MAX

Reference

Copyright and Trademark Notices

This manual is copyright © 2000-2003 Cycling'74.
M ax is copyright © 1990-2003 Cycling '74/IRCAM , I'Institut de Rechercheet Coördination Acoustique/Musique.

Credits

Original Max D ocumentation: Chris Dobrian
M ax 4.3 ReferenceM anual: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno, Richard Dudas

M ax 4.3 Tutorials and Topics M anual: David Zicarelli, Gregory Taylor,Jeremy Bernstein, Adam Schabtach, Richard Dudas

M ax 4.3 M anual page example patches: R. LukeDuBois, D arwin Grosse, Ben Nevile, Joshua Kit Clayton, David Zicarelli

Cover Design: Lilli Wessling H art
Graphic Design: Gregory Taylor

Introduction

This volume, Max Reference, contains information about each individual Max object. It includes:

Max Objects

Contains precisetechnical information on the workings of each of the built-in and external objects supplied with M ax, organized in alphabetical order.

Max Object Thesaurus

Consists of a reverse index of M ax objects, alphabetized by keyword rather than by object name. UsethisThesaurus when you want to know what object(s) areappropriate for thetask you aretrying to accomplish, then look up those objects by namein the 0 bjects section.

Manual Conventions

Thecentral building block of M ax is theobject. Names of objects are always displayed in bold type, like this.

M essages (the arguments that are passed to and from objects) aredisplayed in plain type, likethis.
The name of a M ax object displayed in bluetypelike this is hyperlinked to the reference pagefor that object in this document. Clicking on the bluetext will jump to the reference page for that object.

In the"SeeAlso" sections, anything in regular type is a referenceto a section of either this manual or the Max Tutorials and Topics manual.

Reading the manual online

Thetable of contents of the M ax ReferenceM anual is bookmarked, so you can view thebookmarks and jump to any topic listed by clicking on its names. To view thebookmarks, choose Bookmarks from the Windows menu. Click on thetriangle next to each section to expand it.

Instead of using the Index at theend of themanual, it might beeasier to useAcrobat Reader's Find command. Choose Find from the Tools menu, then type in a word you're looking for. Find will highlight the first instance of the word, and Find Again takes you to subsequent instances. We'd liketo take this opportunity to discourage you from printing out the manual unless you find it absolutely necessary.

The !- object functions just likethe- object, but the inlets' functions are reversed.

Input

int In left inlet: Thenumber is stored, and will be subtracted from a number received in the right inlet.

In right inlet: Thenumber in theleft inlet is subtracted from thenumber, and the result is sent out the outlet.
float Converted to int, unless !- has a float argument.
bang In left inlet: Performs the subtraction with the numbers currently stored. If there is no argument, !- initially holds0.

Arguments

int or float Optional. Setstheinitial value, to besubtracted from a number received in the left inlet. Float argument causes the numbers to be subtracted as floats.

Output

int Thedifferencebetween the two numbers received in the inlets.
float Only if thereis an argument with a decimal point.

Examples

- with the inputs swapped

See Also

expr	Evaluate a mathematical expression
$!/$	Division object (inlets reversed)
$!=$	Compare two numbers, output 1 if they are not equal
+	Add two numbers, output the result
-	Subtract two numbers, output the result
$*$	Multiply two numbers, output the result
$/$	Dividetwo numbers, output the result
$\%$	Dividetwo numbers, output the remainder
Tutorial 8	Doing math in Max

The!/ object functionsjust like the/ object, but the inlets' functions are reversed.

Input

int In left inlet:Thenumber isstored asthedivisor (thenumber to bedivided into the number in theright inlet).

In right inlet: Thenumber is divided by thenumber in theright inlet, and the result is sent out the outlet.
float Converted to int, unless !/ has a float argument.
bang In left inlet: Performs the division with the numbers currently stored.

Arguments

int or float Optional. Sets an initial valuefor the divisor. If thereis no argument, the divisor is set to 1 initially. Float argument causes thenumbers to bedivided as floats. (Division by 0 is not allowed. Int division by 0 will havethe sameresult as dividing by 1. Float division by 0 will always cause an output of -2^{31}.)

Output

int Thetwo numbers in the inlets are divided, and the result is sent out the outlet.
float Only if thereis an argument with a decimal point.

Examples

/ with the inputs swapped

See Also

expr	Evaluatea mathematical expression
$!-$	Subtraction object (inlets reversed)
$!=$	Compare two numbers, output 1 if they are not equal
+	Add two numbers, output the result
-	Subtract two numbers, output the result
$*$	Multiply two numbers, output the result
/	Dividetwo numbers, output the result
$\%$	Dividetwo numbers, output the remainder
Tutorial 8	Doing math in Max

Input

int In left inlet:Thenumber iscompared with thenumber in theright inlet. If thetwo numbers are not equal, $!=$ outputs 1 . If they are equal $!=$ outputs 0 .

In right inlet:Thenumber is stored, to be compared with a number received in theleft inlet.
float Converted to int before comparison, unless!= has a float argument.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, != initially holds 0 for comparison.
list In left inlet: Comparesfirst and second number, outputs1 if they are not equal, 0 if they are equal.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in the left inlet. Float argument forces a float comparison.

Output

int 1 if the numbers in the inlets are not equal, 0 if they are equal.

Examples

Test if two numbersare not equal

See Also

select	Select certain inputs, pass the rest on
split	Look for a range of numbers
$<$	Isless than, comparison of two numbers
$<=$	Is less than or equal to, comparison of two numbers
$==$	Compare two numbers, output 1 if they are equal
$>$	Is greater than, comparison of two numbers
$>=$	Isgreater than or equal to, comparison of two numbers
Tutorial 15	Making decisions with comparisons

Input

int In left inlet: Thenumber is added to the number in theright inlet, and the result is sent out the outlet.

In right inlet: Thenumber is stored for addition to a number received in the left inlet.
float Converted to int, unless + has a float argument.
bang In left inlet: Performs the addition with the numbers currently stored. If there is no argument, + initially holds0.
list In left inlet: Thefirst number is added to thesecond number, and the result is sent out the outlet.
set In left inlet:Theword set, followed by a number, adds that number to the number in the right inlet but nothing is sent out. A subsequent bang sends out the result.

The set message functionssimilarly for all the arithmetic operators, logical operators, and bitwise operators: $+,-, *, l, \%,<,<=,==,!-,!/,!=,>=,>, \& \&, \|, \mathbb{\&}, \mid, \ll$, and \gg. Thenumber is used as the left operand, and the expression is evaluated, but the result is not sent out.

Arguments

int or float Optional. Sets the initial value, to be added to a number received in the left inlet. Float argument causes the numbers to be added as floats.

Output

int The sum of the two numbers received in theinlets.
float Only if thereis an argument with a decimal point.

Examples

Normally adds ints

Floats aretruncated beforeaddition...

unless thereis a float argument

See Also

expr	Evaluatea mathematical expression
$!-$	Subtraction object (inlets reversed)
$!$	Division object (inlets reversed)
-	Subtract two numbers, output the result
$*$	Multiply two numbers, output the result
$/$	Dividetwo numbers, output the result
$\%$	Dividetwo numbers, output the remainder
Tutorial 8	Doing math in Max

Input

int In left inlet:Thenumber in the right inlet is subtracted from thenumber, and the result is sent out the outlet.

In right inlet:Thenumber is stored, to be subtracted from a number received in theleft inlet.
float Converted to int, unless - has a float argument.
bang In left inlet: Performs the subtraction with the numbers currently stored. If there is no argument, - initially holds 0 .
list In left inlet: The second number is subtracted from thefirst number, and the result is sent out the outlet.

Arguments

int or float Optional. Setstheinitial value, to be subtracted from a number received in the left inlet. Float argument causes the numbers to be subtracted as floats.

Output

int Thedifference between the two numbers received in the inlets.
float Only if there is an argument with a decimal point.

Examples

Subtracted asints Floats aretruncated beforesubtraction... ... unless there is a float argument

See Also

expr	Evaluatea mathematical expression
$!-$	Subtraction object (inlets reversed)
$!$	Division object (inlets reversed)
+	Add two numbers, output the result
-	Subtract two numbers, output the result
$*$	Multiply two numbers, output the result
$/$	Dividetwo numbers, output the result
$\%$	Dividetwo numbers, output the remainder
Tutorial 8	Doing math in Max

Input

int In left inlet:The number is multiplied by the number in the right inlet, and the result is sent out the outlet.

In right inlet:Thenumber is stored for multiplication with a number received in theleft inlet.
float Converted to int before multiplication, unless* has afloat argument.
bang In left inlet: Performs the multiplication with the numbers currently stored. If there is no argument,* initially holds 0 as a multiplier.
list In left inlet:Thefirstnumber is multiplied by thesecond number, and theresult is sent out the outlet.

Arguments

int or float Optional. Sets the initial value, to be multiplied by a number received in the left inlet. Float argument causes the numbers to be multiplied as floats.

Output

int The product of the two numbers received in theinlets.
float Only if there is an argument with a decimal point.

Examples

Multiplied asints

Floatsaretruncated before multiplication...
 .. unless thereis a float argument

See Also

expr	Evaluatea mathematical expression
$!-$	Subtraction object (inlets reversed)
$!/$	Division object (inlets reversed)
$!=$	Comparetwo numbers, output 1 if they are not equal
+	Add two numbers, output the result
-	Subtract two numbers, output the result
$/$	Dividetwo numbers, output the result
$\%$	Dividetwo numbers, output the remainder
\ll	Shift all bitsto theleft
Tutorial 8	Doing math in Max

Input

int In left inlet:Thenumber is divided by the number in theright inlet, and the result is sent out the outlet.

In right inlet: Thenumber is stored as the divisor (thenumber to bedivided into thenumber in the left inlet).
float Converted to int, unless/ has a float argument.
bang In left inlet: Performs the division with the numbers currently stored.
list In left inlet: Thefirst number isdivided by the second number, and the result is sent out theoutlet.

Arguments

int or float Optional. Sets an initial valuefor the divisor. If thereis no argument, thedivisor is set to 1 initially. Float argument causes thenumbers to bedivided as floats. (Division by 0 is not allowed. Int division by 0 will havethe sameresult as dividing by 1. Float division by 0 will always cause an output of -2^{31}.)

Output

int Thetwo numbers in the inlets are divided, and the result is sent out the outlet.
float Only if there is an argument with a decimal point.

Examples

Remainder is discarded Floats aretruncated beforedivision... ... unless there isa float argument

See Also

expr	Evaluatea mathematical expression
$!-$	Subtraction object (inlets reversed)
$!/$	Division object (inlets reversed)
+	Add two numbers, output the result
	Subtract two numbers, output the result
$*$	Multiply two numbers, output the result
$\%$	Dividetwo numbers, output the remainder
Tutorial 8	Doing math in M ax

Input

int In left inlet: Thenumber is divided by thenumber in theright inlet, and the remainder is sent out the outlet.

In right inlet: Thenumber is stored as thedivisor (thenumber to bedivided into the number in the left inlet) for calculating the remainder.
float Converted to int.
bang In left inlet: Performs theoperation with the numbers currently stored.
list In left inlet:Thefirst number isdivided by the second number, and the remainder is sent out the outlet.

Arguments

int Optional. Sets an initial valuefor the divisor. If thereis no argument, thedivisor is set to 1 initially.

Output

int When the two numbers in the inlets aredivided, theremainder is sent out theoutlet. \% is called themodulo operator.

Examples

Find the remainder of a division

See Also

expr	Evaluatea mathematical expression
$!--$	Subtraction object (inlets reversed)
$!$	Division object (inlets reversed)
+	Add two numbers, output the result
-	Subtract two numbers, output the result
$*$	Multiply two numbers, output the result
$/$	Dividetwo numbers, output the result
Tutorial 8	Doing math in Max

Input

int In left inlet: If thenumber is less than thenumber in the right inlet, < outputs 1 . Otherwise, < outputs 0 .

In right inlet: Thenumber is stored to becompared with a number received in the left inlet.
float Converted to int before comparison, unless < has a float argument.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, < initially holds O for comparison.
list In left inlet: If the first number is less than the second number, < outputs 1. Otherwise, < outputs 0 .

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in the left inlet. Float argument forces a float comparison.

Output

int 1 if the number in the left inlet is less than thenumber in theright inlet. 0 if the number in the left inlet is greater than or equal to the number in the right inlet.

Examples

Number on left is less than number on right

Number on left is not less than number on right

See Also

$!=$	Comparetwo numbers, output 1 if they are not equal
$<=$	Isless than or equal to, comparison of two numbers
$==$	Comparetwo numbers, output 1 if they areequal
$>$	Is greater than, comparison of two numbers
$>=$	Is greater than or equal to, comparison of two numbers
Tutorial 15	Making decisions with comparisons

int In left inlet: If thenumber is less than or equal to the enumber in the right inlet, <= outputs 1. Otherwise, <= outputs 0 .

In right inlet: Thenumber is stored to becompared with a number received in the left inlet.
float Converted to int before comparison, unless <= has a float argument.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, <= initially holds 0 for comparison.
list In left inlet: If the first number is less than or equal to the second number, $<=$ outputs 1 . Otherwise, <= outputs 0 .

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in the left inlet. Float argument forces a float comparison.

Output

int 1 if thenumber in the left inlet isless than or equal to the number in theright inlet. 0 if the number in the left inlet is greater than the number in the right inlet.

Examples

Is less than...

or equal to

Is not less than or equal to

See Also

$!=$	Comparetwo numbers, output 1 if they are not equal
$<=$	Islessthan, comparison of two numbers
$==$	Comparetwo numbers, output 1 if they are equal
$>$	Is greater than, comparison of two numbers
$>=$	Isgreater than or equal to, comparison of two numbers
Tutorial 15	M aking decisions with comparisons

Input

int In left inlet:Thenumber iscompared with thenumber in theright inlet. If thetwo numbers are equal,$==$ outputs 1 . If they are not equal $==$ outputs 0 .

In right inlet:Thenumber is stored to becompared with a number received in the left inlet.
float Converted to int before comparison, unless $==$ has a float argument.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, $==$ initially holds 0 for comparison.
list In left inlet: Compares first and second number, outputs 1 if they are equal, 0 if they are not equal.

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in the left inlet. Float argument forces a float comparison.

Output

int 1 if the numbers in the inlets are equal, 0 if they are not equal.

Examples

Thenumbers areequal

Thenumbers arenot equal

Using $==0$ asa logical "not"

See Also

select	Select certain inputs, pass the rest on
split	Look for a range of numbers
$!=$	Comparetwo numbers, output 1 if they are not equal
$<$	Is less than, comparison of two numbers
$<=$	Is less than or equal to, comparison of two numbers
$>$	Is greater than, comparison of two numbers
$>=$	Isgreater than or equal to, comparison of two numbers
Tutorial 15	Making decisions with comparisons

Input

int In left inlet: If thenumber is greater than thenumber in theright inlet, > outputs 1. Otherwise, > outputs 0 .

In right inlet:Thenumber is stored to becompared with a number received in the left inlet.
float Converted to int beforecomparison, unless > has a float argument.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, > initially holds 0 for comparison.
list In left inlet: If the first number is greater than the second number, > outputs 1. Otherwise, > outputs 0 .

Arguments

int or float Optional. Sets theinitial value, to becompared with a number received in the left inlet. Float argument forces a float comparison.

Output

int 1 if the number in the left inlet is greater than the number in theright inlet. 0 if the number in the left inlet is less than or equal to the number in theright inlet.

Examples

Thenumber on the left is greater

The number on the left is not greater

See Also

$!=$	Comparetwo numbers, output 1 if they are not equal
$<$	Islessthan, comparison of two numbers
$<=$	Isless than or equal to, comparison of two numbers
$==$	Comparetwo numbers, output 1 if they are equal
$>=$	Is greater than or equal to, comparison of two numbers
Tutorial 15	Making decisions with comparisons

Input

int In left inlet: If the number is greater than or equal to the number in the right inlet, $>=$ outputs 1 . Otherwise, $>=$ outputs 0 .

In right inlet: Thenumber is stored to becompared with a number received in the left inlet.
float Converted to int before comparison, unless >= has a float argument.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, $>=$ initially holds 0 for comparison.
list In left inlet: If the first number is greater than or equal to the second number, $>=$ outputs 1. Otherwise, >= outputs 0 .

Arguments

int or float Optional. Sets the initial value, to be compared with a number received in the left inlet. Float argument forces a float comparison.

Output

int 1 if thenumber in the left inlet is greater than or equal to thenumber in the right inlet. 0 if the number in the left inlet is less than the number in the right inlet.

Examples

Is greater than...

or equal to

Is not greater than or equal to

See Also

$!=$	Comparetwo numbers, output 1 if they are not equal
$<$	Is lessthan, comparison of two numbers
$<=$	Is less than or equal to, comparison of two numbers
$==$	Comparetwo numbers, output 1 if they areequal
$>$	Is greater than, comparison of two numbers
Tutorial 15	M aking decisions with comparisons

Input

int In left inlet: Thenumber is compared, in binary form, with thenumber in the right inlet. Theoutput is a number composed of those bits which are 1 in both numbers.

In right inlet: Thenumber isstored for comparison with a number received in the left inlet.
float Converted to int.
bang In left inlet: Performs the comparison with the numbers currently stored. If there is no argument, \& initially holds 0 for comparison.
list In left inlet: Compares thefirst and second numbers bit-by-bit, and outputs a number composed of thosebits which are 1 in both numbers.

