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ABSTRACT

Recent developments in machine listening present opportuni-
ties for innovative new paradigms for computer-human inter-
action. Voice recognition systems demonstrate a typical ap-
proach that conforms to event oriented control models. How-
ever, acoustic sound is continuous, and highly dimensional,
presenting a rich medium for computer interaction. Unsu-
pervised machine learning models present great potential for
real-time machine listening and understanding of audio and
sound data. We propose a method for harnessing unsuper-
vised machine learning algorithms, Adaptive Resonance The-
ory specifically, in order to inform machine listening, build
musical context information, and drive real-time interactive
performance systems. We present the design and evaluation
of this model leveraging the expertise of trained, improvising
musicians.
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INTRODUCTION

On-line machine learning (ML) continues to gain increas-
ing application as the problems of real-time interactive sys-
tem control become more and more approachable and bet-
ter understood [4]. In particular, the promise of the transpar-
ent union of live performer and complex multi-media perfor-
mance through intelligent interfaces is alluring to many, and
has been the focus of continuing research over the last several
decades. With the development of on-line ML algorithms and
the computing power required for real-time operation, such
performances are rapidly becoming reality. Yet, most musi-
cal ML applications developed to-date use pre-trained neural
networks or other supervised models, typically requiring ex-
tensive pre-performance training.
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This presents an unusual challenge to the improvising per-
former, as once the training is complete the musician is con-
strained to the pre-selected material. Yet, what if the com-
puter could effectively participate as an intelligent partner,
listening to the musical development and making informed
choices and mappings as the improvisation unfolds? Musi-
cal context, the consciously and unconsciously perceived re-
lationships between musical events within a given work, in-
forms human perception of a piece through the formation of
expectations [9]. Building a similar model of context and ex-
pectations for a computer promises parallel comprehension
and the potential for truly intelligent interactions and responses.

In order to privilege the creativity and intuition of an impro-
vising performer qua user we propose a system that listens as
a trained human might, extracting relevant information from
the music as it unfolds. The resulting data in turn can be
mapped to the control inputs of any interactive system. This
model employs an on-line, unsupervised machine learning
implementation, based on Adaptive Resonance Theory (ART,
[1]) algorithms to efficiently process any musical improvisa-
tion or input.

BACKGROUND

The applicability of ML methods to problems in interactive
musical performance is evidenced by the number and variety
of applications and cases (see for example [14, 15]). Recent
systems, such as the work of [4], focus both on “real-time”
training, in order to better match the musician’s work process,
as well as the use of ML to discover new musical expressions.
Rather than attempt to exactly duplicate preconceived map-
pings they encourage the exploration of unexpected results
stemming from active training during a performance.

However, all of these implementations require that the user
define both their input material as well as the desired outputs
before use, relying heavily on the acuity of the users in defin-
ing appropriate control spaces. Yet, if the user is inspired to
take the musical improvisation in a new direction the connec-
tion to the computer becomes challenged, as the content of
the music moves away from the domain that the system was
trained for.

The potential to capture the informational content without
pre-performance training is presented in unsupervised, on-
line ML models, which have seen virtually no application
in interactive performance to date. These models allow the
system to discover classifications and find groupings and pat-
terns across inputs based on relationships inherent in the data,
rather than training on preconceived, external knowledge of
the inputs. Effectively, the computer is allowed to build its



own interpretation of the musical work, listening in a fash-
ion analogous to the human listener [2]. Unsupervised meth-
ods lend themselves naturally to sequential input processing,
which is a prominent aspect of human perception models,
rather than all-at-once training.

By giving the computer the capability to discern musical pri-
orities and relationships on-the-fly, mappings can be con-
structed that serve to expose the musical development (and
potentially emotional cues [7]) of the improvisation. This
minimizes user cognitive load and allows the improvisor to
focus on playing and creating a compelling musical work,
speaking a language of melodic and textural relationships
without worrying about the computational details. The ca-
pabilities of unsupervised learning to analyze musical mate-
rial is shown by [5] and [12]. While our work focuses on
interactive computer music, the same models can be applied
to other intelligent, interactive computer control systems with
high dimensional, real-time input.

ART

Basing our machine listening implementation on contempo-
rary theories of human perception and audition [10], we em-
ploy a multi-layer design to parse melodic input streams. The
human model comprises both a short-term memory (STM), to
retain the last several seconds of sound input, and a long-term
memory (LTM); grouping, relating, and categorizing inputs
for later retrieval. Both of these memory functions feed into
higher level processes that discern patterns, extract knowl-
edge, and make decisions.

