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ABSTRACT

The origins of computer music are closely tied to the

development of the first high-performance computers

associated with major academic and research

institutions. These institutions have continued to build

extremely powerful computers, now containing

thousands of CPUs with incredible processing power.

Their precursors were typically designed to operate in

non-real time, “batch” mode, and that tradition has

remained a dominant paradigm for high performance

computing. We describe experimental research in

developing the interactive use of a modern high-

performance machine, the Abe supercomputer at the

National Center for Supercomputing Applications on the

University of Illinois at Urbana-Champaign campus, for

real-time musical and artistic purposes. We describe the

requirements, development, problems, and observations

from this project.

1. INTRODUCTION

Computer musicians have gradually moved away from

relationships with large-scale computing centers as

personal computing power has increased and become

more available. Personal computing has brought benefits

such as interactivity (the ability to receive a response

from the computer more rapidly than the human

discriminative capability can discern, sometimes called

“real time”), portability (enabling musicians and

performers to bring their machines out of studios and

onto stages and other venues), and freedom to develop

and test software on flexible, individual schedules

(allowing one to utilize the full capability of the machine

at any time of day or night and for extended periods of

time). However the rate of development in individual

processor speeds has begun to slow, causing many

manufacturers to move to multi-processor architecture.

The world of High Performance Computing (HPC),

continues to develop rapidly by incorporating CPUs in

greater and greater number with incredible interconnect

speeds. As of November 2010 there are approximately

ten computers worldwide capable of at least theoretic

peak performance in the petaFLOPS range (1015

sustained floating point operations per second)[21] with

more poised to come online. Predictions anticipate

exaFLOPS (1018) machines by 2019 [20]. These

machines, and their recent predecessors, consist of

thousands of CPUs, connected with high-bandwidth

buses and fiber-optic LANs. Typically, data processing

jobs are run on these machines in a queued batch mode,

wherein a user can submit a huge amount of data and

algorithms, and receive notification when their job is

complete (usually hours or days later).

Interactive HPC, a rapidly developing area of

computing [15], allows for more flexible usage and

holds out promises of real-time use of supercomputers

through dynamic scheduling. This allows users to obtain

the use of portions (or all) of the computer for

interactive, though still not typically real-time, program

execution. The interaction rate is still fairly long, taking

the form of loading presets or setting initial parameters

and then simply observing the process. We desired to

push this capability further, enabling near instant, human

control of a complex simulation using a multi-

dimensional controller, i.e. an acoustic violin. We

developed and tested a project to explore this potential,

creating a real-time computer music instrument

employing high definition video and audio displays.

Through the National Center for Supercomputing

Applications (NCSA) on the University of Illinois at

Urbana-Champaign (UIUC) campus we obtained access

to Abe, a supercomputer containing 9600 Intel 64 CPUs

capable of reaching 89.47 teraFLOPS (representing the

peak of supercomputing performance when it came

online, until being surpassed in the last decade), which

formed the computational core of this project.

2. MOTIVATION

The model of the “instrument” is commonly used in

computer music development to frame interactive

systems and their function in performance [4, 22]. This

notion provides a well-prescribed formula for interaction

design and evaluation, including action-effect

expectations (usually, but not always, one action to one

sonic event), immediacy of response, and ease of use

while maintaining potential for virtuosity. Cases of such

computer music instruments employing personal

computers abound, and while the computing power

available in commercially available technology today is

impressive, it remains limited. With the computing

power of current generation HPC systems it becomes

Figure 1. HPC simulation and display running at

NCSA, January 2011 (Benjamin Smith, violin).



possible to consider experiments well beyond the

purview of personal computing, such as a real-time

molecular simulation and sonification of an acoustic

instrument, or video and audio displays of huge,

continuously updating embedded, sensor arrays. 

The realization of a true supercomputer instrument

requires continuing development of several components:

high resolution gestural controllers and input devices;

strong, controllable models and simulations; and high

definition audio and video displays capable of rendering

massive amounts of data in real-time. The Allosphere [9]

is one such display environment, capable of rendering

over a 360° field of view, with full surround sound.