Arguments

int Optional. Sets an initial valueto be compared with a number received in the left inlet.

Output

int Thetwo numbers received in the inlets are compared, one bit at a time. If a bit is 1 in both numbers, it will be 1 in theoutput number, otherwise it will be 0 in the output number.

Examples

N onzero bits shared by both numbers

Can beused as an odd/even detector

See Also

\&\&	If both numbers arenon-zero, output 1
$\|\mid$	Bitwise union of two numbers
If either of two numbers is non-zero, output 1	

Input

int If the number in both inlets is not 0 , then the output is 1. If the number in oneor both of the inlets is 0 , then the output is 0 . A number in the left inlet triggers the output.
float Converted to int.
bang In left inlet: Performs the operation with the numbers currently stored. If there is no argument, \&\& initially holds 0 .
list In left inlet: If both the first and second numbers are not 0 , then the output is 1 . Otherwise, theoutput is 0 .

Arguments

int Optional. Sets an initial value to bestored by \&\&. A number in the right inlet changes the value set by the argument.

Output

int If the number in the left inlet and thenumber in theright inlet (or specified by the argument) are both not 0 , then the output is 1 . Otherwise, the output is 0 .

Examples

Both numbers arenot 0
Used to combine comparisons

See Also

$\stackrel{\mid}{|\mid} \begin{aligned} & \text { Tutorial } 15\end{aligned}$
Bitwise intersection of two numbers
Bitwise union of two numbers
If either of two numbers is non-zero, output 1
M aking decisions with comparisons

Input

int In left inlet: Outputs a number composed of all those bits which are 1 in either of thetwo numbers.

In right inlet:Thenumber is stored for combination with a number received in the left inlet.
float Converted to int.
bang In left inlet: Performsthe calculation with thenumbers currently stored. If there is no argument, | initially holds 0 .
list In left inlet: Combines thefirst and second numbers bit-by-bit, and outputsa number composed of all those bits which are 1 in either of the two numbers.

Arguments

int Optional. Sets an initial value to beor-ed with a number received in the left inlet.

Output

int All the nonzero bits of the two numbers received in the inlets are combined. If a bit is 1 in either one of thenumbers, it will be 1 in theoutput number, otherwiseit will be0 in theoutput number.

Examples

All non-zero bits are combined
Can beused to pack two numbers into one int

See Also

\&
Bitwise intersection of two numbers
\&\&
If both numbers arenon-zero, output 1
||
If either of two numbers is non-zero, output 1

Input

int If the number in either inlet is not 0 , then the output is 1 . If the number in both of theinlets is 0 , then theoutput is 0 . A number in the left inlet triggers the output.
float Converted to int.
bang In left inlet: Performs the operation with the numbers currently stored. If there is no argument, || initially holds0.
list In left inlet: If either the first or second number is not 0, then the output is1. Otherwise, theoutput is0.

Arguments

int Optional. Sets an initial value to bestored by $\|$.A number in the right inlet changes the value set by the argument.

Output

int If either the number in the left inlet or the number in theright inlet (or specified by theargument) is not 0 , then theoutput is 1 . Otherwise, the output is 0 .

Examples

One of thenumbers is not 0

Used to combine comparisons

See Also

\&	Bitwise intersection of two numbers
\&\&	If both numbers are non- zero, output 1
\|	Bitwise union of two numbers
Tutorial 15	M aking decisions with comparisons

Input

int In left inlet:All bits of the number, in binary form, are shifted to the left by a certain number of bits. The resulting number is sent out the outlet.

In right inlet:Thenumber is stored as the number of bitsto left-shift thenumber in the left inlet.
float Converted to int.
bang In left inlet: Performsthebit-shift with thenumbers currently stored. If there is no argument, << initially holds 0 as the number of bits by which to shift.
list In left inlet: Thefirst number is bit-shifted to the left by the number of bits specified by the second number.

Arguments

int Optional. Sets an initial value for the number of bits by which to shift leftward.

Output

int Thenumber in the left inlet is bit-shifted to the left by a certain number of bits. Thenumber of bits by which to shift is specified by thenumber in the right inlet. Theoutput is the resulting bit-shifted number.

Examples

Sameeffect as multiplying by a power of 2

See Also

```
* Multiply two numbers, output the result
>>

\section*{Input}
int In left inlet: All bits of thenumber, in binary form, are shifted to the right by a certain number of bits. The resulting number is sent out the outlet.

In right inlet: Thenumber is stored as thenumber of bits to right-shift thenumber in the left inlet.
float Converted to int.
bang In left inlet: Performsthebit-shift with thenumbers currently stored. If thereis no argument, >> initially holds 0 as thenumber of bits by which to shift.
list In left inlet:Thefirst number is bit-shifted to the right by the number of bits specified by the second number.

\section*{Arguments}
int Optional. Sets an initial valuefor the number of bits by which to shift rightward.

\section*{Output}
int Thenumber in the left inlet is bit-shifted to the right by a certain number of bits. The number of bits by which to shift is specified by thenumber in theright inlet. Theoutput is the resulting bit-shifted number.

\section*{Examples}


Same effect asdividing by a power of 2

\section*{See Also}
\(\begin{array}{ll}!/ & \text { Division object (inlets reversed) } \\ \ll & \text { Shift all bitsto theleft }\end{array}\)

\section*{Input}
int The absolute(non-negative) value of theinput is sent out the output.
float Converted to int, unless abs has a float argument.
int or float Optional. Float argument forces a float output.

\section*{Arguments}
int or float Optional. Float argument forces a float output.

\section*{Output}
int Theabsolute value of the input.
float Only if there is an argument with a decimal point.

\section*{Examples}


Output is nonnegative


Used hereto invert input

\section*{See Also}
expr Evaluate a mathematical expression
Tutorial 14

\section*{Input}
any symbol A filenameor path as a symbol. Input pathnames can contain slashes, colons, or backslashes as separators. The absolutepath object converts a file name or path to an absolute path, resolving any aliases in doing so.

\section*{Arguments}

None.

\section*{Output}
any symbol If theincoming filenameor path isfound, theoutput is an absolute path. Theoutput pathnames contain slash separators.

Absolute pathnames look likethis:
"C:/Max Folder/extras/mystuff/mypatch.pat"
The conformpath object can be used to convert paths of one pathtype and/or pathstyleto another.

If the file is not found, absolutepath outputs the symbol notfound.

\section*{Examples}

\section*{coll}
absolutepath
prepend set
"lapdog:/Library/Application Support/Cycling '74/externals/coll"

\section*{See Also}
\begin{tabular}{ll} 
conformpath & Convert paths of one pathtypeand/or pathstyle to another \\
dropfile & Definea region for dragging and dropping a file \\
opendialog & Open a dialog to ask for a file or folder \\
relativepath & Convert an absolute to a relative path \\
savedialog & Open a dialog to ask for a filename for saving \\
trippath & Get afilenamefrom a full pathname \\
FilePreferences &
\end{tabular}

\section*{Input}
float or int Input to a arc-cosinefunction.
bang In left inlet: Calculates thearc-cosine of thenumber currently stored. If thereisno argument, acos initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial valuefor the arc-cosinefunction.

\section*{Output}
float or int Thearc-cosine of theinput.

\section*{Examples}
- tloating-point input in the range \(\{-1,1\}\).

- arccosine of the input in the range \(\{-\pi, \pi\}\).

\section*{See Also}
```

acosh
asin
asinh
atan
atan2
atanh
COS
cosh
sin
sinh
tan
tanh
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Hyperbolic cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

```

\section*{Input}
float or int Input to a hyperbolic arc-cosinefunction.
bang In left inlet: Calculates a hyperbolic arc-cosine of the number currently stored. If there is no argument, acosh initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial valuefor thehyperbolic arc-cosinefunction.

\section*{Output}
float or int Thehyperbolic arc-cosine of theinput.

\section*{Examples}
- floating point input

- hyperbolic are-cosine of the input.

\section*{See Also}
\begin{tabular}{ll} 
acos & Arc-cosinefunction \\
asin & Arc-sinefunction \\
asinh & HyperbolicArc-sinefunction \\
atan & Arc-tangent function \\
\(\operatorname{atan2}\) & Arc-tangent function (two variables) \\
atanh & Hyperbolicarc-tangent function \\
\(\cos\) & Cosinefunction \\
\(\cosh\) & Hyperbolic cosinefunction \\
\(\sin\) & Sinefunction \\
\(\sinh\) & Hyperbolicsinefunction \\
\(\tan\) & Tangent function \\
\(\tanh\) & Hyperbolic tangent function
\end{tabular}

\section*{Input}
int In left inlet: Replaces the valuestored in accum, and sends the new value out the outlet.

In middle inlet:Thenumber is added to the stored value, without triggering output.

In right inlet:The stored value is multiplied by the input, without triggering output.
float In left and middle inlet: C onverted to int, unless accum has a float argument. In right inlet: M ultiplication is donewith floats, even if the value is stored as an int.
bang In left inlet: Outputs the value currently stored in accum.
set In left inlet: The word set, followed by a number, sets thestored valueto that number, without triggering output.

\section*{Arguments}
int or float Optional. Sets theinitial valuestored in accum. An argument with a decimal point causes the value to be stored as afloat.

\section*{Output}
int The value currently held by accum.
float Only if there is an argument with a decimal point.

\section*{Examples}


Add to and/or multiply a stored value


Used here to increment by different amounts

\section*{See Also}
counter Count thebang messages received, output the count
float
int
Tutorial 21 Store a decimal number
Store an integer value
Storing numbers

\section*{Input}

Thereareno inlets. Output istriggered automatically when thepatcher window is activated or deactivated.

\section*{Arguments}

None.

\section*{Output}
int \(W\) hen the patcher window that containsactive is activated, active sends out 1 . When the window is madeinactive, active sendsout 0 .

\section*{Examples}


Turn on a process or open a gatewhen thewindow is madeactive

\section*{See Also}
closebang
loadbang
Tutorial 40

Send a bang when patcher window is closed
Send a bang automatically when patch isloaded
Automatic actions

\section*{Input}
int Reports how many times this number and the previously received number have occurred in immediate succession. (Thefirst time a number is received, there has been no previous number, so nothing happens.)
reset Erases the most recently received number from the memory of theanal object. Thenext number to bereceived gets stored in its place, to serve as the next "previous" value(but nothing else happens).
dear Erases the memory of the anal object entirely, but retains the most recently received number to use as the next"previous" value.

\section*{Arguments}
int Optional. Setsa maximum limit for how many different number pairs can bekept track of by anal. The maximum number of different pairs is 1024. If no argument is present, anal can store up to 128 different pairs.

\section*{Output}
list Thefirst two numbers in the list are the two most recently received numbers, and the third number shows how many times that particular succession of two numbers has been received. This list of threenumbers is designed to be used as input to the prob object, to create a probability matrix of transitionsfrom one number to another (known as a first-order M arkov chain).

\section*{Examples}

On the first number, Now the pair " 60,64 " Now the pair " 64,60 " Now the pair " 60,64 " nothing happers has occ ured once has oce ured once has oce ured twice
1.

\section*{60}
anal

2. 64
anal
60641
prob
3. 60
anal
64601
prob
4. 64
anal
60642
prob


Keep track of number pairs and their relativefrequency of occurrence; pass the information to prob to generate similar transitions

\section*{See Also}
histo
M akea histogram of the numbers received
prob
set The word set, followed by any message, will replace the message stored in append, without triggering output.
anything else The messagestored in append is appended, preceded by a space, to the end of any message that is received in the inlet, and the combined message is sent out the outlet.

\section*{Arguments}

\author{
anything
}

Optional. Sets the message that will be appended to theend of incoming messages.

\section*{Output}
anything Themessage received in the inlet is combined with the message stored in append, and then sent out the outlet.

\section*{Examples}


Symbols can be combined into meaningful messages with append

\section*{See Also}
prepend Put one message at the beginning of another
Tutorial \(25 \quad M\) anaging messages

\section*{Input}
float or int Input to a arc-sinefunction.
bang In left inlet: Calculates the arc-sine of the number currently stored. If there is no argument, asin initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial valuefor the arc-sinefunction.

\section*{Output}
float or int Thearc-sine of theinput.

\section*{Examples}
- tloating-point input
(range: \(\{-1,1\}\) ).

- arcsine of the input, in radisiss (range: \(\{-\pi / 2, \pi / 2\}\}\).

\section*{See Also}
```

acos
acosh
asinh
atan
atan2
atanh
COS
cosh
sin
sinh
tan
tanh
Arc-cosinefunction
Hyperbolic arc-cosinefunction
Hyperbolic Arc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Hyperbolic cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

```

\section*{Input}
float or int Input to a hyperbolic arc-sinefunction.
bang In left inlet: Calculates the hyperbolic arc-sine of thenumber currently stored. If there is no argument, asin initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial valuefor the hyperbolic arc-sinefunction.

\section*{Output}
float or int Thehyperbolic arc-sine of theinput.

\section*{Examples}
- floating point input

- hyperbolic arc-sine of the input.

\section*{See Also}
```

acos
acosh
asin
asinh
atan
atan2
atanh
cos
cosh
sin
sinh
tan
tanh

```

Arc-cosinefunction
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Hyperbolic cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

\section*{Input}
float or int Input to a arc-tangent function.
bang In left inlet: Calculates the arc-tangent of the number currently stored. If there is no argument, atan initially holds0.

\section*{Arguments}
float or int Optional. Sets theinitial valuefor the arc-tangent function.

\section*{Output}
float or int Thearc-tangent of the input.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
acos & \begin{tabular}{l} 
Arc-cosinefunction \\
acosh
\end{tabular} \\
Hyperbolic arc-cosinefunction \\
asin & Arc-sinefunction \\
asinh & HyperbolicArc-sinefunction \\
atan2 & Arc-tangent function (two variables) \\
atanh & Hyperbolic arc-tangent function \\
\(\cos\) & Cosinefunction \\
\(\cosh\) & Hyperbolic cosinefunction \\
\(\sin\) & Sinefunction \\
\(\sinh\) & Hyperbolicsinefunction \\
\(\tan\) & Tangent function \\
\(\tanh\) & Hyperbolictangent function
\end{tabular}

\section*{Input}
float or int In left input: \(x\) valueinput to an arc-tangent function.
In right input: \(y\) value input to an arc-tangent function.
bang In left inlet: Calculates the arc-tangent of the numbers currently stored. If there are no arguments, atan2 initially holds0 for both input values.

\section*{Arguments}
float or int Optional. Two intsmay beused to set the initial valuefor the arc-tangent function.

\section*{Output}
float or int Thearc-tangent of the input values(i.e. Arc-tangent( \(\mathrm{y} / \mathrm{x})\) ).

\section*{Examples}

- calculates the angle from two points sround an origin (atanl \(\mathrm{y} / \mathrm{x}\) )] in radians.

\section*{See Also}
\begin{tabular}{ll} 
acos & \begin{tabular}{l} 
Arc-cosinefunction \\
acosh
\end{tabular} \\
Hyperbolic arc-cosinefunction \\
asin & Arc-sinefunction \\
asinh & HyperbolicArc-sinefunction \\
\(\operatorname{atan}\) & Arc-tangent function \\
atanh & Hyperbolicarc-tangent function \\
\(\cos\) & Cosinefunction \\
\(\cosh\) & Hyperbolic cosinefunction \\
\(\sin\) & Sinefunction \\
\(\sinh\) & Hyperbolic sinefunction \\
\(\tan\) & Tangent function \\
\(\tanh\) & Hyperbolic tangent function
\end{tabular}

\section*{Input}
float or int Input to a hyperbolic arc-tangent function.
bang In left inlet: Calculates thehyperbolic arc-tangent of thenumber currently stored. If thereis no argument, atanh initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial valuefor thehyperbolic arc-tangent function.

\section*{Output}
float or int Thehyperbolic arc-tangent of the input.

\section*{Examples}
- tloating point input

- hyperbolic are-tangent is asymptotic around -1.0 and 1.0

\section*{See Also}
```

