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ABSTRACT

The origins of computer music are closely tied to the
development of the first high-performance computers
associated with major academic and research
institutions. These institutions have continued to build
extremely powerful computers, now containing
thousands of CPUs with incredible processing power.
Their precursors were typically designed to operate in
non-real time, “batch” mode, and that tradition has
remained a dominant paradigm for high performance
computing. We describe experimental research in
developing the interactive use of a modern high-
performance machine, the Abe supercomputer at the
National Center for Supercomputing Applications on the
University of Illinois at Urbana-Champaign campus, for
real-time musical and artistic purposes. We describe the
requirements, development, problems, and observations
from this project.

1. INTRODUCTION

Computer musicians have gradually moved away from
relationships with large-scale computing centers as
personal computing power has increased and become
more available. Personal computing has brought benefits
such as interactivity (the ability to receive a response
from the computer more rapidly than the human
discriminative capability can discern, sometimes called
“real time”), portability (enabling musicians and
performers to bring their machines out of studios and
onto stages and other venues), and freedom to develop
and test software on flexible, individual schedules
(allowing one to utilize the full capability of the machine
at any time of day or night and for extended periods of
time). However the rate of development in individual
processor speeds has begun to slow, causing many
manufacturers to move to multi-processor architecture.
The world of High Performance Computing (HPC),
continues to develop rapidly by incorporating CPUs in
greater and greater number with incredible interconnect
speeds. As of November 2010 there are approximately
ten computers worldwide capable of at least theoretic
peak performance in the petaFLOPS range (10"
sustained floating point operations per second)[21] with
more poised to come online. Predictions anticipate
exaFLOPS (10'®) machines by 2019 [20]. These
machines, and their recent predecessors, consist of
thousands of CPUs, connected with high-bandwidth
buses and fiber-optic LANs. Typically, data processing
jobs are run on these machines in a queued batch mode,
wherein a user can submit a huge amount of data and
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algorithms, and receive notification when their job is
complete (usually hours or days later).

Interactive HPC, a rapidly developing area of
computing [15], allows for more flexible usage and
holds out promises of real-time use of supercomputers
through dynamic scheduling. This allows users to obtain
the use of portions (or all) of the computer for
interactive, though still not typically real-time, program
execution. The interaction rate is still fairly long, taking
the form of loading presets or setting initial parameters
and then simply observing the process. We desired to
push this capability further, enabling near instant, human
control of a complex simulation using a multi-
dimensional controller, i.e. an acoustic violin. We
developed and tested a project to explore this potential,
creating a real-time computer music instrument
employing high definition video and audio displays.
Through the National Center for Supercomputing
Applications (NCSA) on the University of Illinois at
Urbana-Champaign (UIUC) campus we obtained access
to Abe, a supercomputer containing 9600 Intel 64 CPUs
capable of reaching 89.47 teraFLOPS (representing the
peak of supercomputing performance when it came
online, until being surpassed in the last decade), which
formed the computational core of this project.

Figure 1. HPC simulation and display running at
NCSA, January 2011 (Benjamin Smith, violin).

2. MOTIVATION

The model of the “instrument” is commonly used in
computer music development to frame interactive
systems and their function in performance [4, 22]. This
notion provides a well-prescribed formula for interaction
design and evaluation, including action-effect
expectations (usually, but not always, one action to one
sonic event), immediacy of response, and ease of use
while maintaining potential for virtuosity. Cases of such
computer music instruments employing personal
computers abound, and while the computing power
available in commercially available technology today is
impressive, it remains limited. With the computing
power of current generation HPC systems it becomes



possible to consider experiments well beyond the
purview of personal computing, such as a real-time
molecular simulation and sonification of an acoustic
instrument, or video and audio displays of huge,
continuously updating embedded, sensor arrays.

