
The Self-Supervising Machine

Benjamin D. Smith
University of Illinois at Urbana-Champaign

School of Music
Urbana, Illinois

bdsmith3@illinois.edu

Guy E. Garnett
University of Illinois at Urbana-Champaign

eDream, Illinois Informatics Institute
Urbana, Illinois

garnett@illinois.edu

ABSTRACT

Supervised machine learning enables complex many-to-many
mappings and control schemes needed in interactive perfor-
mance systems. One of the persistent problems in these
applications is generating, identifying and choosing input
output pairings for training. This poses problems of scope
(limiting the realm of potential control inputs), effort (re-
quiring significant pre-performance training time), and cog-
nitive load (forcing the performer to learn and remember the
control areas). We discuss the creation and implementation
of an automatic “supervisor,” using unsupervised machine
learning algorithms to train a supervised neural network
on the fly. This hierarchical arrangement enables network
training in real time based on the musical or gestural con-
trol inputs employed in a performance, aiming at freeing the
performer to operate in a creative, intuitive realm, making
the machine control transparent and automatic. Three im-
plementations of this self supervised model driven by iPod,
iPad, and acoustic violin are described.

Keywords

NIME, machine learning, interactive computer music, ma-
chine listening, improvisation, adaptive resonance theory

1. INTRODUCTION
Machine learning (ML) continues to gain increasing appli-
cation in the performing arts as the problems of interactive
system control in live performance become more and more
approachable and better understood [7]. The promise of
the transparent union of live performer and complex multi-
media performance is alluring, and with the development of
on-line ML algorithms and the computing power required
to run them in real time, such performances are rapidly be-
coming reality. Yet the extensive pre-performance training
required of most musical ML applications poses a particular
problem to the improvising musician who wishes to privilege
spontaneous musical creativity during a performance.

We describe herein the design of a unique self-supervised
system that employs unsupervised learning algorithms, specif-
ically Adaptive Resonance Theory (ART), to automatically
parse input music and gesture streams, locate significant
feature areas, and train many-to-many mappings in real
time. The result is an interactive multi-media system that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

generates mappings uniquely for each performance, extract-
ing the particulars of a given input stream and creating
a control space that produces rapid, tightly coupled re-
sponses.

2. MOTIVATION
The applicability of ML methods to problems in interactive
musical performance is evidenced by the number and vari-
ety of applications and cases (see for example [4, 14, 16]).
Recent systems, such as the work of Fiebrink et al. [7], fo-
cus both on real-time training, in order to better match the
musician’s work process, as well as the use of ML to discover
new musical expressions. Rather than attempt to exactly
duplicate preconceived mappings they encourage the explo-
ration of unexpected results stemming from active training
during a performance.
However, supervised ML implementations conventionally

require that the musician define both their input material
(i.e. what the system will learn to identify) as well as the de-
sired outputs (the intended results in an interactive perfor-
mance system) in advance of their use during a performance.
Training the computer to produce desired outputs for given
inputs serves to effectively build a complex computer music
instrument driven by dynamic gestural controllers or acous-
tic instruments. This may be accomplished transparently
during a performance [7], but requires extensive awareness
and expertise on the part of the performer.
For example, consider a musician who, during an impro-

visation, trains the system to recognize two distinct melodic
patterns, tying these to two different system outputs. As
the piece progresses, the musician must anticipate their own
movement to new melodic areas, retraining the system at
each point. Failing this, the performer’s connection to the
computer becomes challenged, as the content of the music,
i.e. the relationships between notes, events, and phrases,
moves away from the domain that the system was trained
for. This will be especially apparent in systems designed
for discrete classification, i.e. where the system only pro-
duces outputs when a known input is observed, but is also
problematic with interpolating systems due to the input’s
movement away from the known feature domain. This can
be partially obviated by providing a sufficiently broad range
of inputs to train on, but this requires a very substantial ef-
fort in defining or predefining suitable training sets.
Thus these systems can be prohibitive for an improvising

musician who wishes to privilege spontaneity and creativ-
ity in the moment of the performance. Additionally, ex-
isting systems typically treat all categories equally, missing
the musical interest resident in the inter-input relationships.
We mitigate this dependence on predetermination of scope,
by designing a system that automatically identifies move-
ment to new areas of the input set (i.e. melody, in this
example), and creates mappings to account for these per-