acos
acosh
asin
asinh
atan
atan2
cos
cosh
sin
sinh
tan
tanh
Arc-cosinefunction
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Cosinefunction
Hyperbolic cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

```

\section*{Input}
int In left inlet: Thenumber is either added to or deleted from the collection of numbers stored in bag, depending on the number in theright inlet.

In right inlet: Thenumber is stored as an indicator of whether to includeor delete the next number received in the left inlet. If non-zero, the number received in the left inlet is added to thebag. If 0 , the number is deleted from thebag.

No output is triggered by a number received in either inlet.
float Converted to int.
bang In left inlet: Causes bag to send all its numbers out the outlet.
clear In left inlet: Deletes the entire contents of the bag.
list In left inlet: If the second number is not 0, the first number is included in thebag. If the second number is 0 , the first number is deleted from thebag.
send In left inlet:The word send, followed by the name of a receive object, sends the result of abang messageto all receive objects with that name, instead of out the bag object's outlet.
length In left inlet: Reports how many numbers are currently stored in thebag.
cut In left inlet: Sends out the oldest (earliest received) number stored in the bag, and deletes it from the bag.

\section*{Arguments}
any symbol Optional. Causes bag to storeduplicate numbers. If there is no argument, bag will store only one of each number at atime. The argument must not be a number.

\section*{Output}
int When bang is received in the left inlet, all the numbers stored in bag are sent out one at atime, in reverse order from that in which they were stored.

When cut is received in the left inlet, the oldest stored number is sent out.
When length is received in the left inlet, thenumber of items in thebag is sent out.

\section*{Examples}


Storea collection of numbers


Used hereto detect held notes

\section*{See Also}
coll
funbuff
offer
Data Structures

Store and edit a collection of different messages
Storex,y pairs of numbers
Storex,y pairs of numbers temporarily
Ways of storing data in Max

\section*{Input}
anything Causes abang to be sent out all outlets, in right-to-left order.

\section*{Arguments}
int Optional. Sets thenumber of outlets. Limited between 1 and 10.A ny number greater than 10 is set to 10 ; any number less than 1 is set to 2 . If there is no argument, there will be 2 outlets.
float Converted to int.

\section*{Output}
bang When a message is received in theinlet, bang is sent out each outlet, in order from right to left.

\section*{Examples}


Order is normally right-to-left
Order is specified by bangbang

\section*{See Also}
button Flash on any message, send a bang
trigger
Tutorial 7

Send input to many places, in order
Right-to-left order

\section*{Input}
(MID) bendin receives its input from a M IDI pitch bend message received from a MIDI input device.
enable Themessageenable 0 d isables the object, causing it to ignore subsequent incoming MIDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port Theword port, followed by a letter a-zor the name of an M IDI port or device, sets the port from which theobject receives incoming pitch bend messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on a bendin object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies theportfrom which to receive incoming pitch bend messages. If there is no argument, bendin receives from all channels on all ports.
(MID name) Optional. Thename of a M IDI input device may be used as thefirst argument to specify theport.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to receive pitch bend messages. Channel numbers greater than 16 will be wrapped around to stay within the 1-16 range.
int A number alone can beused in place of a letter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
int If a specific channel number is included in the argument, there is only one outlet. The output is the incoming pitch bend value from 0-127 (the most significant byte of the MIDI pitch bend message) on the specified channel and port.

If thereis no channel number specified by the argument, bendin will have a second outlet, on the right, which will output the channel number of the incoming pitch bend message.

\section*{Examples}


Receive only from port b


Only from port b, chanmel 13


Pitch bend messages can be received from everywhere, a specific port, or a specific port and channel

\section*{See Also}
\begin{tabular}{ll} 
bendout & Transmit M IDI pitch bend messages \\
ctlin & Output received M IDI control values \\
midiin & Output received raw M IDI data \\
notein & Output received M IDI note messages \\
rtin & Output received M IDI real timemessages \\
xbendout & Prepare extra precision M IDI pitch bend messages \\
xbendin & Interpret extra precision M IDI pitch bend messages \\
Using M IDI & Using M ax with M IDI \\
Ports & How M IDI ports are specified \\
Tutorial 16 & MoreM IDI ins and outs
\end{tabular}
int In left inlet:Thenumber is transmitted as a M IDI pitch bend valueon the specified channel and port. Numbers arelimited between 0 and 127.

In right inlet: Thenumber is stored as the channel number on which to transmit the pitch bend messages.
float Converted to int.
list In left inlet: Thefirst number is the pitch bend value, and the second number is the channel, of a M IDI pitch bend message, transmitted on the specified channel and port.
enable Themessage enable 0 disables the object, causing it not to transmit M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its MIDI disabled by an enable message to a pcontrol object.
port In left inlet: The word port, followed by a letter a-z or the name of a M IDI output port or device, specifies the port used to transmit M IDI messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on a bendout object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies theport for transmitting M IDI pitch bend messages. Channel numbers greater than 16 received in the right inlet will bewrapped around to stay within the \(1-16\) range. If thereis no argument, bendout initially transmits out port a, on MIDI channel 1 .
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to transmit pitch bend messages. Channel numbers greater than 16 will be wrapped around to stay within the 1-16 range.
(MID name) Optional. Thename of a M IDI output devicemay beused as the first argument to specify theport.
int A number alone can be used in place of a letter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
(MID) There are no outlets. Theoutput isaM IDI pitch bend message transmitted directly to theobject's M IDI output port.

\section*{Examples}


Letter argument transmits to only one port

bendout 1

Otherwise, number specifies
both port and channel

\section*{See Also}
```

bendin Output received MIDI pitch bend messages
midiout
xbendout
xbendin
Using M IDI
Ports
Tutorial 16
Transmit raw MIDI data
Prepare extra precision MIDI pitch bend messages
Interpret extra precision M IDI pitch bend messages
Using M ax with MIDI
How MIDI ports arespecified
MoreMIDI ins and outs

```

\section*{Input}
any message In any inlet:Theinput is stored in the location corresponding to that inlet, and causes anything previously stored to be sent out its corresponding outlet. If no message has yet been received in a particular inlet, 0 is sent out of the corresponding outlet.
bang In any inlet: Sends out all stored messages immediately.
set In any inlet: The word set, followed by any message, stores the input in the location corresponding to that inlet without triggering any output.

\section*{Arguments}
int Optional. Thefirst argument specifies the number of inlets and outlets. The default number of inlets and outlets is 2 . The second argument specifies a number of milliseconds to delay when a message is received before sending messages out theoutlets.

\section*{Output}
any message A nything stored in an inlet is sent out the corresponding outlet numbers. Output is immediate if triggered by a bang. If output is triggered by a message, and a second argument has been typed in, output will be delayed by thenumber of milliseconds specified in the second argument.

\section*{Examples}
pitch bend data antiving from three different MDI sources...

bondo can synchronize messages arriving from different sources

\section*{See Also}
\begin{tabular}{ll} 
buddy & Synchronizearriving data, output them together \\
onebang & Traffic control for bang messages \\
pack & Combinenumbers and symbols into a list \\
thresh & Combinenumbers into alist, when received close together
\end{tabular}
int In left inlet: Thenumber is the pitch value of aMIDI note on message or note-off message (note-on with a velocity of 0). Thepitch is paired with the velocity in the middle inlet. borax ignores note on messages for pitches it isalready holding, and ignores note off messages for pitches that haveal ready been turned off. If the note is not a duplicate, borax sends out the pitch and velocity values, as well as other information.

In middleinlet:Thenumber is stored as the velocity, to be paired with pitch numbers received in the left inlet.
float In middle inlet: Converted to int.
list In left inlet:The second number is stored as the velocity, and the first number is used as the pitch, of a pitch-velocity pair. If the noteis not a duplicate, borax sends out the pitch and velocity values, as well as other information.
deta In left inlet: Causes thedelta time(the time elapsed sincethelast note-on) and the delta count (thenumber of deltatimes that have been reported) to be sent out.
bang In right inlet: Resets borax by sending note offs for all notes currently being held, erasing the borax object's memory of all notes received, and setting its counters and itsclock to 0 .

\section*{Arguments}

None.

\section*{Output}
int Out left outlet: Each note-on received by borax is assigned auniquenumber, equal to the total count of note- ons received (since the last reset). That number is sent out when the note on is received, and the same number is sent out when the note is turned off.

Out 2nd outlet: Each note is also assigned a unique voice number, equal to the lowest available number. (A voice becomes avail able when the note assigned to it is turned off.) That number is sent out when thenote on is received, and the same number is sent out when the note is turned off.

Out 3rd outlet:The number of notes being held by borax is sent out each timea note on or a note-off is received.

Out 4th outlet: Thepitch of thenote-on or note off is sent out.
Out 5th outlet: The velocity of thenote on or note- off is sent out.

Out 6th outlet: W hen a note-off is received, the total count of all completed notes (since the last reset) is sent out.

O ut 7th outlet: W hen a note-off is received, the duration of that note, in milliseconds, is sent out.

O ut 8th outlet: Each time delta time is reported, the total count of delta times is sent out.

O ut right outlet: W hen a note-on is received, the deltatime is sent out (thetime elapsed sincetheprevious note-on, in milliseconds). A delta message in the left inlet causes the same output.

A bang received in the right inlet causes borax to provide note-offs for any notes it currently holds. These note-offs trigger the sameoutputs as if they had actually been received.

\section*{Examples}


\section*{See Also}
midiparse
poly

Interpret raw M IDI data
Allocate notes to different voices

Embed a visible subpatch insidea box

\section*{Input}
anything Thenumber of inlets in a bpatcher object is determined by the number of inlet objects contained in its subpatch window. If the patch being used in a bpatcher contains inlet objects, they will appear in left-to-right correspondence as inlets in the bpatcher object's box.
offset If the subpatch being used in thebpatcher contains a thispatcher object connected to one of its inlet objects, the view of the subpatch can bechanged by an offset message received in the corresponding inlet of bpatcher. The word offset must be followed by two ints, specifying the number of pixels by which the upper left corner of the subpatch is to be offset horizontally and vertically within the bpatcher. In this way, a single bpatcher can be used to give different views of the subpatch. User interfaceobjects in the subpatch that are partially outsidethebpatcher object's box will redraw completely (even outside the bounds of the bpatcher) in responseto messages received in their inlet. It is therefore advised that user interfaceobjects in the subpatch beeither completely inside or completely outsidethe bpatcher object's box.
border If the subpatch being used in thebpatcher contains a thispatcher object connected to one of its inlet objects, the word border with any non-zero number in that inlet causes a black border to bedrawn around thebpatcher. Themessageborder 0 erases theborder of the bpatcher (the default appearance).
(mouse) When the window containingthebpatcher islocked (or theCommand key on M acintosh or Control key on Windows is held down) and themouse is clicked insidethebpatcher object's box, thegesture is handled by thepatch insidethebox.

If theShift and Command keys on M acintosh or Shift and Control keys on Windows areheld down whileclicking on abpatcher, dragging the mouse moves the upper-left corner of the visible part of the patch insidethebox. TheAssistance area of the patcher window shows the pixel values of the offset. If EnableD ragScrolling is unchecked in the bpatcher Inspector window, this feature is disabled.

If theCommand and Option keys on M acintosh or Control and Alt keys on Windows areheld down whileclicking in a bpatcher, a pop-up menu allows you to open the original file of the patch contained insidethebox in its own window, or change the patch currently contained insidethebox in its own window.

\section*{Inspector}

Thebehavior of a bpatcher object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any bpatcher object displays the bpatcher Inspector in the floating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

The bpatcher Inspector lets you set the following attributes:
Offset specifies the number of pixels by which the left upper corner of the picture is to beoffset horizontally and vertically from the left upper corner of thefpic box. By default the left upper corner of the pictureislocated at the left upper corner of fpic (that is, with an offset of 0,0 ). This offset can bechanged by entering new pixel values into the number boxes. The default is no offset (i.e. O horizontal, 0 vertical).

Use theO ffset number boxes to specify the number of pixels by which the upper left corner of the subpatch is to beoffset horizontally and vertically within the bpatcher object's display area. Thedefault values are 0 for both horizontal and vertical offsets.

Checking theBorder checkbox causes ablack border to bedrawn around the bpatcher. The default appearance is unchecked (no border).

TheEmbed Patcher in Parent checkbox allows you to embed thesubpatch and save it as part of the main patch (just as with a patcher object) instead of the subpatch being saved in a separate file. The default is unchecked (the subpatch is saved as a separatefile).

Checking theEnableD rag-Scrolling checkbox allows you move the upper-left corner of the visible part of the patch insidethebox by holding down the Shift and Command keys on M acintosh or Shift and Control keys on Windows whileclicking on a bpatcher, and dragging the mouse. The default valueis unchecked (dragscrolling is disabled).

The Patcher File option lets you choose a patcher file for thebpatcher to use by clicking on the 0 pen button. The current file's nameappears in thetext box to the left of the button. You can also choose a file by typing its name in this box, or by dragging a fileicon from theFinder into this box.

TheA rguments to Patcher lets you input arguments to your patcher which will be saved along with the main patch.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}

If the patcher being used in a bpatcher contains outlet objects, they will appear in corresponding left-to-right order as outlets in thebpatcher object's box.

\section*{Examples}


View the contents of a subpatcher

inlet for receiving "offset" message
thispatcher

Thecontents of this patch can bewindowed...

...using offset messages to a small bpatcher containing it

\section*{See Also}
patcher
pcontrol
thispatcher
Tutorial 27
Tutorial 28
Encapsulation

Create a subpatch within a patch
O pen and close subwindows within a patcher
Send messages to a patcher
Your object
Your argument
How much should a patch do?
int Thenumbers currently stored in bucket are sent out, then each number is moved oneoutlet to the right and thenew number is stored to be sent out the left outlet thenext timeanumber is received.
float Converted to int.
list Only thefirst number in the list is used.
bang All stored values are sent out, but their position is not shifted.
freeze Suspends the bucket output, but new incoming numbers continue to shift the stored values internally.
thaw Resumes bucket output.
roll Theword roll, followed by any number, causes bucket to use the value stored in its rightmost outlet as input; thus, it sends its output, shifts all stored values to the right, then stores the value which had been in the rightmost outlet in the leftmost outlet (as if it had been received in the inlet).

12r Sets bucket to shift its stored values from left to right (the default) whenever it receives a number in its inlet.
r2l Sets bucket to shift its stored values from right to left whenever it receives a number in its inlet, placing the incoming number in the rightmost outlet.
set Theword set, followed by a number, sends that number out each outlet, and stores the number as the next value to be sent out each of its outlets.

\section*{Arguments}
int Optional. Sets thenumber of outlets. If there is no argument, there will beone outlet.

\section*{Output}
int When a number is received, it is not sent out immediately, but the numbers stored in bucket are sent out. Thenumbers are all moved one outlet to the right, and the newly received number is stored in the left position.

\section*{Examples}


\section*{See Also}
cycle
decode
Send a stream of data to individual outlets
gate
spray
Send 1 or 0 out a specific outlet
Pass the input out a specific outlet
Distribute an integer to a numbered outlet

\section*{Input}
any message In any inlet:W hen data has been received in all its inlets, buddy sends the received messages out their corresponding outlets, then waits until data has arrived again in all inlets.
clear In left inlet: Deletes all values stored in the inlets.
bang In any inlet: Sameas thenumber 0 .

\section*{Arguments}
int Optional. Sets thenumber of inlets (and outlets). If there is no argument, there aretwo inlets and two outlets.

\section*{Output}

\begin{abstract}
any message When a data has arrived in each inlet, it is sent out the outlets, in order from right to left.
\end{abstract}

\section*{Examples}


Output is slways right-to-lett


Output issynchronous, even if input is not synchronous

\section*{See Also}
\begin{tabular}{ll} 
bondo & Synchronizeagroup of messages \\
onebang & Traffic control for bang messages \\
pack & Combinenumbersand symbols into a list \\
swap & Reversethesequential order of two numbers \\
thresh & Combinenumbersinto alist, when receeived close together \\
unpack & Break alistup into individual messages
\end{tabular}
color The word color, followed by a number from 0 to 15 , sets the color of the center circle of the button to one of the object colors which are also available via the Color command in the \(O\) bject menu. W hen button sends a bang, it always flashes with the color yellow.
any message When any message is received in theinlet, button flashes briefly and bang is sent out theoutlet.A mouse click on thebutton has the same effect.

\section*{Arguments}

\section*{None.}

\section*{Output}
bang A mouse click or any message in the inlet causes button to flash and send out bang.

\section*{Examples}


Any message

Any other message
Message box wor't respond to just "any message"
Triggers other messages and processes
Converts other messages to bang

\section*{See Also}
bangbang matrixctrl pictctrl trigger ubutton
Tutorial 2

Send abang to many places, in order M atrix-style switch control
Picture based control
Send input to many places, in order
Transparent button, sends abang
bang means"D o it!"

\section*{Input}
int, float, or symbolN umbers or symbols arestored in theorder in which they are received.
list All numbers and/or symbols in the list arestored in order from first to last.
clear Erases the contents of a capture object.
count Sends the number of items collected since the last count message out the right outlet of the capture object.
dump Outputs the contents of the capture object, one item at a time, out the left outlet.
open Causes the window associated with the capture object to becomevisible. Thewindow is also brought to thefront. D ouble-clicking on thecapture object in a locked patcher has the same effect.
wclose Closes the window associated with the capture object.
write Theword write, followed by a symbol, saves the contents of the capture object into a text file, using the symbol as thefilename. Thefile will be saved in the same folder as the M ax application, unless the symbol is a pathname specifying some other folder (such aswrite"MyDisk:/ Documents/Captured Data/outputfile"). The word write by itself causes a standard SaveAs dialog box to beopened, allowing you to namethefile and saveit in the desired folder.

\section*{Arguments}
int Optional. Thefirst argument sets a maximum number of items to store. If there is no argument, capture will store up to 512 items. Once the maximum has been exceeded, the earliest stored item is dropped as each new item is received.
a, x or m Optional. If the second argument isa, all items will be displayed in ASCII form in theediting window. If the second argument isx, all numbers will bedisplayed in hexadecimal form in the editing window.If the second argument ism, numbers less than 128 aredisplayed in decimal, and numbers greater than 128 are in hexadecimal. If there is no argument, all items aredisplayed in decimal.

\section*{Output}
int, float, or symbolO ut left outlet: The captured contents are sent out the left outlet, one at a time, in response to thedump message.

D oubleclicking on capture (when the patcher window islocked) opens an editing window in which the stored numbers can be viewed and edited. Editing the window does not actually alter the contents of capture, but is useful for cutting and pasting values into a table or a separatefile. (Although capture can continue
to store items while the editing window is open, the editing window is not updated. It must beclosed and reopened to view thenewly stored items.)
int Out right outlet: Thenumber of items received sincelast count message was received is sent out the right outlet in response to a count message.

\section*{Examples}


Collect numbers to paste into a table...
... or just to see what's been going on

\section*{See Also}
text Format numbers as a text file
Debugging
Tutorial 34
Techniques for debugging patches
M anaging raw MIDI data
float In left inlet:Thereal part of a frequency domain valueto beconverted into a polar coordinate pair consisting of amplitude and phasevalues.

In right inlet:Theimaginary part of a frequency domain valueto be converted into a polar coordinate pair consisting of amplitude and phase values.
int Converted to float.

\section*{Arguments}

None.

\section*{Output}
float Out left outle: The magnitude (amplitude) of the frequency represented by the currently input.

Out right outlet: The phase, expressed in radians, of the frequency represented by the current input. If only the left outlet is connected, the phase computation is not performed.

\section*{Examples}


Convert Polar to Cartesian coordinates

\section*{See Also}
```

