the Fourier transform and applications

Michael Klingbeil

michael@klingbeil.com

CMC2005

analyzing complex waveforms

- Jean-Baptise Joseph Fourier ~1822
- Any periodic complex waveform can be represented as a sum of *harmonically* related sinusoids each with a particular amplitude (and phase).
- The Fourier transform takes a waveform and computes the exact amplitudes of the sinusoids that comprise the waveform.
- The transform is (theoretically) lossless.

definition of the Fourier transform

forward transform

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

inverse transform

$$x(t) = \int_{-\infty}^{+\infty} X(f) e^{2\pi i f t} df$$

what does this mean?

forward transform

beginning with the forward transform:

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

- *x*(*t*) is our time domain audio signal
- we are multiplying it by $e^{-2\pi i ft}$ (to be explained)
- 2π and *i* are constants
- f is a value which corresponds to frequency
- We are integrating (adding up) over all time values (from $-\infty$ to $+\infty$) at some specifically chosen frequency value f

complex exponentials

- What about $e^{2\pi i ft}$?
- *e* is the base of the natural logarithm
 - $e \approx 2.718281828459045...$
- *i* is the complex number
 - $i = \sqrt{-1}$
- Euler's identity

 $e^{i\theta} = \cos\theta + i\sin\theta$

• follows from the series expansions for $e^x \sin and \cos b$

computing fourier transforms

• the transforms are defined for...

- continuous (non-sampled) functions of time x(t)
- signals of infinite length (from $-\infty$ to $+\infty$)

computers work with...

- discrete sampled waveforms
- finite length signals

Discrete Fourier Transform

Definition:

$$DFT(k) = \frac{1}{N} \sum_{n=0}^{N} x(n) e^{-2\pi i k \frac{n}{N}} \quad k = 0, 1, 2, \dots, N-1$$
$$= \frac{1}{N} \sum_{n=0}^{N} x(n) [\cos 2\pi k \frac{n}{N} - i \sin 2\pi k \frac{n}{N}]$$

Discrete Fourier Transform

- takes a sampled signal *x*(*n*) of *N* samples
- for each frequency value k of N discrete frequencies:
 - pointwise multiply waveform samples by a cosine wave at frequency k and adds up the results
 - pointwise multiply waveform samples by a sine wave at frequency k and adds up the results

$$DFT(k) = \frac{1}{N} \sum_{n=0}^{N} x(n) [\cos 2\pi k \frac{n}{N} - i \sin 2\pi k \frac{n}{N}]$$

$$= \frac{1}{N} \sum_{n=0}^{N} x(n) \cos 2\pi k \frac{n}{N} - i \frac{1}{N} \sum_{n=0}^{N} x(n) \sin 2\pi k \frac{n}{N}$$

$$= a_k + ib_k$$

real and imaginary components

- The DFT gives us two values per frequency:
 - real
 - imaginary

 $DFT(k) = a_k + ib_k$ k = 0, 1, 2, ..., N-1

- the DFT outputs *complex numbers*
- all cosine sums are real valued
- all sine sums are imaginary
 - (multiplied by the imaginary number *i*)

Intuitive Interpretation

- start with a waveform to be analyzed
- choose a set of reference sine and cosine waves at discrete frequencies
- "compare" the waveform to each reference sine and cosine wave by multiplying them point by point and adding up the values
- portions of the waveform that are like the reference sinusoid will result in larger sums
- the reference sinusoid will "resonate" with waveform components that are close in frequency and phase

interpreting complex values

- both real and imaginary components represent the same frequency $DFT(k) = a_k + ib_k$
- but relative to different phases $cos(\theta) = sin(\theta + \pi/2)$
- cosine and sine components represent the instantaneous position of a complex sinusoid
- this position can be graphed on the complex plane

magnitude...

the magnitude

 (amplitude) of a complex
 sinusoid is the distance
 from the origin to the
 complex point (a_k, b_k)

$$A_k = \sqrt{a_k^2 + b_k^2}$$

and phase

- the phase is the angle of rotation (θ) of the complex point
- recall the definition of the tangent function: $\tan \theta = \frac{b_k}{a_k}$
- so... $\theta = \tan^{-1} \frac{b_k}{a_k}$

where tan⁻¹ is the inverse tangent function

DFT summary

- Input: sampled signal *x*(*n*) of length *N*
- Output: *N* pairs of values

 a_k, b_k with $k = 0 \dots N - 1$

- there are k periods of the sinusoid in the space of N samples
 - i.e. for k = 2, there are 2 cycles per N samples
 - for k = 13, there are 13 cycles per N samples, and so on
- each value of k corresponds to a frequency bin
- the spectrum is discretely sampled at each frequency bin