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

108

ceptive, musical developments.
These interactively determined relationships are better

captured by unsupervised, on-line ML models, though the
latter have seen virtually no application in interactive per-
formance to date. These models allow the algorithm to dis-
cover classifications and find groupings and patterns across
inputs based on relationships inherent in the data, rather
than training on preconceived knowledge of the inputs (such
as [1, 6, 10] applied to problems in Music Information Re-
trieval). Effectively, the computer is allowed to build its
own interpretation of the musical work, listening in a fashion
analogous to the human listener [3]. The primary problem
posed by unsupervised methods is the potential for input
to be categorized in ways unanticipated by the performer
(however, this is also a possibility when playing with other
humans). Inherently in “unsupervised” algorithms, the in-
puts are automatically parsed and categorized without hu-
man oversight or labels.

The capability of unsupervised learning to analyze musi-
cal material is shown by Gjerdingen [8] and Piat [12], who
employ ART models to produce automatic classifications.
The former found that the machine could automatically
learn to identify formal changes in early Mozart composi-
tions, discovering relationships without human supervision.
Piat used a similar system to train a computer to hear the
relative difference between“consonant”and“dissonant”mu-
sic, comparable to human test subjects with surprising fi-
delity. However, neither of these projects ran in real-time.

Our ART implementation is faithful to [2], although our
work appears to be the first real-time, performance oriented
application of ART in music.

3. DESIGN
The design of our system consists of two primary modules,
a supervisor component and the mapping network. The
supervisor has an ART network at its core, itself running
without supervision, examining the input feature stream for
pitch-focal areas (in the case of musical input), and produc-
ing categorizations. The mapping is accomplished through
a MLP network, enabling non-linear translation of inputs
to outputs. The outputs must be defined in advance, as in
[4, 7, 14, 16].

Figure 1: System ML interaction.

The connection between the two networks is unidirec-
tional, with the supervisor acting as a trigger to retrain
the MLP. Given a stream of feature data the ART will clas-
sify and group the inputs, creating categories of varying
size that parse the total feature space. When a category
is created, and the overall system decides it is a signifi-
cant category, it is tied to a predetermined output and a
training session commences. In the current implementations
the realm of possible outputs is defined by a data set cre-
ated in advance of operation. This is generated effectively

through a pre-performance improvisation wherein the com-
poser/performer chooses the domain of system outputs and
orders them sequentially. As the performance unfolds the
output set is traversed in order, creating mappings to the
live inputs. The training session runs in the system’s free
time between input presentations, allowing the performer
to continue uninterrupted by the training.
The system as described is currently embedded in three

distinct implementations, driving audio synthesis and video
animation with mobile touch devices (Apple iPod and iPad),
as well as acoustic instruments (a violin).

3.1 Supervisor: ART
The supervisor models both a short-term memory (retain-
ing the last several seconds of input) and long-term mem-
ory (grouping, relating, and retaining inputs for later recall)
based on contemporary theories of human audition and per-
ception [11, 15]. This is accomplished as two distinct com-
ponents: a feature encoding module (the short-term mem-
ory, STM) and the unsupervised ART implementation (the
long-term memory). The aim is to provide the computer
with a method of parsing the feature inputs that mimics
a human’s abilities, such that a distinctive, to a human,
change in the inputs (and in the originating music or ges-
tures) is recognizable by the machine.

3.1.1 Short-Term Memory

The feature encoding can be accomplished in a number of
ways, dependent on the nature of the input data. Our im-
plementations employ two distinct models. The first is a
simple scaling and grouping of independent values repre-
senting significant components of the input data. In the case
of the mobile touch implementations this involves tracking
the touch position(s), touch velocity (delta between touch
samples), and touch curvature (degree of change in direction
between velocity samples proportional to distance traveled),
and transforming these values into a vector where each ele-
ment (x) obeys: 0 ≤ x ≤ 1.
The same model is similarly employed for part of the anal-

ysis of the acoustic violin input, creating a feature vector
from spectral centroid (“center of mass” of the spectrum, or
perceptual “brightness” [13]), spectral noisiness (how tone-
like or noise-like the sound is), and register (average pitch
over a two second window).