The realization of a true supercomputer instrument
requires continuing development of several components:
high resolution gestural controllers and input devices;
strong, controllable models and simulations; and high
definition audio and video displays capable of rendering
massive amounts of data in real-time. The Allosphere [9]
is one such display environment, capable of rendering
over a 360° field of view, with full surround sound.
However, the current applications running on the
Allosphere, as is typical of many visualization
applications, are apparently driven by a single desktop
computer, convolving the interaction, simulation, and,
sometimes, display into one process. Segmenting these
components and giving each an independent calculation
rate allows each to take full advantage of the processing
power available [7]. This can be especially important
when a given segment (such as a simulation) can benefit
from a finer grain time-step delta, but another part (such
as the display rendering) needs to operate at a
significantly slower, or variable rate.

Historically, due to the batch mode orientation of most
HPC systems, supercomputer music applications took
the form of large-scale algorithmic composition and
synthesis programs [8, 10, 11]. While the simulations
most commonly run in HPC environments are of a
scientific nature, seeking to better model and understand
some real observed phenomena [24], the format also
lends itself well to large scale interactive creative
simulations, effectively becoming a computation
intensive algorithmic composition systems. We take this
view of the simulation running on Abe: it becomes an
advanced compositional algorithm with many interacting
parts, all globally steered by a live musician.

In the field of supercomputing, Interactive HPC refers
to real-time operation, but does not usually entail a
closed input-to-computation-to-display loop. Even
complex visualization systems [19] typically depend
solely on initial inputs, limiting the interaction with the
simulation to start, pause, and stop commands. They are
thus aimed at speeding up the development cycle of the
programmer, or the exploration cycle of the scientist,
rather than enabling a performance oriented interaction.
Creating a fully interactive computing environment, in
our view, entails real-time control at a detailed level
during the running of the simulation, providing the
ability to steer the course of the simulation during
execution [24], which requires at least a simulation with
all computations relevant to a given time-step occurring
at or before the required output of that time-step. Our
solution is to involve an expert practitioner of an
acoustic musical instrument, the violin, providing them
with multi-dimensional control of the simulation through
the analysis of their sound. In effect, the violin becomes
a highly dimensioned interface to a larger digital
instrument involving the HPC simulation, and graphical
and aural displays.

3. DESIGN

The requirements of the system we sought to create were
four fold:

1. to verify the interactive capabilities of Abe and the
ability to stream large amounts of data to and from an
external source, for control and representation;

2.to demonstrate interactive control of a complex
simulation;

3. to use acoustic sound as the control source; and

4. to visually and sonically render the simulation in
HD quality image and sound.

The architecture as implemented consisted of the
following components: input processing of the violin,
converted into control data in Max 5 [12]; transmission
through OSC [23] to a standalone client application
which relays the data to Abe over a fiber-optic UDP
connection; Abe runs a flocking simulation [18] with
thousands of entities, sending the simulation data back to
the client; the client renders the data visually using the
Object-oriented Graphics Rendering Engine (OGRE
[14]), simultaneously analyzing the data and sending
sonification data back through OSC to Max where it is
sonified.

The hardware used for the experiments included: one
of two acoustic violins with professional quality internal
piezo pickups, a MOTU 828 digital audio interface, a
Mac Pro (containing eight 2.8 ghz cores) with a 10-
gigabit Myrinet Network Interface Card, three 1080i
projectors, a thirty foot, three wall projection screen, a
studio two-channel audio system, and Abe. The Mac Pro
was connected to Abe over a 10-gigabit network, with
tests confirming 6.6-gigabits of bandwidth available for
use.

We chose GPL libraries to build the system and
original code was written in C++, C with MPI, Java, and
Max. OSC provided a rapid and robust method of
sending small amounts of data between Max 5 and the
graphical client running on the same Mac Pro. We chose
the Enet library [6] to transmit data to and from Abe as a
low overhead UDP package with controls for data
reliability and bandwidth usage. OGRE provides an
efficient way of drafting 3D graphical spaces, allowing
the compilation of a Mac OS X standalone application to
form the client backbone.

