structure of the nonphysical blocks and interconnect them
freely with the port-based physical blocks. This might be the
case when a library of such blocks is readily available. The key
idea here is to reformulate the interconnection elements to
accept and provide signal inputs and outputs, respectively. In
the sequel, we call these elements nodes, provide definitions
for wave and K-nodes, and discuss their interconnection.

While the wave and K-nodes could be formulated for multi-
paradigm, block-based physical modeling without any reference
to a specific software system, we consider their implementation
in block compiler (BC) in this section [38].

BEYOND ADAPTORS: WAVE NODES,
K-NODES, AND THEIR INTERCONNECTION

WAVE NODES
The wave-node formulation follows directly from the Kirchhoff
laws; it is derived here by using the scattering junctions, which
implement the Kirchhoff laws in the theory of digital waveguides
(DWGs) [4], [37]. A basic DWG element is a bidirectional delay line
pair of a specific port admittance Y. Usually, this admittance is posi-
tive real, and scattering occurs in case of admittance change across
a junction. For instance, in a parallel junction of N waveguides in
the electrical domain, the Kirchhoff constraints in (1) become

U1 = U2 = · · · = UN = UJ,

I1 + I2 + · · · + IN + Iext = 0 (15)

where the complex z-transform variable has been dropped in
notation for easier reading, Ui and Ii are the voltage and current
of the i th branch, respectively, UJ is the common voltage of
coupled branches, and Iext is an external current source. In
DWG theory, it is customary to decompose the branch voltages
into incident wave components towards the junction U +

i and
reflected wave components away from the junction U −

i , and
represent port admittances by Yi, so that

Ui = U +
i + U −

i and I +
i = YiU

+
i . (16)

The junction voltage UJ can then be obtained as

UJ = 1
Ytot

(
Iext + 2

N∑
i=1

YiU
+
i

)
, (17)

where Ytot = ∑N
i=1 Yi is the sum of all admittances to the junc-

tion. Reflected voltage waves are obtained from (16) to yield 

U −
i = UJ − U +

i . (18)

Equations (17)–(18) may be used to define an N-port scattering
junction, which is denoted as a wave node. Note that (17) con-
tains the physical variables Iext and UJ in signal form as an
input and output, respectively.

K-NODES
Functional equivalents of wave nodes have been also formulat-
ed for particular finite difference time domain (FDTD) struc-
tures operating on the K-variables [39]. Consider a wave node
in a source-free structure for N = 4 branches of equal 
admittance. In this case, (17) becomes

UJ = 1
2

4∑
i=1

U +
i , (19)

which is the junction voltage equation for a 2-D rectilinear
DWG mesh [37]. By summing the wave components up accord-
ing to (16) and accounting for the propagation delays, this equa-
tion can be rearranged [37] to yield
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[FIG10] Typial BCT configuration with tree updating after a two-
port value change. Root and leaves are represented by
rectangles. The nodes consist of serial and parallel adaptors
according to Figure 4 and are represented by circles.
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(1 + z−2)UJ = 1
2

4∑
i=1

z−1 UJ,i, (20)

which is a finite difference equation of the ideal 2-D wave equa-
tion on a square grid with the propagation velocity

c = X

T
√

N/2
= X

T
√

2

where T and X are temporal and spatial sampling intervals,
respectively. This relation can be generalized for a junction of N
branches of admittances Yi with a source term [39]. The result-
ing N-port element has been called a K-node. A K-node is char-
acterized by the following equation:

(1 + z−2)UJ = 1
Y tot

(
(1 − z−2)Iext + 2

N∑
i=1

z−1YiU J,i

)
. (21)

Note that, unlike a memoryless wave node, a K-node has a
memory of two delays. This property has an advantage and a
drawback. The advantage is that, regardless of N, the memory
need remains constant at two unit delays, since the signal trans-
mission between the K-nodes is carried out by delayless K-pipes.
This should be compared to the requirement of N delays
between each pair of wave nodes. However, the memory should
be updated with care during parameter changes, as this may
cause instabilities.