Spatial encoding [5, 8] comprises the other primary STM
model, enabling the transformation of melodic and pitch
sequences into feature data that the ART can process. A
simple neural network with attenuated feedback forms its
core, with one node for each unique token in the potential
input set (this model is commonly used in natural language
processing where each character in an alphabet is used as
a token). When a token is presented to the network the
corresponding node is fully activated and the network pro-
duces an output (x). This output is in turn fed back into
the network, attenuated by a small amount (α) (typically
set to retain five to nine inputs in the network [9]):

xt = αxt−1 (1)

Thus the occurrence of each token in time is transformed
into a vector, where each element indicates relatively how
recently that token appeared. The vector can then be un-
derstood as a spatial representation of a point in the se-
quence, creating a position and movement within the token
space. For musical input, pitch classes and interval classes
(based on the twelve-tone equal-tempered tuning system)
become ready token sets, creating feature vectors that de-
pict melodic and harmonic movement and allow the detec-
tion of motivic and pitch-class set relationships (see [8]).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

109

3.1.2 Long-Term Memory

Once the STM is created, the resulting vectors are fed to
the ART module for classification. The ART is a compet-
itive neural-network using unsupervised training, creating
feature categories based on an ordered sequence of input
vectors. That the input is ordered is significant, as different
orderings of the same data will produce divergent classifica-
tions. While usually considered a limitation, this is an asset
in music parsing where the order is carefully contrived by
the artist and is important—and usually specific—to the
particular musical work. Just as a human listener relates
later melodic development (such as a sonata-form develop-
ment section, or recapitulation) to earlier auditions (i.e. the
exposition), so does the ART algorithm.

When presented with a new input vector (I) the ART
algorithm first obtains a resonance measure (T) through
the comparison of each known category (w) with the new
input (Eq. 2).

Tj(I) =
|I ∧wj |

γ + |wj |
(2)

For a given input (I) the resonance measure is calculated
with choice function (T), comparing the input with the
adaptive weights (w) of each category (j). A choice pa-
rameter (γ) affects the matching of inputs to the closest
subset category, and is typically set close to 0 to achieve
this. The “fuzzy AND” operator ∧ is defined by

(x ∧ y) = min(xi, yi) (3)

and the norm |•| is the L1 norm

|x| =
∑

i=1

|xi| (4)

Before learning ensues the strongest resonating node must
pass a “vigilance” test, to ensure it remains within a preset
limit (Eq. 5). If the node’s size is acceptable then it is
selected and allowed to learn based on the input. On the
other hand if by incorporating the new input the category
size (in feature space) would increase beyond this limit (the
“vigilance” parameter, p, in Eq. 5), then this node is re-
jected for this iteration and the next most resonant node is
considered.

|I ∧wj|

|I|
< p (5)

The rejection of all existing category nodes results in the
creation and training of a new category node. The details
of the ART algorithm we employ are described at greater
length by Carpenter et al. [2].

The other control parameter of significance is the “learn-
ing rate” of the ART network. This parameter allows the
network to both train new inputs immediately and still
adapt slowly, retaining the identity of older categories. Set-
ting the learning rate high causes categories to expand and
fully incorporate new inputs while setting it low causes the
categories to adjust slowly, settling into an average area
of the feature space. The implementations below set the
learning rate near 1, allowing identified categories to adapt
to new inputs immediately, ensuring reproducible classifi-
cations (setting the learning rate low can cause subsequent
presentations of the same inputs to be classified differently,
dependent on category expansion rates).