atan2 Arc-tangent function (two variables)
Icd
poltocar
pow
Arc-tangent function (two variables)
Draw graphics in a patcher window
Polar to Cartesian coordinate conversion
Computex to the power of y

```

\section*{Input}
int or float Thenumber is sent out the outlet only if it is different from the currently stored value. Replaces the stored value.
set The word set, followed by a number, replaces the stored value without triggering output.
mode The word mode, followed by a + , causes change to send a 1 out its left outlet if the received number is greater than the previously received number. In this mode, change does nothing with any other input. The word mode, followed by a-, causes change to send out a-1 if the received number is less than the previously received number. In this mode, change does nothing with any other input. The word mode by itself returns change to its default mode of sending out received values that differ from the previously received input.

\section*{Arguments}
int or float Optional. Initial value for comparison to incoming numbers. If there is no argument, the initial value is 0 .
symbol Optional. A second argument may be + or - , causing change to behave as if it had received a mode + or mode - message. Subsequent mode messages can change this behavior.

\section*{Output}
int Out left outle:: The number received in the inlet is sent out only if it is different from thestored value.

Out middle outlet: If the stored value is 0 and the input is not 0,1 is sent out; otherwise nothing is sent out.

Out right outlet: If the stored value is not 0 and the input is 0,1 is sent out; otherwise nothing is sent out.

\section*{Examples}


Filter out undesirable repetitions

Filter out repetitions
of a number

\section*{See Also}
\begin{tabular}{ll} 
peak & If a number is greater than previous numbers, output it \\
togedge & Report a changein zero/non-zero values \\
trough & If a number isless than previous numbers, output it \\
\(!=\) & Compare two numbers, output 1 if they are not equal \\
Tutorial 15 & Making decisions with comparisons
\end{tabular}

\section*{Input}
int or float In left inlet: Thenumber is sent out the outlet, constrained within the minimum and maximum limits specified by the arguments, inlets, or by aset message. If the number received is a float, it will be sent out as a float.

In middle inlet: M inimum limit for the range of theoutput.
In right inlet: M aximum limit for the range of theoutput.
list Each number in thelist is constrained within theminimum and maximum limits, and the constrained numbers are sent out as a list.
set The word set, followed by two numbers, resets the minimum and maximum limits within which all numbers will be constrained before being sent out theoutlet.

\section*{Arguments}
int or float Optional:Thefirst number specifies a minimum limit and the second number specifies a maximum limit, within which all numbers will beconstrained before being sent out the outlet. If only one argument is present, it is used as both the minimum and maximum limit. If no argument is present, the minimum and maximum limit is 0 .

\section*{Output}
int When an int is received in theinlet, it is constrained within the specified minimum and maximum limits, then sent out the outlet. If the received number is less than theminimum limit, theminimum valueis sent out; if thereceived number is greater than the maximum limit, the maximum value is sent out.
float If the received number is a float, it is constrained within the specified minimum and maximum limits, then sent out the outlet as afloat.
list When a list is received in theinlet, each number isconstrained within the specified minimum and maximum limits, and the numbers are sent out as a list.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll}
\begin{tabular}{l} 
maximum \\
minimum
\end{tabular} & \begin{tabular}{l} 
Output the greatest in a list of numbers \\
Output the smallest in a list of numbers
\end{tabular} \\
split & Look for a range of numbers \\
\(<=\) & Islessthan, comparison of two numbers \\
\(<=\) & Isless than or equal to, comparison of two numbers \\
\(>\) & Is greater than, comparison of two numbers \\
\(>=\) & Isgreater than or equal to, comparison of two numbers
\end{tabular}

\section*{Input}
int or float In left inlet: A ny non-zero number starts clocker. Thetime elapsed since clocker was started is sent out the outlet at regular intervals. 0 stops clocker. If clocker is already running when it receives a non-zero number, it continues reporting the elapsed time at regular intervals from that new point, but without resetting the clock timeto 0 . Theclocker object's minimum interval time is 0.02 second.

In right inlet: Thenumber is the time interval, in milliseconds, at which clocker will report the elapsed time. A new number in theright inlet does not takeeffect until the next timeoutput is sent.
bang In left inlet: Starts clocker. If the clocker object is not running, a bang message will start the count. If the clocker object is running, a bang message will reset the count.
stop In left inlet: Stops clocker.
clock Theword clock, followed by the name of an existing setclock object, sets the clocker to becontrolled by that setclock rather than by M ax's internal millisecond clock. The word clock by itself sets clocker back to using M ax's regular millisecond clock.
reset In left inlet: Resets theelapsed time to 0 without stopping or restarting the clock; clocker continues to report the new elapsed time at the same regular interval. This message is meaningless when the docker is not running, since it always resets to 0 anyway when stopped.

\section*{Arguments}
int Optional. Thefirst argument sets an initial valuefor thetime interval at which clocker sends out its output. If there is no argument, the initial timeinterval is set to 5 milliseconds.

\section*{Output}
int Thetimeelapsed, in milliseconds, sinceclocker was started. The first output is always 0 , sent immediately each time clocker is started.

\section*{Examples}


Get the elapsed time


Generatenumbers as a function of time

\section*{See Also}
\begin{tabular}{ll} 
metro & Output a bang message at regular intervals \\
setclock & Control the clock speed of timing objects remotely \\
tempo & Output numbers at a metronomic tempo \\
timer & Report elapsed time between two events \\
Tutorial 31 & Using timers
\end{tabular}

There are no inlets. Output occurs when the patcher window is closed.

\section*{Arguments}

\section*{None.}

\section*{Output}
bang Sent automatically when the patcher window is closed.

\section*{Examples}

\section*{closebang}


Stop a process when window
is about to be closed

... or turn off held notes and sustain pedal

\section*{See Also}
active
button
loadbang
Tutorial 40

Send 1 when patcher window is active, 0 when inactive Flash on any message, send abang
Send a bang automatically when patch is loaded Automatic actions

\section*{Input}
list Thefirst number is used astheaddress (the storage location within coll) at which to storethe remaining items in the list ( coll can storea list of up to 250 items). The address will always be stored as an int.
int or float Thenumber refers to the address of a message stored in coll. If a message is stored at that address, the stored message is sent out the 1st outlet.
bang Same effect as thenext message.
(Get Info... ) A coll object can be set to save its contents as part of the patch that contains it. W hen the patcher window is unlocked, select the coll object, chooseGet Info... from the Object menu, and check Save coll with patcher.
assoc Theword assoc, followed by a symbol and a number, associates the symbol with the address specified by the number, provided that the number address already exists. From then on, any reference to that symbol will beinterpreted by coll as a reference to thenumber address. Each number address can haveonly one symbol associated with it, except 0 , which cannot have an associated symbol. (Note: If the symbol was already being used as an address, or was already associated with a number address, the message that was stored at that address is removed.)
clear Erases everything from the collection.
deassoc The word deassoc, followed by a symbol and a number, removes the association between the symbol and the number address. The symbol no longer has any meaning to coll.
delete Functions similarly to the word remove, except that if the specified address is a number, all addresses of a greater number are decremented by 1.
dump Sends all of the stored addresses out the 2nd outlet and all of the stored messages out the 1st outlet, in theorder in which they arestored. A bang is sent out the 4th outlet when the dump is completed.

Sets the pointer (used by thegoto, next, and prev messages) to the last address in the coll.
filetype The word filetype, followed by a symbol, sets the file types which can be read and written into the coll object. Filetypes are specified arespecified using the standard four-letter type codecombination (e.g. filetype ffoo). Themessage filetype with no arguments restores the default file behavior - either M ax binary or text file formats. Filetypes are mapped to filename extensions on W indows based on the messages to max contained in the filemax-fileformats.txt in theinit folder, which is loaded on startup. If you aredefining your own filetype, you may want to include your own text file in the init folder in order to specify a mapping between an extension and your four-letter typecode.
flags Normally, the contents of coll are not saved as part of the patch when the patcher window is closed. The messageflags 10 sets the coll object to save its contents as part of the patcher that contains it. The messageflags 00 causes the contents of the coll not to be saved with the patcher that contains it.
goto The word goto, followed by a number or a symbol, sets a pointer at the address specified by thenumber or symbol. If no such address exists, the pointer is set at the beginning of the collection. The pointer is set at the beginning of the collection initially, by default.
insert The word insert, followed by a number and a message, inserts the message at the address specified by the number, incrementing all equal or greater addresses by 1 if necessary.
length Counts the number of messages contained in coll and sends the number out the 1st outlet. This message works well in conjunction with the grab object.
\(\max\) Determines the maximum single numerical value (i.e. not a list or symbol) stored in the coll and sends the number out the 1st outlet. This message works well in conjunction with the grab object.
merge The word merge, followed by an address and a message, appends its message at the end of the message al ready stored at that address. If the address does not yet exist, it is created.
min Determines the minimum singlenumerical value (i.e not alist or symbol) stored in the coll and sends thenumber out the 1st outlet. Thisworks well in conjunction with the grab object.
next Sends the address pointed to by the pointer out the 3rd outlet, and sends the message stored at that address out the 1st outlet, then sets the pointer to the next address. If the address is a symbol rather than a number, 0 is sent out the 3 rd outlet. If the pointer is currently at thelast address in the collection, it wraps around to the first address. (Note: Number addresses are stored in ascending order. Symbol addresses are stored in the order in which they were added to the collection, after all of the number addresses.) If themessage received immediately prior to next was prev, next sends out the value stored at the address onegreater than the onethat was just sent out.
nstore Theword nstore, followed by a number and asymbol (or a symbol and a number), followed by any other message, stores the message at the specified number address in the coll, with the specified symbol associated. (This has the sameeffect as storing the message at an int address, then using theassoc message to associatea symbol with that number.)
nsub Theword nsub, followed by an address, an item number, and another number or symbol, replaces one item stored at the address. (Example: nsub pgms 47 puts the
number 7 in place of the 4th item of the message stored at the addresspgms.) Number values and symbols can both be substituted in this manner.
nth Theword nth, followed by an address and a number, gets thenth item (specified by the number) from the message at that address, and sends it out the 1st outlet. (Example: nth pgms 4 outputs the 4th item in the message stored at the address named pgms.)
open Causes a text edit window associated with thecoll object to becomevisible. The window is also brought to thefront.
prev Causes the sameoutput as the word next, but the pointer is then decremented rather than incremented. If the pointer is currently at thefirst address in the collection, it wraps around to the last address. If the message received immediately prior to prev was next, prev sends out the value stored at the address one less than theonethat was just sent out.
read Theword read with no arguments puts up a standard Open Document dialog box for choosing a fileto load into coll. If read is followed by a symbol filename argument, the named file is located and loaded into coll.
readagain Loads in the contents of the most recently read file. If no prior read or readagain message has been received by the coll, readagain is treated as a read message, and an Open Document dialog box is displayed.
refer Theword refer, followed by thename of another coll object, changes the coll receiving the message to refer to the data in the named coll object.

In addition to reading messages in from another file and storing messages via the inlet, onecan also enter messages in coll by typing. Double-clicking with the mouse on the coll object displays the contents as text in an editing window which theuser can modify.

In order to edit a collection by hand or read in from another file, it is essential to know the correct text format for the contents of a coll object. Each message is stored in the coll object on a separateline. Theformat of each lineis as follows: the address (an int or a symbol), any symbols associated with that address (if the address is an int), a comma (to separate the address from the data it contains), the data (anything), and a semicolon to indicatetheend of each line. In aline such as

3 reset, set 4.7;
3 isthe number of the address, reset is a symbol associated with that address, and the message it contains is set 4.7.

Hereis how we would store the numbers \(100,200,300\), and 400 with the addresses 1, 2, 3, and 4 .

1,100;
2,200;
3,300;
4, 400;
remove Theword remove, followed by a number or a symbol, removes that address and its contentsfrom the collection.
renumber Makes thenumbers associated with the data in the coll object consecutive and increasing. The argument to the renumber message specifies the starting number address for the data. Heres a before and after example for coll sent the message renumber 1 .

Before After
4, apple; \(\quad\), apple;
6, banana; \(\quad 2\), banana;
3, cherry; \(\quad 3\), cherry;
9, durian; 4,durian;
sort The sort message takes two arguments. If the first argument is -1 , the items in the coll are sorted in ascending order. If thefirst argument is 1, the items in the coll are sorted in descending order.

The second argument specifies what is used to sort the contents of the coll. If the second argument is-1, the index (or symbol) associated with the data is used. If the second argument is not present or 0, the firstitem in the data is used. If the second argument is 1 or greater, the second (or greater) item in the data is used.
store The word store, followed by somesymbol (usually a word), followed by a message, stores the message at an address named by the symbol. (Example: store triad 047 will storethe list 047 at an address named triad.)
sub Same as nsub, except that the message stored at the specified address is sent out after theitem has been substituted.
swap The swap messagetakes two symbols or two numbers as addresses, and exchanges the data associated with each address. For example, if thecoll contains

1,400;
2,700;
swap 12 would change the coll to
1,700;
2,400;
subsym Changes the symbol associated with data. Thefirst argument to subsym is thenew symbol to use, and the second argument isthe symbol associator to replace. For instance, if the coll contains
jill, 4050 60;
subsym jack jill will changethecoll to
jack, 4050 60;
symbol The symbol refers to the address of a message stored in coll. If a message is stored at the address named by the symbol, the message is sent out the 1st outlet. The symbol may, but need not necessarily, be preceded by the word symbol.
wclose Closes the window associated with thecoll object.
write
Calls up the standard SaveAs dialog box, enabling the user to save the contents of coll as a separatefile. If the word write isfollowed by a symbol, the contents of the coll are saved immediately in a file, using the symbol as the filename.
writeagain Saves the contents of the coll into the most recently written file. If no prior write or writeagain message has been received by the coll, writeagain is treated as a write message, and a SaveAs dialog box is opened.

\section*{Inspector}

Thebehavior of a coll object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any coll object displays the coll Inspector in the floating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

Checking Savecoll with patcher sets the coll object to saveits contents as part of the patch that containsit.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}
any symbol Optional. N ame of a file to be read into coll automatically when the patch is loaded. The information in the file must bein the correct format in order to be read in by coll. All coll objects which sharethe same name always sharethe same contents. You can use the file nameas an identifier for thepurpose of sharing data
between multiplecoll objects, without thereneeding to bean actual file with the specified name.

An optional second argument will cause the coll object not to search for a file with thenamed symbol.

\section*{Output}
anything Messages stored in coll aresent out the 1st outlet. If the message consists of only a single symbol, it will be preceded by the word symbol when it is sent out.
int Out 1st outlet:Thenumber of messages contained in coll is sent out in responseto the length message.
int or symbol Out 2nd outlet: The address is sent out whenever a message out the 1st outlet is triggered by bang, dump, next, prev, or sub.
bang Out 3rd outlet: Sent out when coll hasfinished loading in or writing a file of data.
O ut 4th outlet: Sent out when coll has finished sending all of thestored addresses and messages in order out the 1st and 2nd outlets in response to adump message.

\section*{Examples}


C omplex messages can be recalled with a single number or word


\section*{See Also}

\author{
bag \\ table \\ funbuff \\ Tutorial 37 \\ Storea collection of numbers \\ Store and graphically edit an array of numbers \\ Store \(x, y\) pairs of numbers together \\ D ata structures \\ Ways of storing data in Max
}

The colorpicker object uses an Operating System color picker dialog that lets you choose a color to beoutput as a M ax RGB color. On the M ac OS, the Color Picker dialog that lets you choose colors in several different color spaces- red-green-blue (RGB), hue saturation-value(HSV), web-safe colors, and the nostalgia-inducing crayon mode. On W indows, you are presented with a standard color picker dialog, including a selection of basic colors, custom colors, a color swatch and numerical input for red-green-blue(RGB), hue-saturation-luminance(HSL)

\section*{Input}
(mouse) Doubleclicking the object opens the Color Picker dialog box. If the patcher is unlocked, hold down the Command key on M acintosh or the Control key on Windowswhiledouble-clicking to open thedialog.
bang Sameas double-clicking theobject.
list A list of threenumbers between 0 and 255 specifiesthe RGB color components of thedefault color which initially appears in the Color Picker dialog box when it is opened.
setprompt The word setprompt, followed by atext string, sets the C olor Picker dialog box text label. This change will take effect the next time the dialog box is opened.

\section*{Arguments}

\section*{None.}

\section*{Output}
list After you open the Color Picker dialog box and make a selection, clicking on the OK button will send alist of the RGB equivalents of the color you selected out the outlet. If you click theC ancel button, no messages are sent.

\section*{Examples}


Display a color, or retrieve selected RGB color values

\section*{See Also}
panel
Colored background area swatch

Color swatch for RGB color selection and display
anything Thecomment object hasno inlets and receives no input. Text istyped directly into the comment box when the patcher window is in Edit mode. W hen the patcher window is locked, the outline of the comment box disappears, and only thetext is shown. The appearance of a comment can bemodified by changingthefont and by resizing its box. Note: If you want to include carriage returns in your text, use the Inspector to set two-bytecompatibility mode.

Thefont and size of a comment can bechanged with the Font menu.

\section*{Inspector}

The appearance of a comment object can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from the W indows menu, selecting any comment object displays the comment Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also di splaysthe Inspector.

The comment Inspector lets you set the following attributes:
You can set a comment to display text in languages such as Japanese or Chinese that usea two-bytecharacter representation system by checking theTwo- byte Compatibleoption (the default is unchecked). Checking the two-bytecompatibility option will also allow you to include carriage returns in comment boxes.

TheColor option lets you use a swatch color picker or RGB values used to display the comment text. Thedefault text color is black (000).

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}

A comment has no outlets, sends no output, and does not affect thefunctioning of thepatch.

\section*{Examples}

This patcher may meed an explanatory note



Label


M akefunctional (covered with a ubutton)

\section*{See Also}
ubutton
Tutorial 5

Transparent button, sends a bang
toggle and comment

\section*{Input}
any symbol
pathstyle The word pathstyle, followed by a word that specifies a pathstyle, will conform the output pathname to the chosen styles. The possiblestyles are:
colon Thecolon style will use colons as separators when passing paths between objects. This stylewas used in M ax versions 4.2 and earlier on M acintoshes

Note: Since the nativeM acintosh pathstyle is the same as the colon path style, there is no native_mac pathstyle.
\(\max\)
native Thenativestyle will use whatever format is used by the currently running operating system to specify paths.

Note: W hen working with native paths, only absolute paths will be valid for theoperating system.
native_ win Thenative_win style will use nativeW indows OS format (i.e., backslashes as separators) to specify paths.

Note: The use of the native_ win style paths is not advised except for display purposes- In M axM SP, the backslash character is used as an escape character and could lead to problems if used in conjunction with message boxes, sprintf, coll, and other objects which parse text into atoms.
slash
Theslash style will use slashes as separators when passing paths between objects.
pathtype Theword pathtype, followed by a word that specifies a pathtype, will conform the output pathname to the chosen type. The possibletypes are:
absolute Theabsolutetype will output the absolute pathname of the fileor folder as a symbol.
boot The boot typewill output the pathname of thefileor folder relative to the boot volume as a symbol. If thefileis not relative to the
boot file, the conformpath object will send a zero out the right outlet and send the output path out the left outlet unchanged.

C74
ignore
relative

TheC 74 type will output the pathname of thefile or folder relativeto theCycling 74 folder asa symbol. If thefileis not relativeto theCycling 74 folder, the conformpath object will send azero out the right outlet and send the output path out the left outlet unchanged.
(default) Theignoretypewill perform no path typeconversion.
The relativetypewill output the pathname of thefile or folder relative to the M ax application folder as a symbol. If the file is not relative to the M ax application folder, the conformpath object will send a zero out the right outlet and send the output path out the left outlet unchanged.

\section*{Arguments}
symbol
Optional. An optional symbol argument specifies the pathtypeto be used as output. The possible pathtypearguments are:
absolute Specifies the output of the absolute pathname of the file or folder as a symbol.
boot Specifies theoutput of the pathname of the fileor folder relative to the boot volume as a symbol.

C74 Specifies the output of the pathname of thefileor folder relative to the Cycling 74 folder as a symbol.
ignore Specifies that no pathtypeconversion is performed.
relative \(\quad\) Specifies the output of the pathname of thefileor folder relative to the M ax application folder as a symbol.
symbol Optional. An optional symbol argument specifies the pathstyle to beused as output. The possible pathstyle arguments are:
colon Specifies that the colon pathstyle is used for output (Seedescription in Input section for moredetails).
\(\max \quad\) Specifies that the max pathstyle is used for output (Seedescription in Input section for moredetails).
native
Specifies that thenative pathstyle is used for output (See description in Input section for moredetails).
native_win
slash

Specifies that the native win pathstyle is used for output (See description in Input section for more details).

Note: The use of the native_ win stylepaths is not advised except for display purposes. except for display purposes.

Specifies that the slash pathstyle is used for output (See description in Input section for more details).

\section*{Output}
symbol Thepathname of the folder or fileconformed to the specified pathstyleand/or pathtype.
int Out right outlet: If the input file or folder is conformed to specified pathtypeand/ or pathtype, theoutput is 1 . if the filepath cannot be conformed (e.g., if the file is not relative to a requested path type), the output is 0 .

\section*{Examples}


Usethegetplatform message to M ax to automatically conform file pathnames across platforms

\section*{See Also}
```