Spatial encoding [3], a method employed in natural language
parsing, is employed to characterize sequential input data,
transforming melodic context into a twelve-dimensional spa-
tial representation (one dimension for each pitch-class in 12-
tone equal-tempered tuning). Spatial encoding employs an
unordered single layer Neural Network (NN), with one node
for every token in the input set. When a token is presented
to the NN the associated node is fully activated and the ac-
tivity of the network x is attenuated by a small amount «:
x; = azy—1. This model preserves the ordering of inputs by
creating a vector encoding, where o may be variably set to
control the length of the “memory” (typically to retain 5-9 to-
kens, based on Miller’s Law [8]). This system is used in [5],
for example, to successfully recognize formal relationships in
early Mozart piano works.

The biggest limitations of the standard spatial encoding are
the inability to describe repetitions and the generic nature of
the activation. Two sequences, such as AABC and BABC,
can produce the same encoded vector, yet in musical contexts
sound distinctly different. Additionally, it has been shown
that the human ear weights sonic input differently based on
accents of agogic, dynamic, and metric inflection [11]. How-
ever, spatial encoding treats all tokens equally.

We propose a modification to the spatial encoding NN to dy-
namically adjust the node activation levels based on the per-
ceived attention a particular token warrants, which we term
Dynamic Encoding. The update rate is now set at a rapid
sample rate (~20hz) and the activation level is set nominally

to increment by a small value (such as 0.05, to avoid over-
saturating the network). In practice this gives proportionally
more weight (a more active node) to longer notes, while short
notes only appear in the network for a few update cycles.
Other types of accents are incorporated by increasing and de-
creasing the activation value appropriately (i.e. louder notes
get more activation and softer notes receive less).

The activation level (/) for dynamic accents is calculated based
on the amplitude of the current sample (a;) and a running av-
erage (of length k, typically 16) of the amplitudes of previous
samples.
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Thus / = 1 for equal amplitude notes, [ > 1 for louder notes,
and [ < 1 for quieter notes. The activation level is then scaled
to account for the rapid update rate (by 0.05 in our tests be-
low).

6]

Finally, the STM decay function has a significant impact on
the shape derived from the melodic input. The standard model
is a linear function, z = xy_; — b, or exponential. We also
consider a sigmoid curve, x = xf_;, where ¢ controls the
effective temporal length of the memory module.

Long-Term Memory

Once the STM is created, the resulting vectors are fed to an
ART module for classification. The ART is a competitive NN
that trains in an unsupervised manner, discovering categories
based on an ordered sequence of input vectors. Different or-
derings of the same data will produce divergent classifications
and while this lack of consistency is typically seen as a lim-
itation, here it is an asset. Just as a human listener relates
later melodic development (such as a sonata-form develop-
ment section, or recapitulation) to earlier auditions (i.e. the
exposition) based on the meaningful ordering of music, so
does the ART algorithm. The details of the ART algorithm
are described at length by [1]. Two parameters of significance
are the category size limit, or “vigilance” parameter (p), and
the learning rate (3), which allows the network to both train
new inputs immediately and still adapt gradually, retaining
the identity of older categories. Setting the learning rate high
causes categories to fully incorporate new inputs while set-
ting it low causes the categories to adjust slowly, settling into
an average area of the category space.

EVALUATION

We describe the ART analysis of an improvised solo by vi-
olinist Jean-Luc Ponty, “No Strings Attached,” from the al-
bum Le Voyage. This recording was chosen due to its com-
mercial availability, evident virtuosity, and range of harmonic
and melodic content. The digitization involved running the
recording through a pitch tracker to produce a stream of paired
pitch and amplitude values (one sample approximately every
50 milliseconds for 6892 samples total). This ensured com-
parability between tests by removing any variability in the
pitch reduction process. The recording selected is ~5’ 56” in
duration, consisting of a gradual exposition of material with
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Figure 1. Categorizations with Spatial Encodings (linear, exponential,
sigmoid) of No Strings Attached (category ID vs. time).
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Figure 2. Categorizations with Dynamic Encodings (linear, exponential,
sigmoid) of No Strings Attached (category ID vs. time).

several sections dominated by looped drones and rhythmic
ostinati. We focus solely on melodic material, incorporating
rhythmic duration and dynamics, as this is the primary index
for pattern identification in human musical cognition [6].

For comparison we employ six STM models: spatial encod-
ing and dynamic encoding each with three decay models (lin-
ear, exponential, and sigmoid). Decay rates were set so that
each model effectively retains 7 & 2 inputs at each update.
Using slower decay rates tends towards gradually increasing
category creation (as more context information is retained),
while quicker decay rates produce far fewer categories (only
twelve at the limit). Both of these extremes lead to problems
building a useful understanding of musical context.