However, the current applications running on the

Allosphere, as is typical of many visualization

applications, are apparently driven by a single desktop

computer, convolving the interaction, simulation, and,

sometimes, display into one process. Segmenting these

components and giving each an independent calculation

rate allows each to take full advantage of the processing

power available [7]. This can be especially important

when a given segment (such as a simulation) can benefit

from a finer grain time-step delta, but another part (such

as the display rendering) needs to operate at a

significantly slower, or variable rate.

Historically, due to the batch mode orientation of most

HPC systems, supercomputer music applications took

the form of large-scale algorithmic composition and

synthesis programs [8, 10, 11]. While the simulations

most commonly run in HPC environments are of a

scientific nature, seeking to better model and understand

some real observed phenomena [24], the format also

lends itself well to large scale interactive creative

simulations, effectively becoming a computation

intensive algorithmic composition systems. We take this

view of the simulation running on Abe: it becomes an

advanced compositional algorithm with many interacting

parts, all globally steered by a live musician.

In the field of supercomputing, Interactive HPC refers

to real-time operation, but does not usually entail a

closed input-to-computation-to-display loop. Even

complex visualization systems [19] typically depend

solely on initial inputs, limiting the interaction with the

simulation to start, pause, and stop commands. They are

thus aimed at speeding up the development cycle of the

programmer, or the exploration cycle of the scientist,

rather than enabling a performance oriented interaction.

Creating a fully interactive computing environment, in

our view, entails real-time control at a detailed level

during the running of the simulation, providing the

ability to steer the course of the simulation during

execution [24], which requires at least a simulation with

all computations relevant to a given time-step occurring

at or before the required output of that time-step. Our

solution is to involve an expert practitioner of an

acoustic musical instrument, the violin, providing them

with multi-dimensional control of the simulation through

the analysis of their sound. In effect, the violin becomes

a highly dimensioned interface to a larger digital

instrument involving the HPC simulation, and graphical

and aural displays.

3. DESIGN

The requirements of the system we sought to create were

four fold:

1. to verify the interactive capabilities of Abe and the

ability to stream large amounts of data to and from an

external source, for control and representation;

2. to demonstrate interactive control of a complex

simulation;

3. to use acoustic sound as the control source; and

4. to visually and sonically render the simulation in

HD quality image and sound.

The architecture as implemented consisted of the

following components: input processing of the violin,

converted into control data in Max 5 [12]; transmission

through OSC [23] to a standalone client application

which relays the data to Abe over a fiber-optic UDP

connection; Abe runs a flocking simulation [18] with

thousands of entities, sending the simulation data back to

the client; the client renders the data visually using the

Object-oriented Graphics Rendering Engine (OGRE

[14]), simultaneously analyzing the data and sending

sonification data back through OSC to Max where it is

sonified.

The hardware used for the experiments included: one

of two acoustic violins with professional quality internal

piezo pickups, a MOTU 828 digital audio interface, a

Mac Pro (containing eight 2.8 ghz cores) with a 10-

gigabit Myrinet Network Interface Card, three 1080i

projectors, a thirty foot, three wall projection screen, a

studio two-channel audio system, and Abe. The Mac Pro

was connected to Abe over a 10-gigabit network, with

tests confirming 6.6-gigabits of bandwidth available for

use.

We chose GPL libraries to build the system and

original code was written in C++, C with MPI, Java, and

Max. OSC provided a rapid and robust method of

sending small amounts of data between Max 5 and the

graphical client running on the same Mac Pro. We chose

the Enet library [6] to transmit data to and from Abe as a

low overhead UDP package with controls for data

reliability and bandwidth usage. OGRE provides an

efficient way of drafting 3D graphical spaces, allowing

the compilation of a Mac OS X standalone application to

form the client backbone.

3.1. MPI

Development on most supercomputers today is done in

FORTRAN, C, or C++ and uses a grid computing API,

such as MPI (Message Passing Interface)[13] or charm+

+ [2]. We chose MPI due to the large body of knowledge

and support around its use, as well as its portability to

smaller systems (an OpenMPI implementation exists for

any multi-core PC and comes bundled with Mac OS X).