3.1. MPI

Development on most supercomputers today is done in
FORTRAN, C, or C++ and uses a grid computing API,
such as MPI (Message Passing Interface)[13] or charm+
+ [2]. We chose MPI due to the large body of knowledge
and support around its use, as well as its portability to
smaller systems (an OpenMPI implementation exists for
any multi-core PC and comes bundled with Mac OS X).
This allowed the rapid testing of the code on multi-core
desktops before delivering it to Abe.

Several significant problems in parallel computing are
alleviated by the MPI libraries. When running a large,
iterative computational process it is often necessary to
copy the relevant data (such as certain control
parameters updated in real time) to all the CPUs



involved, recover and merge their results (at least in
order to transmit a representation of the internal state
back to the user for viewing or audition), and repeat.
These operations are referred to as “scattering” and
“gathering,” respectively. Issues surrounding
synchronization of the nodes crop up quickly, such as
when one CPU takes much longer to finish than the
others, and these are also handled transparently by MPI.
Scattering and gathering can be done in a number of
fashions, all appropriate for different tasks. Scattering
originates with one process (or “node”, with this one
typically termed the “root” node), sending data to all
nodes (including itself). This can involve the copying of
the same data to all nodes, or splitting the data, giving an
equal part to each node (as shown in figure 2, below).
Gathering does the reverse, taking data from every node
(including the root) and sending it to one node where it
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Figure 2. Internode Communication

is ordered into a buffer by the sequence ID of the nodes.

The root node (A0 in figure 2) sends and receives
data from itself as an equal peer, allowing it to take part
in the same computation as all the other nodes. In our
application we chose to privilege the root node, using it
to communicate with controlling clients while the other
nodes handle computing the next simulation update (see
figure 3).

As per our chosen simulation, see below, we scattered
a copy of the full data set to every node at every
iteration, but only gathered the portion of the results that
were computed by each node. This reduced the amount
of data copying required of the root node between
iterations, which in turn minimizes the idle time of the
compute nodes. More complex partitioning of the
computation might have achieved better results, but this
will be tackled in future implementations.
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Figure 3. Operation Flow on Abe

3.2. SIMULATION

For the data simulation we chose a flocking algorithm,
modeling movement behavior observed in birds and
insects [16, 18]. This model exposes a handful of
coefficients that enable the production of a wide range

of distinctive behaviors. The attraction for our
application is both the simplicity of control as well as
the extensibility, capable of modeling anywhere from a
few to millions of entities. Each entity is stored as six
floats and one integer (all 32-bit numbers, for a total of
224 bits or 28 bytes per entity): three for position in 3D
space, three for velocity, and the index number of the
object. The basic behavior function comprises three
primary coefficients: attraction (@), alignment (b), and
crowding (c)
v=ax+by+tcz+dw. €))
We add an additional component that attracts entities
towards the origin (w) proportional to the entity's
distance away from the center (d), ensuring that all the
entities remain in the vicinity of the center of space,
rather than drifting away to infinity. The resultant
velocity (v) is dependent on three computed vectors: the
direction (x) towards the center of all nearby entities (p)
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The coefficients (a through d) are set dynamically
for each entity, controlling the impact of each element in
determining the behavior of the entity. A neighborhood
function determines which entities are “nearby” based
on a dynamically updated radius. During each iteration
if the number of neighbor entities within the given
neighborhood radius is greater than a specified threshold
(typically seven) then the neighborhood radius is
diminished by 10%. If fewer than the threshold are
found the radius is increased by 10% (see pseudo code
below). This allows each entity to dynamically acquire
its nearest neighbors regardless of the entity density, and
discourages all of the entities from clumping into a
single cluster. The threshold is stored individually per
entity and can be set dynamically, effectively controlling
the size of groups that are seen in the simulation.

z

if neighbor_count < threshold then
neighborhood_radius = neighborhood_radius * 1.1

else if neighbor_count > threshold then
neighborhood_radius = neighborhood_radius * 0.9

Each  computation  iteration  involves  the
determination of nearest neighbors for all entities,
updating their velocities based on the individual
coefficients, and the application of the velocity to each
entity's position proportional to time

pr:ptfl_'_VAt' (5)

While all computation nodes require the full data set,
broadcast through the scatter step, each is assigned a
unique subset of the entities to maintain and update.
Each entity maintains its own coefficients and they do



not directly affect other entities, thus they are retained
solely on the single compute node the entity is assigned
to. Splitting the computation in this way enables a fairly
efficient, though not necessarily optimal, parallelization
of the simulation. During the gather step each node
sends the updated data (positions and velocities) for its
assigned entities back to the root node, where they are
joined into the full set.