Fast Fourier Transform (FFT)

- DFT in its direct form is slow to compute
- FFT is an optimized DFT where *N* is restricted to powers of 2 (*N* = 2^{*p*} for some positive integer *p*)
- typical values of N for audio work at a sampling rate of 44100
 - 512
 - 1024
 - 2048
 - 4096
 - 8192

FFT summary

- Input: sampled signal x(n) of length N where $N = 2^p$
- Output: N pairs of values a_k, b_k for each frequency bin k
- Magnitude at frequency bin k

$$A_k = \sqrt{a_k^2 + b_k^2}$$

• Phase at frequency bin k

$$\theta_k = \tan^{-1} \frac{b_k}{a_k}$$

Example

- for sampling rate 44100 and FFT size N = 1024
- for frequency bin k there are k cycles per 1024 samples
- the frequency in hertz at bin k is given by

$$\mathrm{Hz}_k = k \frac{44100}{1024}$$

- the spectrum is sampled at intervals of 43.06 Hz
- Example: at bin 2 we have a = 0.345, b = -0.213
- The magnitude and phase corresponding to a cosine wave at 86.133 Hz are

Magnitude =
$$\sqrt{0.345^2 + -0.213^2} = 0.4054553$$

Phase = $\tan^{-1} \frac{-0.213}{0.345}$

real spectrum symmetry

overlap-add analysis/resynthesis

from Miller Puckette, Theory and Techniques of Electronic Music p. 268

overlapping analysis

- each input signal block is smoothed by a window function w(n)
- this reduces the discontinuity at the block boundary at the expense of some frequency resolution
- each successive windowed block is overlapped in time (overlap factor)
- each analyzed windowed block is called a *frame*
- the amount of time between each frame is called the hop size H
- example: N = 2048 samples, overlap 4x H = 512 samples

DFT applications: the phase vocoder

- each bin of the FFT samples the frequency spectrum on a relatively coarse grid
 - (43.06 Hz in the case of SR=44100, FFT size=1024)
- Idea: use the time varying phase values to improve the frequency estimates
- compare the phase θ_k in bin k at frame n to to the corresponding phase at frame n-1
- the change in phase has a correspondence to a change in frequency

phase deviation

change in phase per unit time is a frequency measurement

phase deviation: examples

- consider analyzing a cosine of 258.39844 Hz
- SR = 44100 samples/sec.
- FFT size N = 1024, overlap 4x, hop size H = 256
- the bin spacing for this FFT is 43.06 Hz
- the cosine is aligned at the center of bin 6
- let the phase in bin 6 at frame n be 0.0
- what is the expected phase in bin 6 at frame n+1?

phase deviation: examples

convert 258.39844 Hz to radians per hop

258.39844 cycles	2π radians	1 sec.	256 samples	3π radians
1 sec.	1 cycles	44100 samples	1 hop	1 hop

- so phase will increase a distance of 3π radians every analysis hop

phase deviation: examples

- now consider the same situation but with a cosine at 280 Hz
- what will happen to the phase in bin 6?

280 cycles	2π radians	1 sec.	256 samples	3.2507937π radians
1 sec.	1 cycles	44100 samples	1 hop	1 hop

- the sinusoid is at a higher frequency so its phase is increasing faster
- the phase is running 0.25079π radians per hop faster

phase vocoder frequency estimation

- at frame n subtract the expected phase of a sinusoid perfectly centered on the analysis bin from the actual phase
- expected phase is computed based on the previous phase in frame n-1
- the difference is the *phase deviation*
- in our example the phase deviation was 0.25079π
- converting to cycles per second:

 $\frac{0.2507937\pi \text{ radians}}{1 \text{ hop}} \cdot \frac{1 \text{ cyc.}}{2\pi \text{ rad.}} \cdot \frac{1 \text{ hop}}{256 \text{ samp.}} \cdot \frac{44100 \text{ samp.}}{1 \text{ sec.}} = 21.6015663 \text{ Hz}$

phase vocoder frequency estimation

- a frequency deviation of 21.6015663 Hz is added to the center frequency of bin 6
- 258.39844 Hz + 21.6015663 Hz = 280 Hz
- summary:
- computing phase deviations allow us to find the actual frequency of the analyzed sinusoids

phase vocoder applications:

- resynthesize at a different rate to time compress/exapnd without changing the pitch
- adjust the frequencies to transpose without changing the duration
- resynthesis can be done with oscillators (slow)
- resynthesis can be done with inverse FFTs (fast)
- the subjective quality of the resynthesis is largely dependant on how "well" the time varying phases are managed and updated