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analyzing complex waveforms

Jean-Baptise Joseph Fourier ~1822

Any periodic complex waveform can be represented
as a sum of harmonically related sinusoids each with
a particular amplitude (and phase).

The Fourier transform takes a waveform and
computes the exact amplitudes of the sinusoids
that comprise the waveform.

The transform is (theoretically) lossless.




definition of the Fourier transform

« forward transform
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what does this mean?




forward transform

beginning with the forward transform:
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x(t) is our time domain audio signal

we are multiplying it by ¢ (to be explained)

2m and i are constants
f is a value which corresponds to frequency

We are integrating (adding up) over all time values
(from — to +) at some specifically chosen

frequency value f




complex exponentials

What about ¢*™/1 2

e is the base of the natural logarithm
. ¢=~2.718281828459045. ..

i is the complex number
. =1

Euler’s identity

¢’ = cosO +isin®

follows from the series expansions for ¢* sin and cos




computing fourier transforms

« the transforms are defined for...

— continuous (non-sampled) functions of time x(¢)
— signals of infinite length (from - to +x)

« computers work with...

— discrete sampled waveforms
— finite length signals




Discrete Fourier Transform

Definition:
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Discrete Fourier Transform

 takes a sampled signal x(n) of N samples

- for each frequency value & of N discrete frequencies:
— pointwise multiply waveform samples by a cosine wave at frequency
k and adds up the results

- pointwise multiply waveform samples by a sine wave at frequency &
and adds up the results
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real and imaginary components

« The DFT gives us two values per frequency:

- real
- imaginary

DFT(k)=ay+iby k=0,1,2,....N—1

« the DFT outputs complex numbers
« all cosine sums are real valued
« all sine sums are imaginary

— (multiplied by the imaginary number i)




Intuitive Interpretation

start with a waveform to be analyzed

choose a set of reference sine and cosine waves at
discrete frequencies

“compare” the waveform to each reference sine and
cosine wave by multiplying them point by point and
adding up the values

portions of the waveform that are like the reference
sinusoid will result in larger sums

the reference sinusoid will “resonate” with
waveform components that are close in frequency
and phase




interpreting complex values

both real and imaginary components represent the
same frequency  DFT (k) = ai + iby

but relative to different phases cos(0) = sin(6 +x/2)
cosine and sine

components represent the
instantaneous position of

graphed on the
complex plane

a complex sinusoid "‘
this position can be




magnitude...

« the magnitude
(amplitude) of a complex
sinusoid is the distance
from the origin to the
complex point (a,, b,)
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and phase

the phase is the angle of
rotation (0) of the

complex point

recall the definition of
the tangent function:

where tan-! is the inverse tangent function




DFT summary

Input: sampled signal x(n) of length N

Output: N pairs of values
ag, by withk=0...N —1

there are k periods of the sinusoid in the space

of N samples

— i.e.for k=2, there are 2 cycles per N samples
— for k=13, there are 13 cycles per N samples, and so on

each value of k corresponds to a frequency bin

the spectrum is discretely sampled at each
frequency bin




Fast Fourier Transform (FFT)

DFT in its direct form is slow to compute

FFT is an optimized DFT where N is restricted to
powers of 2 (N = 2” for some positive integer p)

typical values of N for audio work at a sampling

rate of 44100

- 512
1024
2048
4096
8192




FFT summary

Input: sampled signal x(n) of length N where N =27

Output: N pairs of values a,, b, for each
frequency bin k

Magnitude at frequency bin k

_ p) p)

Phase at frequency bin k




Example

for sampling rate 44100 and FFT size N = 1024
for frequency bin k there are k cycles per 1024 samples

the frequency in hertz at bin & is given by
44100

=022

HZ;;

the spectrum is sampled at intervals of 43.06 Hz
Example: at bin 2 we have a=0.345,b =-0.213

The magnitude and phase corresponding to a cosine wave at
86.133 Hz are

Magnitude = 1/0.3452 + —0.2132 = 0.4054553
. —0.213
0.345

Phase =tan




real spectrum symmetry




overlap-add
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from Miller Puckette, Theory and Techniques of Electronic Music p. 268




overlapping analysis

each input signal block is smoothed by a window
function w(n)

this reduces the discontinuity at the block boundary
at the expense of some frequency resolution

each successive windowed block is overlapped in
time (overlap factor)

each analyzed windowed block is called a frame

the amount of time between each frame is called
the hop size H

example: N = 2048 samples, overlap 4x
H =512 samples




DFT applications: the phase vocoder

each bin of the FFT samples the frequency spectrum

on a relatively coarse grid
— (43.06 Hz in the case of SR=44100, FFT size=1024)

Idea: use the time varying phase values to improve
the frequency estimates

compare the phase 6, in bin k at frame n to to the
corresponding phase at frame n-1

the change in phase has a correspondence to a
change in frequency




phase deviation

« change in phase per unit time is a frequency
measurement




phase deviation: examples

consider analyzing a cosine of 258.39844 Hz

SR =44100 samples/sec.

FFT size N = 1024, overlap 4x, hop size H = 256
the bin spacing for this FFT is 43.06 Hz

the cosine is aligned at the center of bin 6

let the phase in bin 6 at frame n be 0.0

what is the expected phase in bin 6 at frame n+1?




phase deviation: examples

« convert 258.39844 Hz to radians per hop

258.39844 cycles 2m radians 1 sec. 256 samples 3 radians

1 sec. | cycles 44100 samples 1 hop 1 hop

 so phase will increase a distance of 3m radians every
analysis hop




phase deviation: examples

« now consider the same situation but with a cosine
at 280 Hz

« what will happen to the phase in bin 6?

280 cycles 2m radians 1 sec. 256 samples  3.2507937x radians
1 sec. l cycles 44100 samples lhop | hop

 the sinusoid is at a higher frequency so its phase is
increasing faster

« the phaseis running 0.25079m radians per hop
faster




phase vocoder frequency estimation

at frame n subtract the expected phase of a sinusoid
perfectly centered on the analysis bin from the
actual phase

expected phase is computed based on the previous
phase in frame n-1

the difference is the phase deviation
in our example the phase deviation was 0.25079n
converting to cycles per second:

0.2507937x radians 1 cyc. l hop 44100 samp.

: = 21.6015663 Hz
1 hop 2m rad. 256 samp. 1 sec.




phase vocoder frequency estimation

a frequency deviation of 21.6015663 Hz is added to
the center frequency of bin 6

258.39844 Hz + 21.6015663 Hz = 280 Hz

summary:

computing phase deviations allow us to find the
actual frequency of the analyzed sinusoids




phase vocoder applications:

resynthesize at a different rate to time
compress/exapnd without changing the pitch

adjust the frequencies to transpose without
changing the duration

resynthesis can be done with oscillators (slow)
resynthesis can be done with inverse FFTs (fast)

the subjective quality of the resynthesis is largely
dependant on how “well” the time varying phases
are managed and updated