3.2.1. PERFORMANCE

The following figure (fig. 4) depicts the scalability of
the algorithm across three hardware configurations. In
order to compare across a range of different sized
systems we employed the following setups: a MacBook
Pro laptop (dual-core Intel 2.2 ghz CPU), a Mac Pro
desktop (dual 2.66 ghz six core Intel CPUs), and the
supercomputer with varying numbers of CPUs assigned
to the simulation.
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Figure 4. Seconds-per-frame for different

hardware configurations.

The target performance speed for any system was fifty
updates per second (0.02 seconds-per-frame), to
maintain a smooth rendering rate on the display
machine. Rates of twenty to twenty-five updates per
second (0.05 to 0.04) were considered tolerable, while
slower was deemed insufficient. As can be seen in figure
4, the laptop handles ~1000 entities at target speed, the
Mac Pro can simulate ~4000, and the super computer
runs 10000 and more with a reasonable number of
CPUs. While the consumer hardware is capable of
running the simulation the HPC machine brings orders
of magnitude performance improvements, enabling
significantly more complex simulations.

3.3. ACOUSTIC INPUT

The input functionality is implemented as a “zone of
control” in the 3D space of the simulation, whereby only
entities within the zone are given new coefficients. The
center of the zone is initially the origin, but can be
moved (using a variety of input devices: keyboard,
mouse, or Wii controller). The radius of the zone is set
dynamically with each control input.

A control message contains a list of the new
simulation coefficients: attraction, alignment, crowding,
neighborhood threshold, and the radius of the control
zone. These are derived through the linear mapping of
acoustic properties in real-time. Using Max 5 the

digitized violin sound is analyzed for pitch, amplitude,
spectral centroid (“center of mass” of the spectrum, or
perceptual “brightness” [17]), and spectral flatness (how
tone-like or noise-like the sound is). A number of
specific mapping sets were created in order to explore
ease of control, all of which consist of simple
deterministic connections. The primary mapping used
was: pitch to attraction, centroid to alignment, flatness to
crowding, pitch and centroid to neighborhood threshold,
and amplitude to control zone radius.

The parameters were updated at ~20hz, put into OSC
messages and sent to the graphical client. The OSC
messages were converted to UDP datagrams and sent
directly to the root node of the Abe simulation. The root
node then sent the message to all the compute nodes,
which checked the zone of control against their assigned
entities and changed their coefficients as applicable.

3.4. DISPLAY

The state of the simulation is evident in the changes in
position and velocity of the entities, and so a 3D
rendering of this data was used as the visual display. The
data set was sent out from the root node at every
simulation update (~50 times per second) to the
graphical client, which then unpacked the data and put it
into a format to be rendered. A simple 3D environment
was used for the rendering, with a black background,
strong downward lighting, and a dozen large spheres
placed at significant distance from the origin to give a
sense of the virtual space. All of the entities were
rendered as initially as white cubes, later replaced with
abstract twisted spiral shapes to better depict the
direction of facing and movement.

With every update the positions of the entities were
updated and the orientations were set to face parallel to
the entity's velocity vector (using the shortest rotation
from the previous orientation). This provided a quick and
efficient visualization of the incoming data from the
simulation, and verification of the interactivity.

The data was also sonified, building a sonic
environment based on the distributions of the entities in
the space. The flocking algorithm employed in the
simulation produces strikingly varied clusters and
groupings of the entities and thus a sonification
algorithm was developed to expose and portray the
movements and evolutions within the data.