This allowed the rapid testing of the code on multi-core

desktops before delivering it to Abe.

Several significant problems in parallel computing are

alleviated by the MPI libraries. When running a large,

iterative computational process it is often necessary to

copy the relevant data (such as certain control

parameters updated in real time) to all the CPUs



involved, recover and merge their results (at least in

order to transmit a representation of the internal state

back to the user for viewing or audition), and repeat.

These operations are referred to as “scattering” and

“gathering,” respectively. Issues surrounding

synchronization of the nodes crop up quickly, such as

when one CPU takes much longer to finish than the

others, and these are also handled transparently by MPI.

Scattering and gathering can be done in a number of

fashions, all appropriate for different tasks. Scattering

originates with one process (or “node”, with this one

typically termed the “root” node), sending data to all

nodes (including itself). This can involve the copying of

the same data to all nodes, or splitting the data, giving an

equal part to each node (as shown in figure 2, below).

Gathering does the reverse, taking data from every node

(including the root) and sending it to one node where it

is ordered into a buffer by the sequence ID of the nodes.

The root node (A0 in figure 2) sends and receives

data from itself as an equal peer, allowing it to take part

in the same computation as all the other nodes. In our

application we chose to privilege the root node, using it

to communicate with controlling clients while the other

nodes handle computing the next simulation update (see

figure 3).

As per our chosen simulation, see below, we scattered

a copy of the full data set to every node at every

iteration, but only gathered the portion of the results that

were computed by each node. This reduced the amount

of data copying required of the root node between

iterations, which in turn minimizes the idle time of the

compute nodes. More complex partitioning of the

computation might have achieved better results, but this

will be tackled in future implementations.

3.2. SIMULATION

For the data simulation we chose a flocking algorithm,

modeling movement behavior observed in birds and

insects [16, 18]. This model exposes a handful of

coefficients that enable the production of a wide range

of distinctive behaviors. The attraction for our

application is both the simplicity of control as well as

the extensibility, capable of modeling anywhere from a

few to millions of entities. Each entity is stored as six

floats and one integer (all 32-bit numbers, for a total of

224 bits or 28 bytes per entity): three for position in 3D

space, three for velocity, and the index number of the

object. The basic behavior function comprises three

primary coefficients: attraction (a), alignment (b), and

crowding (c)

v=a xb yc zdw . (1)

We add an additional component that attracts entities

towards the origin (w) proportional to the entity's

distance away from the center (d), ensuring that all the

entities remain in the vicinity of the center of space,

rather than drifting away to infinity. The resultant

velocity (v) is dependent on three computed vectors: the

direction (x) towards  the center of all nearby entities (p)

x= p−
∑
n

p
i

n

, (2)

the direction away (y) from all nearby entities

y=
∑
n

 p− p
i


n

, (3)

and the average velocity (z) of all nearby entities

z=
∑
n

v
i

n

. (4)

The coefficients (a through d) are set dynamically

for each entity, controlling the impact of each element in

determining the behavior of the entity. A neighborhood

function determines which entities are “nearby” based

on a dynamically updated radius. During each iteration

if the number of neighbor entities within the given

neighborhood radius is greater than a specified threshold

(typically seven) then the neighborhood radius is

diminished by 10%. If fewer than the threshold are

found the radius is increased by 10% (see pseudo code

below). This allows each entity to dynamically acquire

its nearest neighbors regardless of the entity density, and

discourages all of the entities from clumping into a

single cluster. The threshold is stored individually per

entity and can be set dynamically, effectively controlling

the size of groups that are seen in the simulation.

if neighbor_count < threshold then 

neighborhood_radius = neighborhood_radius * 1.1

else if neighbor_count > threshold then

neighborhood_radius = neighborhood_radius * 0.9

Each computation iteration involves the

determination of nearest neighbors for all entities,

updating their velocities based on the individual

coefficients, and the application of the velocity to each

entity's position proportional to time

p
t
= p

t−1v ∆ t . (5)

While all computation nodes require the full data set,

broadcast through the scatter step, each is assigned a

unique subset of the entities to maintain and update.