ART Classification

Next we feed each of these STM outputs into ART modules to
produce categorizations and find patterns in the feature vec-
tors. Fig. 1 and 2 show the categories generated over the
course of the recording for each STM setting noted above
(ART vigilance, p, and learning rates, 3, are set to ensure
a comparable number of categories—36—are identified for
each encoding model). Note that the vigilance settings need
to vary greatly to ensure the same total category creation for
the very different STMs. This further emphasizes the impact
of each encoding model on the characterization of the feature
data.

The unfolding of the work produces gradual category creation
for all encodings, which is appropriate to this free improvisa-
tion. The impact of the different encoding schemes can be
seen. Some encodings, the dynamic encoding with linear de-
cay for example, suffer from overfitting, creating new cate-
gories with few returns to old material. Others, such as the
spatial encoding with exponential decay, are more reductive,
showing apparently random repetition without sufficiently ac-
counting for context. However, all indicate a move to a sec-
ond musical section near the middle (esp. the dynamic sig-
moid encoding), and hint at brief returns to the initial mate-
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Figure 3. Accuracy of fit, No Strings Attached, spatial encoding, sigmoid
decay, ¢ =2.0,p =0.9.
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Figure 4. Euclidean distance between resonance vectors, No Strings At-
tached, 2’ 53” to the end. [Dynamic encoding, sigmoid decay, ¢ = 1.10409,
p =0.858, 3 =0.05]

rial in the middle and near the end (category O at the bottom
of each graph).

The vigilance parameter was set in order to produce a com-
parable number of categories. The effect of the vigilance on
the category generation rate is roughly exponential in nature,
resulting in ~50 at p = 0.9, ~180 at 0.75, and ~1100 at
0.95 (for our chosen example with a spatial encoding and
sigmoid decay). The learning rate parameter indirectly af-
fects the rate of category creation (varying from a total of 8§
categories when S = 0.01, with a dynamic, sigmoid decay,
p = 0.9, to 40 when 3 = 1). Distinctly different inputs are
still recognized as such, regardless of the learning rate. The
learning rate parameter is also visibly at work in the “accu-
racy” measure of the input classification. This is calculated
by taking a simple Euclidean distance measure for each in-
put vector to the center of the matched category (fig. 4). The
higher learning rate (0.9) results in more accurate fits gener-
ally while the lower rate (0.1) is looser, adapting to new inputs
more slowly. The tradeoff is between the nature of the infor-
mation sought: rapid, accurate categories, or slower, more
general categories.

Resonance

Given the STM and LTM above, the extraction of information
regarding musical relationships is now possible. Sectional
movement can be identified by large movements in encoded
feature space, resulting from changes in pitch material (mod-
ulations and transpositions). As fig. 4 shows, the distance
between successive resonance vectors varies dramatically, in-
dicating movement between different musical sections. Short
periods of relative stasis are followed by sudden shifts to dif-
ferent areas of the category space, denoting the same shift in
the source musical material.
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Figure 5. Total occurrences of each category at a resonance of 0.96 or
greater. No Strings Attached, Dynamic Encoding with sigmoid decay, ¢ =
1.10409, p = 0.858, 3 = 0.05.

Additionally, counting the number of matches for each cat-
egory can be translated as a measure of the importance of
each category. Taking the resonance vectors, and threshold-
ing the resonances of each category observation, it is possible
to compute a relative import for each category. Fig. 5 shows
the ratio of category resonances observed with a value over
0.96. Certain categories appear with much greater frequency,
while others (categories 5, 17, 23, 29, and 37, for example)
only appear rarely. Using this knowledge the computer could
decide to map significant outputs to strongly recurring cate-
gories, or the converse, highlighting the fleeting, unexpected
categories.

Analyzing the resonance vector for these types of shifts and
changes is the goal of this process. They are readily apparent
to the trained human ear, and through statistical processing
they can be appreciated by the computer “ear” as well.

FUTURE DIRECTIONS

The STM and LTM models set forth above provide an anal-
ysis of a live improvisation, extracting context information
through the categorization of melodic feature data and the
measure of relationships and movements within the melodic
feature space. At the moment, the task of mapping this data
to an interactive performance system remains predominantly
in the hands of the technician or composer. Automating this
process will require additional analyses of the fit data (both
the resonance vectors and accuracy) over time, locating sig-
nificant categories, tracking the movements in feature space,
and mapping their inputs to desirable outputs. Both neural-
network type dynamic mapping systems as well as ARTMAP
may lead to viable solutions. This promises rich mapping
possibilities that might match the perceptive complexity of
the musical improvisation.

The models discussed thus far are currently being further eval-
uated and employed in a suite of pieces, transforming the mu-
sical improvisation of a live violinist into animations and au-
dio through a granular synthesis engine [13].
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