Employing a modified Adaptive Resonance Theory
algorithm [1], the complete data set was traversed every
frame, finding groups and creating categories in the
simulated space to depict the clustering of the entities.
Each entity in question (p) was compared to the set of
identified clusters (¢, each represented as a float-triplet
indicating the center position of the cluster, and where p,
is the position of the control/render view point).
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If the entity was found to be within a threshold
distance of a cluster (formula 6) it was attributed to that
cluster and the center of the cluster (¢) was moved
slightly closer to the new entity (p, formula 7. k& controls

1 (6)



the rate of change and incorporation of the new entities,
typically & = 50).
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If no matches were found in this way a new cluster
was created using this entity as the center. The list of
identified clusters was preserved between iterations and
thus travels with the groups as they move. If no entities
are matched to a cluster center after a given update cycle
the cluster was deleted from the list.

The list of clusters was then translated into a set of
control parameters for voices in a polyphonic digital
synthesis engine. The four control parameters were
amplitude (mapped to the inverse distance from the
camera, p,), rhythmic speed (controlling an amplitude
LFO, mapped to the density of the cluster), a timbrel
parameter (controlling the attack of the envelopes,
mapped to the y axis of the simulated space), and
panning (mapped to the x-z location in the simulated
space relative to the camera, p,). The pitch of each voice
was taken from a pitch history of the acoustic control
input, and was retained as long as the particular cluster
remained active. When a cluster dispersed and reformed
a new pitch was chosen from the history.

In this way coefficient changes were made audible as
they quickly transformed the local space, forming
clusters with different characteristics, moving, colliding,
dispersing, and reforming around the observing
controller.

4. DISCUSSION

The final implementation was demonstrated multiple
times in the National Center for Supercomputing
Applications to display the potential of interactive HPC
for musical and artistic applications. While the project
required extensive research and development resources it
was ultimately operable with only a minimum of setup
time (usually thirty minutes). The control of the system,
from acoustic sound to simulation to display, was
demonstrably apparent. While the actual interaction
required an experienced and trained violinist, others
were able to verify the functionality by requesting test
cases or musical fragments (including the comical entry
of popular songs, to witness the simulation effects).

The performance of the simulation, after the
debugging and streamlining of the algorithm, was
impressive, capable of simulating thousands of entities
on a handful of nodes, and up to a million entities on
many nodes (see figure 4). However, the system quickly
ran out of network bandwidth between the rendering
client and Abe as well as rendering power on the client.
At 500,000 objects data rates exceeded 5 Gbps, and
completely swamped the client, which spent all its time
in the network thread and halted graphics updates. In
practice the simulation was typically constrained to
50,000 objects or fewer in order to render the graphics
quickly (at 50 frames-per-second) on a 1080i projection
system.

An unanticipated, and frequently occurring challenge,
was discovered with the use of the interactive scheduler

running on Abe. The process of starting an interactive
job involves queueing a request for a specific number of
nodes and amount of time. The request would remain in
the queue until the requested processors became
available, at which point notification would be received
and setup and operation could proceed. Our experience
saw wait times anywhere from a minute, for a few nodes
and 10 minutes of time, to several hours for larger
requests (64 nodes and an hour of time). We were never
able to obtain more than 64 nodes, although this was not
a hinderance due to the limitations of the renderer. The
work around was to progressively queue larger and
longer jobs at the beginning of a session, switching
between each set of nodes as they became available.

Another side-effect of interactive scheduling is the
rotation of server IP addresses. When a job is accepted
the requester is given the first nodes that come available,
and each node in Abe has a different IP address. Thus
configuration scripts had to be edited for each launch, as
the returned IP addresses invariably changed every time.

A significant advance for this project and others like it
would be to compute the visualization and sonification
on the HPC cluster, allowing the consumer computer to
act as control relay and display only. This would also
enable access from points with smaller network
connections (the current implementation requires 1gbps
or better). In order to accomplish such remote
visualization/sonification many software layers remain
to be developed, including distributed, parallel 3D
graphical rendering, and HD/CD quality streaming of
video and audio out from the supercomputer.
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