INTERCONNECTION OF WAVE NODES AND K-NODES
In the signal flow diagram of Figure 11, a K-node N1 (a) and a
wave node N2 (b) are aligned in a source-free structure with

the spatial indices i = 1 and 2, respectively. Note that the junc-
tion voltages are available in both types of nodes but not at the
wave ports of the wave node. Nevertheless, the similarity of the
nodes is used in [39] to obtain the following transfer matrix of
the two-port KW-converter element of type III, which inter-
connects the K-node and the wave node in Figure 11[

U+
2

z−1 U2

]
=

[
1 −z−2

1 1 − z−2

] [
z−1 U1

U−
2

]
. (22)

IMPLEMENTATION IN BLOCKCOMPILER
BC is a block-based software environment for research, an
authoring tool for model building, and a runtime synthesis
engine with a high-level specification of computational models
[38], [40]–[42]. While BCT (see “Automatic Implementation of
Block-Based Structures”) can manage dynamic topologies, BC is
designed to efficiently support topologies fixed at compile time.
Efficient simulation in the BlockCompiler is based on optimized
code that is produced from block-based description and com-
piled to run-time code. The high-level object-oriented part is
written and scriptable in common lisp, which allows for flexibili-
ty in manipulating computational structures. This level gener-
ates C code from block-based specifications, which can be also
exported to other software environments, and a C compiler
compiles this code into one that is  executable.

Multiparadigm modeling is another key design principle in
BC. The first category of objects supports conventional DSP
and one-directional signal data flow between object terminals.
This includes elementary blocks such as adders, multipliers,

[FIG11] Top: A K-node (left) and a wave node (right) forming a part of a hybrid waveguide in a source-free structure. There is a KW-
converter (type III) between K- and wave nodes, and Y2 is its wave admittance. U1 and U2 are the junction voltages of the K-node
and wave node, respectively. Y1 and Y3 provide terminations for the corresponding node, following the principles developed in [39].
Bottom: Abstraction of the structure.

z−1

z−1 z−1

z−1

Y1

N1 N2

Y2 Y3

Y k k k k w w w w Y

z−2

U1

U2
+

U2
−

2Y1

K
-p

or
t

K
-p

or
t

W
-p

or
t

W
-p

or
t

KW-converter

KW-converter

2Y2 2Y2 2Y3
0

Y2N1 N2

U2

Y1+Y2

1

+ + +

+

+ +

+
−

−

− −

Y2+Y3

1



nonlinear functions, filters, transformations, and sound I/O. A
more advanced category of objects supports modeling of physical
interactions. The elements are connected to the wave or K-nodes
through two-way ports that carry physical signal variables.

In both categories, each block can be given a relative sam-
pling rate, and thus, multirate processing is supported. In addi-
tion, macro blocks can be defined as containers of more
elementary blocks.

In the rest of this section, we focus on examples in block-
based physical modeling. For a more detailed description of the
BC including its data structures, code generation, and DSP-based
or more advanced physical applications, see [38] and [40]–[42].

PHYSICAL BLOCKS AND INTERCONNECTION IN BC
In BC, a model specification script is called a patch, which 
consists of labeled description of the blocks and their intercon-
nection. Currently, BC does not have a graphical user interface
for model creation; the patches are written in Lisp-syntax.

Consider the abstracted structure in Figure 11 with the
addition of a current source input into N1 and voltage output
from N2. The lower-case letters k and w at the node ports dis-
tinguish the variables of the node and attached blocks. The
blocks contained in the diagram are the termination admit-
tances Y1 and Y3, and the kw-converter of type III [see (22)]
of admittance Y2. The other blocks supported by BC but not
included in this example are impedance, k-pipe, and w-
line. A w-line is a digital waveguide, and a k-pipe is a
delayless connection element between the K-nodes.

Next we focus on the interconnection of these blocks. BC
supports parallel and series connection functions, which are

denoted by .par and .ser, respectively. These functions are
called with block labels as arguments. When passing a two-
port block of type k-pipe, w-line, or kw-converter as an
argument, the port number [0,1] should be also given. An
external source, which can be obtained for example from an A-
D converter (instantiated by the function .ad) can be directed
as an input in to a connection function, and the junction out-
put out can be streamed to a D-A converter .da. The patch
shown at the top of the page specifies the model.

In the block creation phase, the admittances are initialized
with positive real values Y1 = Y3 = 10 and Y2 = 2. Note that
interconnections are performed within the streaming using the
short-hand signal chaining function ->.