Each entity maintains its own coefficients and they do

Figure 2. Internode Communication

Figure 3. Operation Flow on Abe
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not directly affect other entities, thus they are retained

solely on the single compute node the entity is assigned

to. Splitting the computation in this way enables a fairly

efficient, though not necessarily optimal, parallelization

of the simulation. During the gather step each node

sends the updated data (positions and velocities) for its

assigned entities back to the root node, where they are

joined into the full set.

3.2.1. PERFORMANCE

The following figure (fig. 4) depicts the scalability of

the algorithm across three hardware configurations. In

order to compare across a range of different sized

systems we employed the following setups: a MacBook

Pro laptop (dual-core Intel 2.2 ghz CPU), a Mac Pro

desktop (dual 2.66 ghz six core Intel CPUs), and the

supercomputer with varying numbers of CPUs assigned

to the simulation.

The target performance speed for any system was fifty

updates per second (0.02 seconds-per-frame), to

maintain a smooth rendering rate on the display

machine. Rates of twenty to twenty-five updates per

second (0.05 to 0.04) were considered tolerable, while

slower was deemed insufficient. As can be seen in figure

4, the laptop handles ~1000 entities at target speed, the

Mac Pro can simulate ~4000, and the super computer

runs 10000 and more with a reasonable number of

CPUs. While the consumer hardware is capable of

running the simulation the HPC machine brings orders

of magnitude performance improvements, enabling

significantly more complex simulations.

3.3. ACOUSTIC INPUT

The input functionality is implemented as a “zone of

control” in the 3D space of the simulation, whereby only

entities within the zone are given new coefficients. The

center of the zone is initially the origin, but can be

moved (using a variety of input devices: keyboard,

mouse, or Wii controller). The radius of the zone is set

dynamically with each control input.

A control message contains a list of the new

simulation coefficients: attraction, alignment, crowding,

neighborhood threshold, and the radius of the control

zone. These are derived through the linear mapping of

acoustic properties in real-time. Using Max 5 the

digitized violin sound is analyzed for pitch, amplitude,

spectral centroid (“center of mass” of the spectrum, or

perceptual “brightness” [17]), and spectral flatness (how

tone-like or noise-like the sound is). A number of

specific mapping sets were created in order to explore

ease of control, all of which consist of simple

deterministic connections. The primary mapping used

was: pitch to attraction, centroid to alignment, flatness to

crowding, pitch and centroid to neighborhood threshold,

and amplitude to control zone radius.

The parameters were updated at ~20hz, put into OSC

messages and sent to the graphical client. The OSC

messages were converted to UDP datagrams and sent

directly to the root node of the Abe simulation. The root

node then sent the message to all the compute nodes,

which checked the zone of control against their assigned

entities and changed their coefficients as applicable.

3.4. DISPLAY

The state of the simulation is evident in the changes in

position and velocity of the entities, and so a 3D

rendering of this data was used as the visual display. The

data set was sent out from the root node at every

simulation update (~50 times per second) to the

graphical client, which then unpacked the data and put it

into a format to be rendered. A simple 3D environment

was used for the rendering, with a black background,

strong downward lighting, and a dozen large spheres

placed at significant distance from the origin to give a

sense of the virtual space. All of the entities were

rendered as initially as white cubes, later replaced with

abstract twisted spiral shapes to better depict the

direction of facing and movement.

With every update the positions of the entities were

updated and the orientations were set to face parallel to

the entity's velocity vector (using the shortest rotation

from the previous orientation). This provided a quick and

efficient visualization of the incoming data from the

simulation, and verification of the interactivity.

The data was also sonified, building a sonic

environment based on the distributions of the entities in

the space. The flocking algorithm employed in the

simulation produces strikingly varied clusters and

groupings of the entities and thus a sonification

algorithm was developed to expose and portray the

movements and evolutions within the data.

Employing a modified Adaptive Resonance Theory

algorithm [1], the complete data set was traversed every

frame, finding groups and creating categories in the

simulated space to depict the clustering of the entities.