3.2 Mapping: MLP
The MLP is a feedforward neural-network, consisting of
multiple layers of nodes fully connected in a directed graph,
which maps sets of input data onto sets of output data.
The input nodes have a simple linear activation function

but the nodes of the hidden internal layers have non-linear
activation functions (typically, and in our case, these are
sigmoids). Backpropagation is used to train the network,
repeating iteratively over the course of a performance ses-
sion.
Training of the MLP occurs frequently but unobtrusively

to the user as new data is created during a performance.
The ART module generates paired sets of inputs and out-
puts, which are updated based on musical (or gestural) de-
velopments as the work unfolds. For every updated training
set a training period is initiated wherein the inputs and out-
puts are presented to the backpropagation algorithm itera-
tively until an error function falls below a given threshold
or a safety time-out is reached. For the error function we
employ a simple distance measure of the amount of correc-
tion the network undergoes for each new input set (i.e. an
average of how much each node’s parameters were changed
during the training iteration). When the error condition is
met (typically, the average change is below 10−5) the train-
ing session ceases. The safety time-out is triggered when
the error condition fails to move below a higher threshold
(typically 0.01) within 20,000 iterations. These thresholds
were chosen by trial and error over many tests where we
have observed that the configuration of the MLP (i.e. the
number of hidden layers and the flatness of the activation
functions) is the primary determinant in the convergence of
the training periods. Once properly configured for the task
the MLP trains and converges very reliably.
During training, the MLP continues to map inputs to out-

puts in an uninterrupted fashion, although the mappings
produced during a training cycle can be unpredictable. For
the initial training period, when the network goes from a
randomly initialized state through the first training set, the
mappings quickly move from random (but repeatable) to
trained and expected. Subsequent retraining periods pro-
duce significantly less variation as the network has shorter
distances to go. The typical training period comprises sev-
eral thousand iterations spanning between 0.5 and 2 sec-
onds, and proves barely noticeable to most users. At all
other times the network operates as anticipated, efficiently
transforming inputs into control outputs (where inputs are
received approximately twenty times a second, in our appli-
cations).

4. APPLICATIONS
4.1 iPad 1
The simplest interface and implementation consists of an
iPad driving a granular synthesis engine. Here we take the
two-dimensional touch input (position on the surface) as the
feature data, scaling it and feeding it directly to the ART
module. This serves to parse the area of the touch screen
uniquely for each session and makes a simple and dramatic
demonstration of the system. Every time the ART identifies
a new region of the feature data (and thus the screen) it is
mapped to a new output from the preset granular synthesis
outputs. The result is a two dimensional mapping of the
nine-dimensional granular synthesis parameters, where any
touch on the screen is mapped to a point in the synthesis
space.

4.2 iPad 2
We attempt to characterize drawing style in the second ap-
plication, analyzing the iPad touch data for speed of move-
ment, curvature of the line, average direction of movement
(taken over sixteen samples) as well as simple position. This
results in five parameters that are now mapped through the
MLP to the nine-dimensional granular synthesis parameter

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

110

space. In this application the user is able to achieve much
finer control of the output, mapping many more input areas
to outputs. Thus, for example, a straight, slow line in the
center of the screen moving to a straight, slow line near the
edge produces a gradual sonic change, while a change to a
curvy, fast line and back to straight traverses the output
parameter space much more dramatically.

4.3 Violin
Providing control to an acoustic musician requires many
more dimensions of input. This application utilizes analyzed
parameters of the sound (brightness, noisiness, amplitude,
and average frequency), as well as musical and textural com-
ponents (rate of attack and pitch class). Both simple scaling
mechanisms and spatial encoding algorithms are employed
to produce two separate feature vectors (one for immedi-
ate sound parameters and one for a pitch-based short-term
memory), which in turn are fed to two distinct ART mod-
ules. The outputs of the ARTs serve to train two different
MLP networks, one driving the granular synthesis engine
and the other controlling real-time graphical animations.

5. CONCLUSIONS
This self-supervising model shows the applicability of unsu-
pervised and supervised ML algorithms working together in
an interactive multi-media performance system. All three
of our implementations have been employed successfully in
demonstrations and performances, and additional testing
and development is underway. While the system promises
full autonomy for the interactive computer it is currently
limited by the pre-definition of the outputs. In this way
it functions like supervised ML systems of recent decades.
However this may be alleviated by providing the system
with methods to analyze and filter the outputs. The pars-
ing of the outputs can be done in a fashion analogous to
the inputs, and similarity measures (i.e. various distances
between features and categories) can give the computer a
path to relating inputs and outputs automatically. Thus a
minimal shift in the input music or gestures can be matched
with a minimal change in the multi-media output, and sig-
nificant movements can be treated similarly.