absolutepath
opendialog
relativepath
savedialog
strippath

```

Convert a filenameto an absolute path O pen a dialog to ask for a file or folder Convert an absoluteto a relative path
Open a dialog to ask for a filenamefor saving
Get a filename from a full pathname

\section*{Input}
float Input to a cosinefunction.
bang In left inlet: Calculates the hyperbolic cosine of the number currently stored. If there is no argument, cos initially holds 0 .

\section*{Arguments}
float or int Optional. Sets the initial value for the cosinefunction.

\section*{Output}
float Thecosine of theinput.

\section*{Examples}
- tloating point input

- cosine of the input.

\section*{See Also}
acos
acosh
asin
asinh
atan
atan2
atanh
cosh
sin
sinh
tan
tanh

Arc-cosinefunction
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Hyperbolic cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

\section*{Input}
float or int Input to a hyperbolic cosinefunction.
bang In left inlet: Calculates the hyperbolic cosine of the number currently stored. If there is no argument, cosh initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial value for thehyperbolic cosinefunction.

\section*{Output}
float or int Thehyperbolic cosine of theinput.

\section*{Examples}
- floating point input

- hyperbolic cosine of the input.

\section*{See Also}
```

acos
acosh
asin
asinh
atan
atan2
atanh
cos
sin
sinh
tan
tanh
Arc-cosinefunction
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

```
bang In left inlet: Sends out the current count of the bang messages received in the left inlet.

In left-middle inlet: Changes the direction of the count.
In middle inlet: Resets the count to its specified minimum value, which will be sent out the next time a bang is received in the left inlet.

In right-middle inlet: Resets the count to its specified minimum value, and sends out that valueimmediately.

In right inlet: Resets the count to its specified maximum value, which is sent out immediately.

In left-middleinlet: Sets the direction of the count. 0 causes counter to count up, 1 causes it to count down, and 2 causes it to count up and down.

In middleinlet:Thenumber sets the counter to anew value, to be sent out the next time a bang is received in the left inlet. If thenumber is less than the current minimum value, the minimum will be reset to that number. If the number is greater than the current maximum value, the counter will be set to that number, but the maximum value actually remains the same and the minimum is set equal to the maximum.

In middle right inlet:Thenumber sets the counter to a new value and sends it out immediately. If thenumber is less than the current minimum value, theminimum will be reset to that number. If the number is greater than the current maximum value, the number is sent out, but the maximum value actually remains the same and the minimum is set equal to the maximum.

In right inlet: Resets the maximum value sent out by counter. If the number is less than the current minimum, the maximum is equal to the minimum. If theminimum is subsequently changed to a valuebelow the maximum value you input, the counter objects retains the correct maximum value it received through this inlet. Unlikea bang message, an int in this inlet does not cause the counter object to output anything.
float In left inlet: Same effect as bang.
float In all other inlets: Converted to int.
carrybang In left inlet: Causes counter to send a bang out the right-middle outlet when the count is going upward and reachesits maximum limit, and causes counter to send a bang out the left-middle outlet when the count is going downward and reaches
its minimum limit. (By default, counter sends out the number 1 in those situations, instead of bang.) The state of the carrybang message is saved along with the patcher it is used in, and this behavior can also be set using the Inspector.
carryint In left inlet: Undoes the effect of a previously received carrybang message. Resets the counter to send thenumbers 1 and 0 out the left-middle and right-middle outlets (instead of bang) to signal when the counter reaches and leaves its minimum and maximum values. Thestate of the carryint message is saved along with the patcher it is used in, and this behavior can also be set using the Inspector.
dec In left inlet: Decrements the counter (downward) and sends out thenew value, regardless of the direction in which theobject has been set to count ordinarily.
down In left inlet: Sets the counter to count in a downward direction.
goto In left inlet: Same effect as set.
inc In left inlet: Incrementsthe counter (upward) and sends out thenew value, regardless of the direction in which theobject has been set to count ordinarily.
jam In left inlet: Theword jam, followed by a number, sets the counter to that number and sends the number out immediately. If the number is outside the minimum and maximum count range, this message isignored.

In left inlet: The word min followed by a number, resets the minimum value of counter to that number, and causes the counter object to set itself to that number and output immediately. If the number is greater than the current maximum value, the minimum is set equal to the maximum.
max In left inlet: The word max followed by a number, resets the maximum value of counter to that number. If the number is less than the current minimum value, the maximum is considered to beequal to the minimum, although theactual maximum value you set isstored inside the counter object.
next In left inlet: Same as bang.
set In left inlet: Theword set, followed by a number, sets the counter to that number, which will be sent out the next time a bang is received in the left inlet.
setmin In left inlet: The word setmin, followed by a number, sets the counter object's minimum count without affecting its current count valueor causing any output.
up In left inlet: Sets the counter to count in an upward direction.
updown In left inlet: Sets the counter object's direction so that it counts upward until it reaches the specified maximum, then counts down until it reaches the specified minimum, then up, then down, and so on.

\section*{Inspector}

Thebehavior of an counter object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any counter object displays the counter Inspector in thefloating window. Selecting an object and choosing Get Info... from the 0 bject menu also displays the Inspector.

TheUnderflow/Carry M ode attributeprovides two options correspond to the carrybang and carryint messages described above. Sending 1 or 0 out outlets 2 and 3 is the default mode.

The Reset M inimum M ode attribute lets you choose between temporarily overriding the min count (the default behavior). Sending an int to thethird and fourth inlets of the counter object will causeit to perform in themanner described in the Input section above. TheChange the \(M\) in count permanently option provides back-compatibility with the counter object distributed with \(\mathrm{M} \mathrm{ax} \mathrm{3.x} \mathrm{and} \mathrm{earlier}\). In this mode, sending an int to inlets 3 and 4 will change the min count instead of just resetting it temporarily (which causes the fourth inlet to behave exactly as thought the min message were sent to the counter object).

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}
int Optional. If thereis only oneargument, it sets an initial maximum count valuefor counter. If there aretwo arguments, the first number sets an initial minimum value, and the second number sets an initial maximum value. If therearethree arguments, thefirst number specifies the direction of the count, the second number is the minimum, and thethird number isthemaximum. If there areno arguments, the direction is up, the minimum is 0 , and the maximum is \(2,147,483,647\) (the largest possible 32-bit signed integer).

\section*{Output}
int Out left outlet: W hen bang, next, inc, dec, or a number is received in the left inlet, the current count is sent out, within the minimum and maximum limits specified. If the direction of the count is both up and down, thecount isfolded back in the other direction when it reaches the specified limits. If the count is in only one direction, up or down, the count is wrapped around to theopposite extreme when it reaches its limit.

When thedirection is up, or up and down, counter, begins counting from the specified minimum value. W hen the direction is down, counter begins from the maximum value.

Out left-middle outlet: When the count ismoving downward and reaches the minimum limit, the number 1 is sent out. W hen the count leaves the minimum limit, 0 is sent out.

Out right-middleoutlet: W hen the count is moving upward and reaches themaximum limit, the number 1 is sent out. W hen the count leaves the maximum limit, 0 is sent out.

Out right outlet: An additional count iskept of thenumber of times counter reaches its maximum limit. Each time the maximum is reached, that count is sent out.
bang Out left-middle outlet: If a carrybang message has been received in the left inlet, then when the count is moving downward and reaches theminimum limit, abang is sent out (instead of the number 1 which is sent out by default). W hen the count leaves the minimum limit, nothing is sent out.

Out right-middle outlet: If a carrybang message has been received in theleft inlet, then when the count is moving upward and reaches the maximum limit, abang is sent out (instead of the number 1 which is sent out by default). W hen the count leaves the maximum limit, nothing is sent out.

\section*{Examples}


Keep track of how many events have occurred, or create a continuous loop

\section*{See Also}
tempo
Tutorial 31
Loops

O utput numbers at a metronomic tempo
Using timers
Using loops to perform repeated operations

\section*{Input}
(MIDI) ctlin receivesits input from aM IDI control changemessage received from a M IDI input device.
port Theword port, followed by a letter a-zor the name of a M IDI input port or device, setstheport from which theobject receives incoming control messages. The word port is optional and may be omitted.
set The word set, followed by a number from 0 to 127 , specifies a single controller number to be paid attention to by ctin. This message is appropriate only if aspecific controller number was originally typed in as an argument; it is ignored by ctlin if no controller number argument was originally typed in.
enable The messageenable 0 d isables theobject, causing it to ignore subsequent incoming M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
(mouse) Double clicking on actlin object shows apop-up menu for choosing aM IDI port or device.

\section*{Arguments}
a-z Optional. Specifies asingle port from which to receive incoming control messages. If there is no letter present as an argument, ctlin can receive from all ports.
(MID name) Optional. Thename of a M IDI input device may be used as the first argument to specify theport.
int Following the (optional) port argument, the exext argument is a single controller number to berecognized by ctlin. If there is no controller number, or if the argument is a negative number, ctin recognizes all controller numbers. If a single controller number is specified in the argument, theoutlet which normally sends the controller number is unnecessary, and is not created.

Following the controller number argument is a single channel number on which to receive control messages. If the channel argument is not present, ctlin receives control messages on all channels. In order for this argument to be used, a controller number argument must precedeit. To specify a channel number without specifying a controller number, use-1 for the controller number.

If a single channel number is specified as an argument, the outlet which normally sends the channel number is unnecessary, and is not created. If a port has been specified with a letter argument, channel numbers greater than 16 will bewrapped around to stay within the 1-16 range. If no port argument is present, a channel number can be used in place of aletter and number combination. The exact
meaning of the channel number argument depends on the channel offset specified for each port in the MIDI Setup dialog.

\section*{Output}
int Out left outlet: Thenumber is the control value of an incoming M IDI control changemessage.

If a specific controller number is not specified as an argument, the controller number is sent out the 2nd outlet.

If aspecific channel number isnot included in theargument, thechannel number is sent out an additional, right, outlet.

\section*{Examples}
\begin{tabular}{|c|c|c|c|}
\hline Receive all controller numbers, from anywhere & Receive only controller number 64, from anywhere & Receive all controller numbers, only from port b, channel 4 & Receive only controller number 1 , from port a, chamel 4 \\
\hline ctlin & ctlin 64 & ctlin -1 20 & ctlin a 14 \\
\hline \(>127>84\) & \(127 \quad 4\) & \(127 \quad 18\) & 127 \\
\hline ctl. value ctl. no chan & ct1. value chan. & ct1. value ct1 & ctl. value \\
\hline
\end{tabular}

Control messages can befiltered in a variety of ways

\section*{See Also}
\begin{tabular}{ll} 
bendin & Output received M IDI pitch bend values \\
ctlout & Transmit M IDI control messages \\
midiin & Output received raw M IDI data \\
notein & Output received M IDI note messages \\
rtin & Output received M IDI real timemessages \\
xbendin & Interpret extra precision M IDI pitch bend messages \\
M IDI & M IDI softwareprotocol \\
Using M IDI & Using M ax with M IDI \\
Ports & How M IDI ports are specified \\
Tutorial 16 & MoreM IDI ins and outs
\end{tabular}
int In left inlet: Thenumber is used as the control value, and ctlout transmitsaM IDI control change message. Numbers arelimited between 0 and 127.

In middleinlet:Thenumber is stored as the controller number of the control change messages transmitted by ctlout. Numbers are limited between 0 and 127.

In right inlet: Thenumber is stored as the channel number on which to transmit the control messages.
float Converted to int.
list In left inlet: Thefirst number is the control value, the second the controller number, and thethird the channel number. ctlout transmits a M IDI control change message using these values.
enable Themessageenable0 disables the object, causing it not to transmit M IDI data. The word enable followed by any non-zero number enables theobject once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port In left inlet: The word port, followed by aletter a-z or the name of a M IDI output port or device, specifies the port used to transmit M IDI control messages. The word port is optional and can be omitted.
(mouse) Double clicking on a ctlout object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies theportfor transmitting M IDI control messages. If there is no argument, ctlout initially transmits out port a, on channel 1. W hen a port is specified by a letter argument, channel numbers greater than 16 received in the right inlet will be wrapped around to stay within the \(1-16\) range.
(MID name) Optional. Thename of a M IDI output devicemay beused as thefirst argument to specify theport.
int Following the (optional) port argument, thenext argument is an initial value for the controller number to beused in control messages transmitted by ctlout. Controller numbers are automatically limited between 0 and 127 . If there is no controller number specified, the initial controller number is 1.

Following the controller number argument is an initial value for the channel number on which to transmit control messages. If the channel argument is not present, ctlout initially transmits control messages on channel 1 . In order for this argument to beused, a controller number argument must precedeit.

If a port has been specified with a letter argument, channel numbers greater than 16 will bewrapped around to stay within the 1-16 range. If no port argument is present, the channel number specifies both the port and thechannel. The exact meaning of the channel number argument depends on the channel offset specified for each port in the MIDI Setup dialog.

\section*{Output}
(MIDI) Thereareno outlets. Theoutput is a M IDI control message transmitted directly to theobject's M IDI output port.

\section*{Examples}

Will trassmit
out port 2 , on
chanmel 13
ctlout a 729

Letter argument transmits to only one port


Otherwise, number specifies both port and channel

\section*{See Also}
bendout
ctlin
midiout
noteout
xbendout
MIDI
Using M IDI
Ports
Tutorial 16

Transmit M IDI pitch bend messages
Output received M IDI control values
Transmit raw M IDI data
Transmit M IDI note messages
Format extra precision MIDI pitch bend messages
MIDI overview and specification
Using M ax with M IDI
How M IDI ports arespecified
MoreMIDI ins and outs

\section*{Input}
anything The stream of ints, floats, or symbols to bedirected to successive outlets.
set Theword set, followed by a number, specifies an outlet to which thenext input should bedirected, if in cycle mode. Outlets arenumbered beginning with 0 ; if an outlet number is specified that does not actually exist, the message is ignored. (This message has no effect when cycle is in event-sensitive mode, in which case each message is al ways sent out beginning at the leftmost outlet.)
thresh Theword thresh, followed by a number, sets the output mode, in the sameway as the second typed-in argument. If the number is non-zero, cycle will detect separate "events" and restart at the leftmost outlet whenever a new event occurs. If the number is 0 , each number received will be directed to thenext outlet in the cycle.

\section*{Arguments}

Optional. The first argument determines the number of outlets. If there is no argument, there will beoneoutlet. The second argument sets the output mode. If it is non-zero, cycle detects separate "events" and restarts at the leftmost outlet when a new event occurs. Examples of separate events include messages with delays between them, and messages triggered by successivemouse clicks or M IDI events. A stream of items separated by commas in a message box is considered a single event. If this argument is not present or is 0 , the values cycle through all the outlets, regardless of whether they are attached to separate events or not.

\section*{Output}
anything Out any outlet: In cycle mode, each successiveint, float, or symbol received, either separately or as part of a list, is directed to an outlet to theright of the previous number. W hen the cycle reaches the rightmost outlet, the next number is sent out the left outlet.

In event-sensitive mode, any int, float, or symbol which is a new event restarts the output at the left outlet.

\section*{Examples}


Using cyde to get ASCII relief

Send a stream of data to individual outlets

\section*{See Also}
\begin{tabular}{ll} 
bucket & Pass a number from outlet to outlet, out each one in turn \\
counter & Count thebang messages received, output the count \\
spell & Convert input to ASCII codes \\
spray & Distribute an integer to a numbered outlet
\end{tabular}

\section*{Input}
date Outputs the current date as a list(month/day/year) out the left outlet.
ticks Outputsthe current value of Ticks (thenumber of \(1 / 60\) ths of a second since system startup) out theright outlet.
time Outputsthecurrent time as alist (military hours/minutes/seconds) out themiddleoutlet.

\section*{Arguments}

None.

\section*{Output}
list Out left outlet: W hen the date message is received, date sends the current date as a list.
list Out middle outlet: W hen thetime message is received, date sends the current time as alist.
int Out right outlet: W hen theticks message is received, date sends the current value of Ticks.

\section*{Examples}


For pieces which change slowly, date can be used as a clock to trigger events

\section*{See Also}
clocker Report elapsed time, at regular intervals
timer Report elapsed time between two events

\section*{Input}
bang In left inlet: Causes a randomly chosen output of 1 or 0 .
int In left inlet: Sameas bang.
In right inlet: A given "seed" number causes a specific (reproducible) sequence of pseudo-random 0 and 1 outputs to occur. Thenumber 0 uses the timeelapsed since system startup (an unpredictable value) as the seed, ensuring an unpredictable sequence of 0 and 1 outputs.

\section*{Arguments}
int
Optional. Sets a"seed" value to cause a specific (reproducible) sequence of pseudo-random 0 and 1 outputs to occur. If there is no argument, thetime elapsed sincesystem startup (an unpredictablevalue) isused as the seed, ensuring an unpredictable sequence of 0 and 1 outputs.

\section*{Output}
int A 1 or a 0, chosen at random. With certain seed values, the output may seem at first to follow a"non-random" pattern, but over the course of many iterationsthe sequence becomes unpredictable and the balance between 1 and 0 becomes even.

\section*{Examples}


Simulatea coin toss; switch randomly between on and off

\section*{See Also}
\begin{tabular}{ll} 
drunk & Output random numbers in a moving range \\
random & Generate a random number \\
toggle & Switch between on and off (1 and 0) \\
urn & Generate random numbers without duplicates
\end{tabular}
decode acts as a hierarchical switchboard. Theright inlet is the master switch, which can turn off ( send 0 out) all outlets. Themiddle inlet is a submaster switch, which can turn on (send 1 out) all outlets, provided they have not all been turned off by the master switch. Theleft inlet can turn on one of theoutlets exclusively, provided neither the submaster switch nor the master switch is active.

\section*{Input}
int In left inlet: Thenumber specifies an outlet out to turn on, turning off all other outlets. (W henever an outlet is turned on that was previously turned off, al is sent out. Conversely, whenever an enabled outlet is disabled, a0 is sent out.) The outlets are referred to by number, beginning with 0 on the left, and numbers received in the left inlet are automatically limited between 0 and the number of outlets minus 1 .