A PLUCKED STRING MODEL
The next example demonstrates how to build a string syn-
thesis model for two plucked-strings [43], [44], using blocks
with physical, two-directional interaction. Figure 12 depicts
a mechanical-domain block diagram for two strings with
pluck wavetable inputs and strings being interconnected
through a common bridge impedance, as well as bridge
velocity output and nut end string terminations. We do not
present the patch code here, but it follows the principles
discussed in the previous subsection.

The strings are divided into two subsections so that the pluck
excitation force can be injected from a triggerable wavetable (wt1
and wt2) through force inputs of the w-nodes into a controllable
plucking point. The string blocks (dl11, dl12, and dl21, dl22)
are of type w-line with controllable fractional delays, and string
losses are lumped to nut end termination impedances zt1 and

zt2, implementing frequency-de-
pendent losses by IIR type of imped-
ance specifications.

The common bridge impedance
zb results in a sympathetic coupling
between the strings and it can be
given any specification of FIR or IIR
type, including a measured or mod-
eled impedance of relatively high
order. The output signal is probed
from the bridge velocity. It could be
processed further through a body fil-
ter to simulate the sound radiation
of an acoustic guitar through a body
but, for simplicity, it is fed directly to
sound output. An acoustical guitar
would require six strings (each one
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[FIG12] Block diagram of two strings coupled through a common bridge impedance (ZB).
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(patch ((kw (.kw-converter :admittance 2.0) ;; KW line Y2

(y1 (.y :admittance 10.0 :type �K)) ;; K-termination Y1

(y3 (.y :admittance 10.0 :type �W))) ;; W-termination Y3

(-> (.ad) (in (.par y1 (port kw 0)))) ;; connect input

(-> (out (.par y3 (port kw 1))) (.da))) ;; connect output
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with dual-polarizations, i.e., two submodels). Furthermore, fin-
ger-string interaction could be simulated by a fingertip model
with varying parameters, based on the contact state of the fin-
ger and the string.

A SHORT NOTE ON THE SOFTWARE PLATFORMS
Two software environments for automated modeling of block-
wise interactions between physical models have been presented.
Some differences concerning their design principles were indi-
cated tacitly; here, it is recapitulated that one of the most
important differences between BCT and BC relates to how each
platform manages the interaction topologies. BC is designed to
efficiently support topologies fixed at compile time and the com-
piled models typically start from an initially relaxed state. On
the other hand, as described in “Automatic Implementation of
Block-Based Structures,” BCT properly handles the initializa-
tion by taking the advantage of a high-level abstraction based on
tree-structures and network analogies.

BCT, however, cannot cover all cases of interest for the
generic user. For example, at its current state of development, it
cannot deal with multiple nonlinearities (however, see [45]). In
addition, many users feel that it is important to be able to
accommodate other types of modeling paradigms. While the
KW-converters extend the BCT in the latter sense, these needs
are more directly addressed by BC, with its multiparadigm sup-
port and different categories of objects (See “Implementation in
BlockCompiler”).

In conclusion, BCT and BC are very different in nature and,
in particular, in their level of abstraction, as they are associated
to differently constrained modeling environments. In other
words, while BCT provides the user with a “vertical” (special-
ized) approach to sound modeling, the BC can be thought of as
a “horizontal” (general purpose) approach to sound synthesis
and modeling.

CONCLUSIONS
Research on physical modeling digital sound synthesis has
created a multitude of different models for all kinds of compo-
nents of musical instruments. These are based on several
modeling paradigms that are formulated either in Kirchhoff
variables (e.g., the finite difference time domain method or
the functional transformation method) or in wave variables
(digital waveguides, wave digital structures). This variety
makes it difficult to build a multicomponent structure from
different kinds of block models. A solution to this problem can
be found in the selfcontained world of wave digital filters.
They provide a reliable strategy for the discretization and
interconnection of network elements. This strategy can be
extended to include other discrete-time blocks in the form of
state-space structures or other interconnection approaches
based on digital waveguides. Solutions to this problem are
presented in this article. Automated design procedures and
programs for both kinds of extensions exist in the form of the
BCT and the BC, respectively. They allow the building of com-
plex synthesis structures from a library of different kinds of

component models without bothering the user with problems
of block compatibility. The results are automatically generat-
ed synthesis algorithms for real-time operation, interactive
human control, and parameter variations with low latency.
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