Each entity in question (p) was compared to the set of

identified clusters (c, each represented as a float-triplet

indicating the center position of the cluster, and where px

is the position of the control/render view point).

∥c
i
− p∥

∥p
x
− p∥

1 (6)

If the entity was found to be within a threshold

distance of a cluster (formula 6) it was attributed to that

cluster and the center of the cluster (c) was moved

slightly closer to the new entity (p, formula 7. k controls

Figure 4. Seconds-per-frame for different

hardware configurations.
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the rate of change and incorporation of the new entities,

typically k = 50).

c
t
=
c

t−1
k p

k1
(7)

If no matches were found in this way a new cluster

was created using this entity as the center. The list of

identified clusters was preserved between iterations and

thus travels with the groups as they move. If no entities

are matched to a cluster center after a given update cycle

the cluster was deleted from the list.

The list of clusters was then translated into a set of

control parameters for voices in a polyphonic digital

synthesis engine. The four control parameters were

amplitude (mapped to the inverse distance from the

camera, px), rhythmic speed (controlling an amplitude

LFO, mapped to the density of the cluster), a timbrel

parameter (controlling the attack of the envelopes,

mapped to the y axis of the simulated space), and

panning (mapped to the x-z location in the simulated

space relative to the camera, px). The pitch of each voice

was taken from a pitch history of the acoustic control

input, and was retained as long as the particular cluster

remained active. When a cluster dispersed and reformed

a new pitch was chosen from the history.

In this way coefficient changes were made audible as

they quickly transformed the local space, forming

clusters with different characteristics, moving, colliding,

dispersing, and reforming around the observing

controller.

4. DISCUSSION

The final implementation was demonstrated multiple

times in the National Center for Supercomputing

Applications to display the potential of interactive HPC

for musical and artistic applications. While the project

required extensive research and development resources it

was ultimately operable with only a minimum of setup

time (usually thirty minutes). The control of the system,

from acoustic sound to simulation to display, was

demonstrably apparent. While the actual interaction

required an experienced and trained violinist, others

were able to verify the functionality by requesting test

cases or musical fragments (including the comical entry

of popular songs, to witness the simulation effects).

The performance of the simulation, after the

debugging and streamlining of the algorithm, was

impressive, capable of simulating thousands of entities

on a handful of nodes, and up to a million entities on

many nodes (see figure 4). However, the system quickly

ran out of network bandwidth between the rendering

client and Abe as well as rendering power on the client.

At 500,000 objects data rates exceeded 5 Gbps, and

completely swamped the client, which spent all its time

in the network thread and halted graphics updates. In

practice the simulation was typically constrained to

50,000 objects or fewer in order to render the graphics

quickly (at 50 frames-per-second) on a 1080i projection

system.

An unanticipated, and frequently occurring challenge,

was discovered with the use of the interactive scheduler

running on Abe. The process of starting an interactive

job involves queueing a request for a specific number of

nodes and amount of time. The request would remain in

the queue until the requested processors became

available, at which point notification would be received

and setup and operation could proceed. Our experience

saw wait times anywhere from a minute, for a few nodes

and 10 minutes of time, to several hours for larger

requests (64 nodes and an hour of time). We were never

able to obtain more than 64 nodes, although this was not

a hinderance due to the limitations of the renderer. The

work around was to progressively queue larger and

longer jobs at the beginning of a session, switching

between each set of nodes as they became available.

Another side-effect of interactive scheduling is the

rotation of server IP addresses. When a job is accepted

the requester is given the first nodes that come available,

and each node in Abe has a different IP address. Thus

configuration scripts had to be edited for each launch, as

the returned IP addresses invariably changed every time.

A significant advance for this project and others like it

would be to compute the visualization and sonification

on the HPC cluster, allowing the consumer computer to

act as control relay and display only. This would also

enable access from points with smaller network

connections (the current implementation requires 1gbps

or better). In order to accomplish such remote

visualization/sonification many software layers remain

to be developed, including distributed, parallel 3D

graphical rendering, and HD/CD quality streaming of

video and audio out from the supercomputer.
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