In middle inlet: A ny number other than 0 enables all disabled outlets (sends al out them), unless all outlets are disabled. W hen 0 is received, decode turns off all outlets except the one that had previously been on.

In right inlet: A ny number other than 0 disables all enabled outlets (sends a0 out them). O nce all outlets have been disabled in this manner, no outlet can be enabled until a0 is received in the right inlet. W hen a0 is received, decode reenables all outlets that it had just disabled.
float Converted to int.

\section*{Arguments}
int Optional. Sets thenumber of outlets. The default is one outlet.
float Converted to int.

\section*{Output}
int When an outlet is enabled that was previously disabled, al is sent out that outlet. W hen an outlet is disabled that was previously enabled, a 0 is sent out that outlet. Theleft outlet is initially enabled.

\section*{decode}

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
bucket & Pass a number from outlet to outlet, out each one in turn \\
gate & Pass the input out a specific outlet \\
toggle & Switch between on and off (1 and 0\()\)
\end{tabular}

\section*{Input}
anything If themessage received in theinlet was triggered by aM IDI object (such asnotein) or a timing object (such as metro or seq), and the O verdriveoption ison, M ax normally gives the message priority over activities that are not so critical in their timing (such as printing in the M ax window). The defer object removes that spe cial priority from a message, allowing it to be superseded by messages for which precisetiming is morecritical. This isuseful for de-prioritizing time-consuming messages which may interfere with musical rhythm, or for messages to objects that may not function well with 0 verdrive on.

\section*{Arguments}

None.

\section*{Output}
anything Sameastheinput.

\section*{Examples}


O verdrivés priority given to M IDI or timing messages can be overridden with defer

\section*{See Also}
uzi
Send a specific number of bang messages

\section*{Input}
bang In left inlet: A bang is delayed a certain number of milliseconds before being sent out theoutlet.
stop In left inlet: Stopsdelay from outputting the bang it is currently delaying.
int or float In left inlet: Sets the number of milliseconds to delay a bang, then triggers the bang to bedelayed.
int or float In right inlet: The number is stored as the number of milliseconds to delay a bang received in the left inlet. A number received in the right inlet changes the delay time of thenext bang received - it does not modify thetime of a bang currently being delayed.

\section*{Arguments}
int or float Sets an initial value for thenumber of milliseconds to delay abang received in the left inlet. If there is no argument, the initial value is 0 .

\section*{Output}
bang A bang received in the left inlet is delayed by the number of milliseconds specified by the right inlet, then is sent out theoutlet. Only onebang at atimecan bedelayed by delay. If a bang is already in delay when a new bang is received in the left inlet, the first bang is forgotten.

\section*{Examples}


Bang is delayed for a certain time


C an be used to send triggers at specifictimes

\section*{See Also}
pipe
D elay numbers or lists
Tutorial 22
Delay lines
int After a record message has been received, all numbers received are treated as parameters of a note event.

In left inlet:Thedeltatime (delay), in milliseconds, sincethe previous recorded event. This denotes the"inter-onset interval - thetime between the beginnings of notes- which effectively determines the rhythm in which the events are recorded. This need not necessarily bethetruetime in which they occur; detonate believes any ( \(n o n-n e g a t i v e) ~ d e l t a t i m e i t ~ r e c e i v e s . ~\).

In 2nd inlet:Thenumber is treated as the key number (pitch) of the note. If no key number has ever been received, 60 is used by default.

In 3rd inlet: The velocity of the note. If the velocity is 0 - indicating a note- offthe event will betreated as the end of an earlier note- on the same key, and will determinethe duration of that earlier note. If no velocity number has ever been received, it is 64 by default.

In 4th inlet: In lieu of a note-off message, a noteduration can be supplied as part of the note-on event. If no duration value has ever been received, and no note off event is received to end the note, a duration of 10 milliseconds is used by default.

In 5th inlet: Thenumber of a track on which to record thenote event. O verdub recording is not possible with detonate, but each recorded note can betagged with a track number for storing separatetracks of notes internally. If no track number has ever been received, notes are recorded on track 1.

In 6th inlet: The M IDI channel of thenote. If no channel has ever been specified, notes are recorded on channel 1 .

In 7th inlet: An "extra" number, which can be used for any purpose, attached to the note event. This number can beused to provide an additional event parameter, or to serve as a control value in sync with the note. If no number has ever been received in this inlet, it is recorded as 0 by default.

In right inlet: A second "extra" number.
When detonate receives a number in the left inlet while recording, it treats the number as the inter-onset interval (thetimeelapsed sincethe previous event), combinesit with the numbers most recently received in the other inlets, and records them together as a note event. A s with most M ax objects, the numbers received in the other inlets are stored for use in subsequent note events triggered by the receipt of a number in the leftmost inlet.

When detonate has received afollow message (seebelow), a subsequent number in the 2nd inlet is treated as the key number (pitch) of a note. If the number is the
same as the pitch of the current note in the score (or a nearby note), the information recorded for that note- except for the delta time- is sent out.

When detonate is neither recording nor following, a number in the left inlet has the same effect as thenth message (seebelow).
float
list Thefirst number in the list is used as the delta time, and the other numbers are treated as if they had been received in the other inlets, respectively from left to right.
start Begins playing back the score, by simply sending out the first deltatime. O nce playback of the scorehas been started, next messages can be used to send out the next event information.
next Onceplayback of the scorehas been started with astart message, next sends out the event information (except the delta time) for the current note in the score, then sends out the delta time for the next note. That deltatime can in turn be used as a delay timebefore sending another next messageto detonate. W hen next is received on the last note of the score, there is no notefollowing that one, so a uniquevalue of -1 is sent out the left outlet to signal the end of the score. If a next message is received whilethe score is not being played back, detonate simply printsthemessagenot playing in the M ax window.
nth Theword nth, followed by a number, sends out the noteinformation of theevent in the scoreindicated by thenumber. (Events arenumbered beginning with 0 .) In place of the deltatime for the event, the(cumulative) starting time of the event is sent out the left outlet.

Erases the contents of detonate.
follow Causes detonate to behave like ascore reader, comparing incoming pitch information to the events stored in its score. When a key number is received in the 2nd (pitch) inlet, and it is the same as the pitch of the current notein the score, detonate sends out the information recorded for that event- except for thedelta time- and then moves ahead to the next note event.
followat The word followat, followed by a pitch, a velocity, and aM IDI channel number, causes detonate to look for a note event with those attributes in its stored score. If such a note is found, detonate commences score following from the next event onward. If not, it simply prints detonate: note not found in the M ax window.
record In left inlet: Begins recording numbers coming in the inlets, treating them as parameters of note events to be recorded in a graphic score. Theonset of an event is recorded each time a number is received in the left inlet.
startat The word startat, followed by a pitch, a velocity, and a MIDI channel number, causes detonate to look for a note event with those attributes in its stored score. If such a note is found, detonate sends out the delta time of the next event, and a subsequent next message will refer to that next event. If no such noteis found, detonate simply prints detonate: note not found in the Max window.
stop Stops detonate from recording, playing, or following. It is not necessary to stop detonate before switching directly between record, start, and follow.
mute Permits the selective muting of note events that meet specific criteria. The word mute must befollowed by an event parameter number, a parameter value, and a value of 1 or 0 signifying "mute" or "unmute". Event parameters are numbered beginning at 0 for delta time, 1 for pitch, etc. For example, the messagemute 401 mutes notes on MIDI channel 10 (channel is parameter 4), preventing their note information from being sent out; thosenotes can later be unmuted by themessage mute 4100 .
unmute The word unmute, followed by an event parameter number and a parameter value, undoes an earlier mute of the same criterion. For example, unmute 410 has the same meaning as mute 4100 .
unmuteall Undoes the effects of all previous mute messages.
params The word params, followed by threenumbers, modifies the score following behavior of detonate for cases when the received pitch does not match the pitch of the current note in the score. The first number tells detonate how many errors to tolerate before moving ahead in the score. The second number tells how many milliseconds to move ahead in the score when too many errors have occurred. The third number, if non-zero, tells detonate to treat a received pitch that is an octave too high or too low as if it were a match. For example, the messageparams 310001 means to allow three successive errors (with octave displacements considered to bea match) before moving ahead one second in the score and resuming. By default, detonate allows 2 errors before moving ahead 200 milliseconds, and does not consider octave pitch displacements to bea match for the stored note.
write Opens a dialog for saving the contents of detonate as astandard MIDI file. The word write may optionally befollowed by up to two numbers. If thefirst number is non-zero, the file will be saved with time represented in milliseconds rather than as bars, beats, and ticks in a certain tempo. If the number is 0 or not present, the file is saved as beats. The second number indicates theM IDI file format: 0 ( all notes on a singletrack) o multi-track format, using thetrack parameter to separatethe notes). The contents of detonate are also saved as part of the patch, when the patch is saved.
read Theword read by itself opens a dialog for loading in astandard MIDI file as contents of the detonate score. If read is followed by the name of a M IDI filein M ax's search path, that file is read in directly without opening a dialog box. Theread
message can also befollowed by a number which - if non-zero - causes thetime values in the file to beinterpreted as milliseconds rather than as bars, beats and ticks at a certain tempo. If the number is 0 or not present, the times are read as bars and beats.
export Sameaswrite.
import Sameasread.
(mouse) Double clicking on detonate in a locked patcher opens an editor window to display agraphic representation of the note events. The editor window can show the event information in various ways, and contains a small paletteof tools for editing thenotes or entering new notes.
selection tool tweak tool

zoom tool
pencil tool

You can draw new notes with the pencil tool. The starting time of note events is always represented on the x axis of thegraph. Thedefault parameters of thedrawn notes are shown in (and can be changed by dragging upon) the number boxes at thetop of the editor window. You can changethe meaning ascribed to they axis, and to the length of thedrawn note, by clicking on theicons to the left of the parameter names. By default they axis is pitch and the horizontal length of the note shows its duration.

You can select existing notes with the selection tool, and drag them either vertically (by clicking in the middle of a note) or horizontally (by clicking on the left side of note). Dragging on the right side of a note enables you to lengthen or shorten it. Theparameters of selected notes can also bechanged with thenumber boxes at the top of theeditor window.

The tweak tool worksthesame as the selection tool, but allows for finer resolution dragging adjustments. Clicking on the graph with the zoom tool enlarges that area of the graph for more precise editing. Option-clicking on M acintosh or Altclicking on Windows on the graph with the zoom tool zooms back out.

\section*{Arguments}
symbol Supplies a nameto be shown in thetitle bar of detonate's graphic editor window. Any detonate objects with the samename argument will sharethe same event data. They will also share event data with any edetonate timeline editor that has the samename.

\section*{Output}

When detonate receives a start messageor a startat message in the left inlet, it sends out the deltatime of its starting note event (or of the note after the found note, in the case of startat). A fter that, each time detonate receives a next message, it sends out all the other note data for that event, and the deltatime of the next event, progressing through the score. Thus, the numbers coming out the left outlet can be used to control the playback rhythm, by delaying for the specified time and then triggering the next next message.

When detonate receives an nth message (or receives a number, whilestopped) in the left inlet, it uses that information as an index number (starting at index number Ofor thefirst note event) and sends out all note data for the indexed event. Instead of sending the note's deltatime out the left outlet, however, it sends the start time of thenote- the total timesincethe beginning of the score.

After detonate has received afollow or followat message in the left inlet, if a number is received in the 2nd inlet that matches the pitch of the current note in the score (or one of the two notes immediately after it), all the data for the matched note is sent out, except for the deltatime.
int Out left outlet: W hen astart, startat, or subsequent next message is received in the left inlet, the deltatime of the next note event is sent out. When the last event in the score is played by a next message, there is no note following that one, so a unique deltatime of -1 is sent out to signal that the last note has been played.

When an nth message is received in the left inlet (or an int if detonate is stopped), the starting time of the specified note is sent out.

Out 2nd outlet:In responseto an nth message, or an int while detonate is stopped, or a next message while playing back, or a matched pitch whilefollowing, the pitch of the noteis sent out.

Out 3rd outlet:The velocity of the note.
Out 4th outlet:Theduration of the note.
Out 5th outlet: TheM IDI channel of thenote.
Out 6th outlet:Thetrack number of the note.
Out 7th outlet: An extra value associated with the note.
Out right outlet: A second extra value associated with the note.

\section*{Inspector}

You can changethe depiction of the detonate object's parameters (corresponding to the object's inlets) by reassigning the way each parameter is shown. Themenu at thetop of the inspector lets you select which of theeight parameters (numbered 0through 7) will bedisplayed in theDisplay.

You can change the name of the parameter using theParameter Name field. The default names are Time, Pitch, Vel, Dur, Chan, X1 and X2. TheD isplay M ode menu lets you set how the parameter is di splayed in the detonate graphic editor. Parameters can bedisplayed along theX-axis,Y-axis, Length (alongthex-axis) or as a Number. Setting the menu to No Display, naturally causes the parameter not to bedisplayed.

Each parameter's M inimum Valueand M aximum Value can beset using thefields with those names. TheD efault Value setsthe value which will be used for that parameter in notes where it is left unspecified.

Graph Interval affects the view only if the parameter is displayed on the y axis; it controlshow often numbers will be shown along they axis(every 12 semitones in the above example). D efault Scaling is afactor that determinesthedefault zoom of the axis on which the parameter is being displayed. 1 is maximum zoom, and larger numbers are successively smaller scales. Thestart time(the leftmost parameter) is an exceptional case because it can only bedisplayed on thex axis; so, for that parameter Graph Interval and D efault Scaling refer only to thex axis.TheD isplay M IDI N oteNumberscheckbox can beused to display values on they axisasM IDI notes instead of decimal numbers only for parameter 1 (pitch); this option is disabled for all other parameters.

\section*{Examples}


Note events are recorded with a delta time, which can be used to play notes back in rhythm

\section*{See Also}
follow Comparealive performanceto a recorded performance
seq
timeline
Detonate
Sequencing
Sequencer for recording and playing M IDI
Time-based score of \(M\) ax messages
Graphic editing of a M IDI sequence
Recording and playing back MIDI performances
int Thenumber received in theinlet is displayed graphically by dial, and is passed out its outlet. O ptionally, dial can multiply thenumber by some amount and add an offset to it before sending it out the outlet.

The dial will also send out numbers in response to clicking or dragging on it directly with the mouse.
float Converted to int.
bang Sends out the number currently stored in dial.
brgb The word brgb, followed by three numbers between 0 and 255 , sets the background color of the dial in RGB format. Thedefault is gray (221 221 221).
color The word color, foll owed by a number from 0 to 15 , sets the color of the center circle of the dial to one of the object colors which are also available via the Color command in the O bject menu.
frgb Theword brgb, followed by threenumbers between 0 and 255 , sets the color of the center dial in RGB format. The default is light gray ( 170170 170).
\(\min\) The word min, followed by a number, sets value that will be added to thedial object's value before it is sent out the outlet. The default is 0 .
mult Theword mult followed by a number, specifies a multiplier value. Thedial object's value will be multiplied by this number before it is sent out the outlet. The multiplication happens beforethe addition of the Offset value. The default valueis 1.
rgb2 The word rgb2, followed by three numbers between 0 and 255 , sets the center dial (Foreground) of the dial in RGB format. The default is dark grey (120 120 120).
rgb3 The word rgb3, followed by threenumbers between 0 and 255 , sets the highlighted border around the center dial in RGB format. The default is off-white (225 225 225).
rgb4 The word rgb4, followed by three numbers between 0 and 255 , sets the color of the dial indicator (needle) in RGB format. Thedefault is black ( 000 ).
rgb5 Theword rgb5, followed by threenumbers between 0 and 255 , sets the color of the frame/ border of the dial in RGB format. Thedefault is black ( 000 ).
set The word set, followed by a number, changes the displayed value of the dial, without triggering output.
size The word size, followed by a number, sets the range of the dial object. The default value is 128 . Setting the sizeto 1 disables the dial visually (sinceit can only display one value). Any specified sizeless than 1 will be set to 2 .

\section*{Inspector}

The behavior of a dial object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any dial object displays the dial Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

The dial Inspector lets you enter a Dial Rangevalue. Numbers received in the inlet are automatically limited between 0 and thenumber 1 less than the specified range value. The default range value is 128 . You can specify an 0 ffset value which will beadded to thenumber, after multiplication. Thedefault offset value is 0 . The dial Inspector also lets you specify aM ultiplier. Thedial object's value will bemultiplied by this number beforeit is sent out the outlet. The multiplication happens beforethe addition of the Offset value. The default multiplier value is 1.

TheColors options let you use a swatch color picker or RGB valuesto specify the colors used for thedial object's display. Foreground sets the color for the face of the dial (default 170170 170), and Background sets the color for the square area in which the dial appears (default 221221 221). TheFrame attribute sets color for theborder around the dial object's square frame(default 000 ). The"lit" and "shaded" edges of the dial are set by theH ighlight (default 255255 255) and Shadow (default 120120 120) attributes. TheNeedle attribute sets the color of the position indicator for the dial (default 000 ).

The Revert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector C hanges from the Edit menu while the Inspector is open.

\section*{Output}
int Numbers received in the inlet, or produced by clicking or dragging on dial with the mouse, arefirst multiplied by the multiplier, then havetheoffset added to them, then are sent out theoutlet.

\section*{Examples}


Produce output by dragging onscreen...

or use to display numbers passing through

\section*{See Also}
```