In the current implementations the level of detail set in
the ART module has a great effect on the results of the map-
ping network. When set to produce more general categories
(accomplished through a lower vigilance setting) training
points are created very far apart in the input feature space.
When set to be more precise the training points are put
close together. The former gives the performer more gra-
dations of control, but requires large musical shifts to pro-
duce noticeable changes in the multi-media system. On
the other extreme the smallest changes (changing notes or
slight dynamic levels) causes significant changes in the out-
put. Finding a suitable middle ground requires a period of
testing to tailor the ART parameters to the music that a
given performer desires to play.

While the goal of a fully automatic self supervising system
is approaching, the current implementations still demand a
noticeable amount of awareness on the part of the user.
Although the performer is free to improvise and continually
explore new material the mappings will continue to appear
new as well. Our experience has shown that this lack of
constraints can be challenging. The responsibility is entirely
on the performer to remember what they presented to the
system and affect its recreation if they desire a return of the
same multi-media outputs.

6. REFERENCES
[1] J. Aucouturier and F. Pachet. Tools and architecture

for the evaluation of similarity measures: case study
of timbre similarity. Journal of the American Society

for Information, Special Issue on Music Information
Recrieval, 2004.

[2] G. A. Carpenter, S. Grossberg, and D. B. Rosen.
Fuzzy ART: fast stable learning and categorization of
analog patterns by an adaptive resonance system.
Neural Networks, 4:759–771, 1991.

[3] N. Collins. Towards Autonomous Agents for Live

Computer Music: Realtime Machine Listening and

Interactive Music Systems. PhD thesis, University of
Cambridge, Cambridge, UK, 2006.

[4] R. B. Dannenberg, B. Thom, and D. Watson. A
machine learning approach to musical style
recognition. In Proc. International Computer Music

Conference, pages 344–347, 1997.

[5] C. J. Davis and J. S. Bowers. Contrasting five
different theories of letter position coding: Evidence
from orthographic similarity effects. Journal of
Experimental Psychology: Human Perception and

Performance, 32(3):535–557, 2006.

[6] P. P. de León and J. Inesta. Pattern recognition
approach for music style identification using shallow
statistical descriptors. Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 37(2):248–257, Feb. 2007.

[7] R. Fiebrink, P. R. Cook, and D. Trueman. Play-along
mapping of musical controllers. In Proceedings of the

International Computer Music Conference, 2009.

[8] R. O. Gjerdingen. Categorization of musical patterns
by self-organizing neuronlike networks. Musical

Perception, 1990.

[9] A. Miller George. The magical number seven, plus or
minus two: some limits on our capacity for processing
information. The Psychological Review, 63:81–97,
1956.

[10] F. Pachet. Musical data mining for electronic music
distribution. Web Delivering of Music, 2001.

Proceedings. First International Conference on, pages
101–106, Nov. 2001.

[11] I. Peretz and R. J. Zatorre. Brain organization for
music processing. Annual Reviews,
Psychology(56):89–114, 2005.

[12] F. G. P. Piat. Artist: Adaptive resonance theory to

internalize the structure of tonality. PhD in human
development and communication sciences, University
of Texas, Dallas, Aug. 1999.

[13] E. Schubert, J. Wolfe, and A. Tarnopolsky. Spectral
centroid and timbre in complex, multiple instrumental
textures. In Proceedings of the 8th International

Conference on Music Perception and Cognition,
Sydney, Australia, 2004. University of New South
Wales.

[14] B. Thom. Interactive improvisational music
companionship: a user-modeling approach. User

Modeling and User-Adapted Interaction, 13:133–177,
2003.

[15] B. Tillmann. Music cognition: Learning, perception,
expectations. In Computer Music Modeling and

Retrieval. Sense of Sounds., pages 11–33. Springer,
Berlin, 2008.

[16] D. Wessel. Connectionist models for musical control
of nonlinear dynamical systems. The Journal of the

Acoustical Society of America, 92(4):2402, Oct. 1992.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

111