hslider Output numbers by moving a slider onscreen
pictctrl
pictslider
rslider
slider
uslider
Tutorial 14
Picture-based control
Picture-based slider
Display or changea range of numbers
Output numbers by moving a slider onscreen
Output numbers by moving a slider onscreen
Sliders and dials

```

\section*{Input}
symbol In left inlet: The word symbol, followed by any word, opens a dialog box prompting the user to enter text. The word following symbol is shown as the default text. If you want more than one word to appear as the default text, you must enclosethe wordsin doublequotes.
bang In left inlet: Opens the dialog box with the previoustext displayed as the default.
int In left inlet: Same as symbol.
In right inlet: Thenumber 0 sets dialog so that whatever the user types into the dialog box issent out as a symbol preceded by the word symbol.A nonzero number sets dialog so that thetyped-in text is sent out exactly as is if it begins with a word, or preceded by the word list if it begins with a number. If no number is received, it is considered 0 by default.

\section*{Arguments}
anything
Optional. Sets theprompt which will appear abovethetext entry box in the dialog window.

\section*{Output}
symbol If the user clicksOK, dialog makes a symbol out of the entered text (even if it's a number or it's morethan oneword) and sendsit out its outlet with the word symbol prepended. If a nonzero number has been received in the right inlet, thetyped-in message is sent out as is (without being preceded by the word symbol). This message can be displayed by prepending the word set and sending it to a message box (asshown in theexample). If the user clicksCancel, nothing is sent out.

Sinceyour patch continues to run while waiting for the user to typetext into your dialog box, you can't count on getting thetyped-in symbol immediately after sending the message that opens the dialog box.

\section*{Examples}


Typed-in message is sent out when OK button is clicked; other processes continue whiledialog box is open

A dialog box is opened by the dialog object

\section*{See Also}
message
opendialog savedialog sprintf

Send any message
Open a dialog to ask for a file or folder
Open adialog to ask for a filename for saving
Format a message of words and number

\section*{Input}
(drag) When afileicon is dragged from the Finder onto adropfile object in a locked patcher window, the object checks the file's typeagainst those that it has been told to accept. If the file is of an acceptabletype, the outline of thedropfile box is highlighted. If the mouse button is released while the cursor is inside the dropfile box, thedropfile object outputs the type and full pathname of the file out its outlets.
types Theword types, followed by oneor morefour-letter typecodes, sets the filetypes that will beaccepted by thedropfile object. Exampletype codes for files areTEXT for text files, maxb for M ax binary format patcher files, and AIFF for AIFF format audio files. types with no arguments makes the object accept all filetypes, which is the default setting.
border The word border, followed by a 1 or 0 , sets whether thedropfile object draws a border around its box. Thedefault is no border.

\section*{Arguments}

> None.

\section*{Output}
symbol Out left outlet:When an acceptablefile icon has been dragged onto dropfile and themousereleased within its box, the absolutepathname of the file is sent out as a single symbol. The output pathnames contain slash separators.

Absolute pathnames look likethis:
"C:/MaxFolder/extras/mystuff/mypatch.pat"
The conformpath object can beused to convert paths of one pathtype and/or pathstyle to another.

When aliases of folders are dragged onto dropfile, the aliases are resolved to create theoutput path.

If you want to use thedropfile object to cause a file to be read by another object that accepts the read message with a filename argument, put a prepend read object between dropfile and theobject that will open afile, as shown in the example below.
any symbol Out right outlet: The four-letter type code of the acceptablefile is sent out the right outlet.

\section*{Examples}
types message lets you specify the file types which can be dropped onto droptile.
types maxb TEXT
the droptile is transparent, so you can place other objects (e.g. comment boxes, pamels)
on top of it.

prepend set
"MyDisk:/My Documents/collfile.txt"
the file dropped onto the dropfile is read into the coll.

\section*{See Also}
absolutepath Convert a file nameto an absolute path
relativepath
strippath
opendialog
Convert an absolute to a relative path
Get filenamefrom an absolute pathname
Open a dialog to ask for a file or folders

\section*{Input}
bang In left inlet: Causes drunk to take astep of random sizeup or down from its currently stored value. It updates the stored value and sends it out the outlet.
int In left inlet: The number replaces the stored value and is sent out the outlet.
In middle inlet: Thenumber is stored as the maximum value that can beoutput by drunk. (Note: If thespecified maximum is less than 0 it is set to 0 .)

In right inlet:Thenumber limitsthestep sizetaken in responseto abang in the left inlet. Thestep (up or down) will always beless than the absolute value of this number.
float Converted to int.
list In left inlet: The second number in the list sets the maximum value output by drunk, and thethird number (if present) limitsthestep size, then thefirst number replaces the stored value and is sent out the outlet.
set In left inlet: The word set, followed by a number, sets the stored value of drunk to that number without triggering output. Thestored value is initially set in the center of the total range ( \(1 / 2\) themaximum value).
seed In left inlet: The word seed, followed by a number, "seeds" thedrunk object's random generator, which causes a specific (reproducible) sequence of pseudo-random numbers to occur. Thenumber 0 uses the time elapsed since system startup (an unpredictablevalue) as the seed, ensuring an unpredictable sequence of numbers. This unpredictable seed isused by default when thedrunk object iscre ated.

\section*{Arguments}
int Optional. Thefirstargument setsan initial valuefor themaximum number which can be output by drunk. The second argument sets an initial limit on thesize of random steps taken by drunk; the absolute value of the step size will always be less than the absolute value of this limit. If there areno typed-in arguments, the maximum value is set to 128 and thestep size limit is set to 2 (movement up or down by no morethan 1).

\section*{Output}
int The number sent out the outlet is automatically limited between 0 and the specified maximum value, and differs from the previously stored number by less than themaximum step size.

\section*{Examples}


Numbers vary aimlessly in small steps taken within the total range

\section*{See Also}
decide
random
urn

Choose randomly between on and off ( 1 and 0 )
Output a random number
Generate random numbers without duplicates

\section*{Input}
bang Same as dump. Sends out a series of two-element lists, showing the array index and the value at that index for thehorizontal and vertical position of each point the env, as specified in the object's script.
float Converted to int.
set The word set, followed by an array index number and a valueto be stored at that index, sets the value of that array index and redraws the point, without sending anything out the outlet.
embed The word embed, followed by any non-zero number, causes the contents of the script fileto be saved as part of the patch that contains theenv object- the next timethepatch is saved - so that theenv no longer needs to find the script file. The message embed 0 causes the env to forget the contents of the script file when the patch is closed. In either case, the patch must be saved after theembed message has been received in order for a changeto take effect.
open Causes the window associated with theenv object to become visible. The window is also brought to the front. D ouble clicking on theenv object in a locked patcher has the same effect.
wclose Closes the window associated with the env object.
The env object is a script-configurable user interface for function editing, oriented toward thetask of editing envelopedatain synthesizer patch editors.

Therearetwo flavors of this object- env displays and edits the envelopein its own windows, while envi (pronounced "envy") is a user interface object which allows an envelopeto beseen insidea patcher window. Unless otherwise noted, both objects will be referred to generically in the documentation as theenv object.

The env object is configured by a script- a text file- which defines the number of points in an envelope and associates them with some number of data values. If the script is read in successfully (i.e. it contains no syntax errors), the user should be ableto changedisplayed data points in the env window. env saves the name of the last script file read and will try to locate it the next time its owning patch is loaded.

\section*{Arguments}
symbol Theenv object takes an optional argument which is a symbol that names a script fileto beread in which will define the behavior and appearance of the envelope.

Since the envi object is a user interface object, it doesn't have a typed-in argument. However, in both the env and envi objects, thename of the last script file read in is saved in the patcher file containing the object.

A new script file can beopened with theread message. And selecting the envi object and choosing Get Info... from the Object menu puts up Open Document dialog box for selecting a new script fileto be read in.

\section*{Structure of an Envelope}

Theenvelope is defined by a set of hierarchically arranged script messages. Both env and envi use identical format for script files.

Each env object consists of a window (technically in envi, a box in a patcher window), a number of groups, each of which contain points which are logically connected. Each point contains horizontal and/or vertical aspects, and each aspect can contain oneor more display scales, which map internal data values to thosedisplayed on the legend of the envelope window.

\section*{Script Messages}

Theformat of a script file consists of \#E followed by a message keyword (such asgroup or point), followed by that message's arguments. SeetheScript Examples section below for examples.

The window message
D efines parameters applying to the entireenv object and its display.
symbol 1.Title of the envelope window (doesn't apply to envi). To use spaces in thetitle, use single"smart" quotes (option-right bracket and option-right brace).
int 2. H orizontal size. Size of thewindow (or box, in the case of envi) in pixels. For thewindow, thesize will be actually be 15 pixels larger to accommodate the scroll bars.
int 3.Vertical size.
int 4. Number of groups. Each group will be defined in subsequent group messages (seebelow).
int 5 . Number of data values that define the envelope(s).
int 6. Left margin. Distance in pixels from left edge of the window (box) wherethe envelope and text legend is drawn.
int 7.Bottom margin. Distance in pixels from bottom edge of thewindow (box) wherethe envelope is drawn.
int 8. Top margin. Distancefrom thetop of the window (box) wheretheenvelope is drawn. This should take into account the legend (which is 15 pixels), 50 a value of 20 or more pixels is suggested.

\section*{The group message}

Defines a group of logically connected points, what would usually bethought of as an "envelope" - but theenv object allows an arbitrary number of groupsin a singlewindow.
int 1. Group number. Specifies the group (starting at 1) being defined.
symbol 2. Group name. Precedes the name of any specific parameter and valuein an envelopelegend display. Theword none can be used to indicatethat no group nameis desired.
int 3 . Number of points in this group. Each will be defined below with a point message.
int \(\quad 4 . V i s i b l e .1\) if this group is initially visible, 0 if it isn't.
int 5. Display flags. 1 if you only want the parameter names and values of a point being dragged. 0 if you want all the parameter names and values displayed when a point in the group is being dragged. Other display flags may be defined later.
int 6. (Optional) Color. 1-15 as an index into the color palette and correspond to the colors set in the Edit Colors... patch accessed via the O ptions menu.

\section*{The point message}

Defines the appearance of a"point" in an envelope.
int 1 . Point number being defined. Thefirst point in any group is number 1.
int 2. Button size(in pixels) of the round or square"button" centered at this point.
int 3. Button flags. Therightmost bit (i.e. 0 or 1 ) is 0 if thebutton is to besquare and 1 if the button is to beround. Bit 1 (i.e. 0 or 2 ) is 1 if thebutton is solid, 0 if it is transparent. Bits 2-6 (inclusive) specify an index for a black and white pattern. UseResEdit to examinetheSystem Fileand look at PAT \#ID 1 for theindices of common black and white patterns.
int 4. Line-from point. If non-zero, specifies another point, which should always be numbered lessthan this point, which is to beconnected to thispoint with aline. This connection is only a display property. Logical dependencies between points are specified in thehoriz and vert messages below.

\section*{The horiz and vert messages}

These messages define the two directional aspects of each point. M ost of the "meat" of the envelope specification is contained in these messages. If you wish to keep one of the directions fixed, you need not definethat direction for a particular point. The arguments to horiz and vert areidentical, except where noted.
symbol 1.Parameter name. The name (e.g.'Rate 1') associated with moving the point in this direction. none can be used if there is no parameter name associated with this point.
int 2. Data index. Theindex into the array of data values (starting at 0 ) corresponding to the value of this parameter. If there is no data associated with this direction, use-1 (this will not be uncommon for oneor moredirections of oneor more points in an envelope). When a list containing this data index and avalue is sent to the env object, this point will move accordingly.

Notethat all data values are stored as integers. You can display a floating point number in the legend for this parameter by defining a scale expression or table (seethescale message below).
int \(3 . M\) inimum value of this parameter.
int 4. M aximum value of this parameter.
int 5. Initial value of this parameter.
int 6 . Increment of this parameter. Not currently supported, should be set to 1.
symbol 7.Unit name. The units of this parameter (e.g. ms for milliseconds or \% for percentage). none may beused if the units arenot tied to any particular units, such as therate and level units on Yamaha synthesizers).

When two points are"tied together" in the horizontal or vertical direction it means that changes in one point are linked to others. Ties are expressed in terms of higher numbered points beingtied to lower numbered ones. There are two types of ties-absolute and relative. An absolutetie means that a point changes its position on the screen to assume the exact value of another point.A relativetie, which is very common for horizontal aspects, meansthat the location of any point on the screen is based on a distancefrom another point. The common envelope shown in the second Script Example section below has point 2 with a relative horizontal tieto point 1, point 3 with a relative horizontal tieto point 2 (and hence to point 1), and point 4 with a relative horizontal tieto point 3 . If point 1 is allowed to move left and right (as for example if there were an initial delay for the envelope, all theother points would moveas well. None of the points are vertically tied to each other, although in aDX7 envelope which has a non-zero final level, it is customary to tie points, points 1 and 4 would be absolutely vertically tied. You cannot tie the horizontal direction of one point to the vertical direction of another.
int 8. Absolutetie point. Point number that this point is absolutely tied to (must be less than this point number). This point will appear at the exact same horizontal or vertical position as the point it istied to. Use 0 if this point is nottied.
int 9. Fixed. If this point is fixed at a particular position on the screen, use 1. Otherwise use 0 . This may betruefor thehorizontal or vertical direction of the first (leftmost) point in an envelope.
int 10. Relativetie point. Point number that this point is relatively tied to (must be less than thispoint number) in thisdirection. This point's position will bean offset (depending on its value) from the position of the point being tied to in the horizontal or vertical direction. Use 0 if this point is not relatively tied to other points in this direction (commonly truefor the vertical direction).
int 11. Positive direction. Sets which direction the value of a point increases. For the vertical direction, 0 indicates that the value increases as the cursor is moved to the top of the screen, while 1 indicates that the value increases as the mouse is moved to the bottom of the screen. For the horizontal direction, 0 indicates that the value increases as the cursor is moved to the right, while 1 indicates that the value increases as the cursor is moved to the left.
int 12. Coverage size. Determines how many pixels the range of the parameter is mapped into. For a garden variety envelope, you generally use most of the entire vertical spacefor the vertical direction, so you would use a formula like: <window vertical size> - <legend height> - <top margin> - <bottom margin> For the horizontal direction, the amount of spaceyou use should bedetermined by the number of points in theenvelope, and how much scrolling you want to require the user to do if the envelope is stretched to its maximum width.

\section*{The scale message}

D efines a conversion between the internal values (integers) used to storethe data in an envelope and their displayed values, which may befloating point numbers. W hen envelope parameters represent physical quantities, manufacturers often use scale factors. In the scale message, you can specify a mathematical expression to convert the internal format to another integer or floating point number which is displayed in the legend.

A scalecan beexpression in theform of theargumentsto theexpr object, or it can bealist of values (including symbols) to which the internal data values map.

Each direction can havean arbitrary number of scales, each of which is applicable over a specified range. If there is no scale which applies to a data value, the legend will display theinternal data value. One use of a scale in this context might beif thelowest value of an envelopesignified "Off" - you could have a scale that mapped 0 to the word "Off" but left theother values unchanged.
int 1.M inimum. Lowest valuefor which this scale applies.
int 2. M aximum. Highest value for which this scale applies.
int 3. Floating-point digits. Number of digits after the decimal point used to display floating-point numbers in the legend.
symbol 4.The word is or table. Determines whether what follows is interpreted as a mathematical expression or atable of values used for mapping.
5. Additional data. For expressions: \$i1 represents the internal data being mapped to the legend. Examples:
is \$12 *.07;Multiplies the internal value by a scale factor
is \(\$ 11-1 ;\) Subtracts 1 from the internal value
is (\$11-1)*:07;Compound expression
is 100 - \(\$ 11\) IInverting an internal value
For tables: alist of values which map successive values of the internal data separated by spaces. Thetable can contain up to 240 elements. Use additional scale messages for larger tables. Example:
table Off 10203040 ;
Here, the minimum value will bemapped to the word "Off", next value to 10, next valueto 20 etc.

Other Examplescale messages:
\#Escale 000 table Off; (M apsthe minimum valueto the word "Off.")
\#Escale 102 is \$11 * .04;(Scales additional values by . 04 and prints as floating-point number with 2 decimal places.)

\section*{The phase message}

This message specifies that the previously defined vert aspect of a point has a signed component. Either the parameter of the envelope can bea negativenumber, or there is a separate data value that represents the phase ( 0 for negative, 1 for positive). Thephase message must immediately follow thevert messageit modifies.

\section*{The comment message}

This message begins a comment in the envelope script, which must be contained on asingleline and terminated with a semicolon.

\section*{The end message}

This message is required at the end of an envelope script. It reconfigures theenv object and changes the di splay in itswindow or box if necessary. It has no arguments.

Script-configurable
envelope editor

\section*{Script Examples}

Thefollowing script defines an envelope which consists of 4 groups of individual points which are used in an early reflection tap editor. Thehorizontal position of the point determines a delay and the vertical position determines a percentage of theoriginal signal to repeat. A picture is shown after the script.
```

\#E window ERFEnv 400 148 4 96 8 8 24;
\#E group 1 EarlyReflection1 1 1 1;
\#E point 1 8 1 0;
\#E horiz time 0 1 500 1 1 ms 0 0 0 0 100;
\#E vert level 1 0 1024 0 1 % 0 0 0 0 100;
\#E scale 0 1024 2 is \$i1 * .0977;
\#E group 2 EarlyReflection2 1 1 1;
\#E point 1 8 1 0;
\#E horiz time 2 1 500 1 1 ms 0 0 0 0 100;
\#E vert level 3 0 1024 0 1 % 0 0 0 0 100;
\#E scale 0 1024 2 is \$il * .0977;
\#E group 3 EarlyReflection3 1 1 1;
\#E point 1 8 1 0;
\#E horiz time 4 1 500 1 1 ms 0 0 0 0 100;
\#E vert level 5 0 1024 0 1 % 0 0 0 0 100;
\#E scale 0 1024 2 is \$i1 * .0977;
\#E group 4 EarlyReflection4 1 1 1;
\#E point 1 8 1 0;
\#E horiz time 6 1 500 1 1 ms 0 0 0 0 100;
\#E vert level 7 0 1024 0 1 % 0 0 0 0 100;
\#E scale 0 1024 2 is \$i1 * .0977;
\#E end;

```


Picture of object for Script Example \#1

Thefollowing script defines atwo groups with moretraditional synthesizer amplitude envelopes that have threepoints. Thefirst point isfixed in the vertical direction but moves horizontally. The other two points movein both directions, and all threepoints are connected by a line. A picture is shown after the script.
```

\#E window TestEnv 400 148 2 10 8 8 24;
\#E group 1 Thing1 3 1 0;
\#E point 1 8 0 0;
\#E horiz Delay 0 0 99 0 1 ms 0 0 0 0 100;
\#E vert none -1 0 99 0 0 none 1 0 0 0 100;
\#E point 2 8 0 1;
\#E horiz Rate1 1 0 99 50 1 ms 0 0 1 1 100;
\#E vert Level1 2 0 99 50 1 ms 0 0 0 0 100;
\#E point 3 8 0 2;
\#E horiz Rate2 3 0 99 50 1 ms 0 0 2 1 100;
\#E vert Level2 4 0 99 50 1 ms 0 0 0 0 100;
\#E group 2 Thing2 3 1 0;
\#E point 1 8 3 0;
\#E horiz Delay 5 0 99 0 1 ms 0 0 0 0 100;
\#E vert none -1 0 99 0 0 none 1 0 0 0 100;
\#E point 2 8 3 1;
\#E horiz Rate1 6 0 99 50 1 ms 0 0 1 1 100;
\#E vert Level1 7 0 99 50 1 ms 0 0 0 0 100;
\#E point 3 8 3 2;
\#E horiz Rate2 8 0 99 50 1 ms 0 0 2 1 100;
\#E vert Level2 9 0 99 50 1 ms 0 0 0 0 100;
\#E end;

```
Thing1 Delay: 47 ms , Rate1:0 ms , Level1: 83 ms , Rate2:24 ms, Level2:0 ms

Picture of Object for Script Example\#2

\section*{Input Messages}

Because it can have an arbitrary number of data values, theenv object has only one inlet. The envelopedata is stored in an array. The script filespecifies how array indices correspond with horizontal and vertical aspects of the points in an envelope.
list A list received by env stores anew value in a data point. Thefirst number in the list specifies the location (array index), and the second number is the data value to
store at the location. The env object limits the range of its input values, according to the minimum and maximum of each data point specified in the script file.

Thefunnel object takesanumber in oneof itsinlets and outputs a list with thefirst element being theindex of the inlet and the second element being the incoming number. It was designed to beused to preparethe lists required by theenv object.
int If the number is between 0 and the maximum array index, env outputs a list containing the index followed by the data value at the array index.
show Theword show, followed by a group number, makes that group visible. Followed by two numbers, makes a range of groups visible from the first to the second number.
hide Theword hide, followed by a group number, makes that group invisible. Followed by two numbers, makes a range of groups invisiblefrom thefirst to the second number.
open Opensthe env object'sdisplay window if its closed, or bringsit to thefront. D oesn't apply to theenvi object.
read Putsup a standard O pen D ocument dialog for the user to select a new script file for configuring theobject.
dump Outputs all the current data values of the envelope, as successivetwo element lists. Thefirst number is the data index and the second is the data value.

\section*{Output}
list When the mouse button is released or a number is received in its inlet, env sends lists outsits outlet which consist of two numbers. Thefirst is an array index and the second is the new value at that index. Only newly modified values areoutput. When env receives the dump message in its inlet, all data values are sent out in this list format.

The spray object takes a list as input and sends the second element out the outlet number specified by the firstelement. It was designed to distribute thelists output by the env object to individual outletsfor display by number boxes or to send to librarian editor objects such as libto.

\section*{Using an Envelope Window or Box}

Theenvelopedisplay hastwo areas separated by a horizontal line- the upper area of 15 pixels contains a legend of text in 9 point \(G\) eneva that indicates the names and values of the points the user is currently changing. The lower area contains the actual groups of points which may or may not be connected by lines.

The use of theenv object's window (or theenvi object's box) issimple- just click on one of thevisible points. With no modifier keys held down, data values are incremented by a pixel's worth of movement. How much this amounts to isdetermined by theratio of each direction'sCoveragesize argument to its parameter range(difference between maximum and minimum values). For example, in the first example script above, there are 1024 data points and a Coverage size of 100, so moving the cursor one pixel changes the value by 1024/100, or about 10.

With the Shift key down, movement of a point being dragged is constrained to thedirection the cursor moves in first. Releasing the Shift key at any time removes the constraint.

With theCommand key on M acintosh or Control key on Windowsheld down, mouse movement is in "finemode" - no matter what the ratio of parameter range to Coverage size, the parameter data is changed by 1 with each pixel you move the mouse.

Finemode can beentered or left instantaneously by pressing or releasing theCommand key on M acintosh or Control key on W indows whiledragging the mouse.

\section*{See Also}
envi
funbuff
funnel
line multislider
spray

Script-configurable envelopein a patcher window
Store x,y pairs of numbers together
Tag data with a number that identifies its inlet Output numbers in a ramp from one valueto another
Multipleslider and scrolling display
Distribute an integer to a numbered outlet

Script-configurableenvelope in a patcher window

The envi object is the patcher window version of theenv object. Thediscussion of theenv object covers both objects.
int The error object allows you to catch errors and output them as \(M\) ax messages. A non-zero number starts the error object "listening" for M ax errors. Theerror object must belistening to produce any output. A 0 turns off listening.
float Converted to int.

\section*{Arguments}

None.

\section*{Output}
symbol Any M ax error generated by any object in any patch whiletheerror object is listening is sent out the outlet preceded by the symbol error. Themessages areoutput as individual words so you can check for specific failures.

If you want to strip off theinitial error messagefrom theobject's output, usea route error object. If you want to usetheerror object's output as a message, put a prepend read object between route error and theobject that will process the error message.

\section*{Examples}


\section*{See Also}
print
Print any message in theM ax window
int Thenumber received in each inlet will bestored in place of the\$i or \$f argument associated with it. (Example: Thenumber in the second inlet from theleft will be stored in place of the \(\$ 2\) and \(\$ \$ 2\) arguments, wherever they appear.)
float Thenumber in each inlet will bestored in place of the \(\$\) or \(\$\) argument associated with it. Thenumber will betruncated by a \$i argument.
symbol Theword symbol, followed by the name of atable, will be stored in place of the\$s argument associated with that inlet, for accessing values stored in thetable.
bang In left inlet: Evaluates the expression using the values currently stored.
list In left inlet: Theitems of the list are treated as if each had comein a different inlet, and the expression is evaluated. If the list contains fewer items than there are inlets, the most recently received value in each remaining inlet is used.

Any of the above messages in the left inlet will evaluatethe expression and send out the result. If a value has never been received for each changeable argument, that value is considered 0 when the expression is evaluated.

Thenumber of inlets is determined by how many changeable arguments are typed in. Themaximum number of inletsis 9 .
set In left inlet: Theword set, followed by oneor morenumbers, treats thosenumbers as if each had comein a different inlet, replacing the stored value with thenew value, but the expression is not evaluated and nothing is sent out the outlet. If there are fewer numbers in the message than there are inlets, the stored value in each remaining inlet stays unchanged.

\section*{Arguments}

Obligatory. The argument is a mathematical expression, in a format resembling theC programming language. The expression is made up of numbers, arithmetic operators such as + or *, comparisons such as < or > , C functions such as min() or pow (), names of table objects, and changeable arguments(\$i, \$f, and \$s) for ints, floats, and symbols received in the inlets.
int or float Numbers can be used as constants in the mathematical expression.
\$i or \$f A changeableint argument is specified by \$i or \$f and an inlet number (example: \$i2). The argument will be replaced by numbers received in the specified inlet.
\$s Theargument \$s and an inlet number is replaced by the name of a table to be accessed. Theargument should beimmediately followed by a number in brackets specifying an address in the table. (Examples: \$s2[7] or \$s3[\$i1].)
(other) A rithmetic operators understood by expr are: \(+,-,,,, I, \%\). Other operators are~ (one's complement), ^ (bitwise exclusive or), \(\&, \alpha \&, \mid, \|\), and ! (not).

M any C language math functions can beunderstood by expr. A function must be followed immediately by parentheses containing any arguments necessary to the function. If the function requires a comma between arguments, the comma must be preceded by a backslash ( \((1)\) so that \(M\) ax will not be confused by it. For example: pow(\$i11,2).

C languagefunctions understood by expr are: abs, min, max, sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, int (convert to integer), float (convert to float), pow, sqrt, fact (factorial), exp (power of eto x), log10 (log), In or log (natural log ), and random. Additional functions can be added by means of external code resources placed in Max's startup folder.

\section*{Output}
int or float Theoutput is the result of the evaluated expression.

\section*{Examples}


Combine many calculations into oneobject, even using functions not availablein other objects

\section*{See Also}
if
vexpr
Tutorial 38

Conditional statement in if/then/elseform
Evaluate a math expression for a list of different inputs
expr and if

\section*{Arguments}

None.

\section*{Output}
list Sendsthe datethat thefilewas last changed asa list (month, day, year, hours, minutes and seconds).

\section*{Examples}

output format is a list: month i day ' year i hows i minutes i seconds of when the file was last changed.
filedate displays how recently a file has been changed

\section*{See Also}
\begin{tabular}{ll} 
date & Report current date and time \\
filein & Read in a fileof binary data \\
filepath & Report information about the current search path \\
folder & List thefiles in a specific folder \\
opendialog & Open a dialog to ask for a file or folder
\end{tabular}

\section*{Input}
int Specifies a byte offset in a binary file, and outputs the data stored at that point in thefile.

In left inlet: The byte contained at that offset in the file is sent out the left outlet.
In middleinlet:The 16-bit word contained at that byte offset in thefile is sent out the left outlet as an unsigned (short) integer.

In right inlet:The 32-bit word contained at that byte offset within the file is sent out the left outlet as an unsigned (long) integer.
list In left inlet:The second number in the list is received in the middle inlet, then the third number in the list (if present) is received in theright inlet, and then thefirst number in the list is received in the left inlet. Output is sent out the left outlet in the corresponding order.
read Displays a standard file dialog to select a file to be read into memory. If the word read is followed by a filename found in M ax's search path, that file will be automatically read into memory.
spool Displays a standard file dialog to select a file, which will be accessed from disk whenever an int is received. If the word spool is followed by afilename found in M ax's search path, that file will be automatically pointed to for future access. This method of accessing a file occupies less RAM, but does not output data immediately at interrupt level in response to an int message.
fclose Closes the filebeing read, making filein no longer respond to int or list messages.

\section*{Arguments}
symbol
Optional. Specifies a filename to be read into thefilein object automatically when thepatch is loaded. If thefilename is followed by a second argument, spool, the file will be accessed from disk rather than read into memory.

\section*{Output}
int Out left outlet: An unsigned integer representing the 8, 16, or 32 bits stored in the fileat the location specified by theinputint.
bang Out middle outlet:W hen a number greater than or equal to the number of bytes in thefileis received in an inlet, abang is sent out signifying that the end of thefile (EOF) has been reached.

Out right outlet: Signifies that a read or spool operation has been completed. This bang indicates that the file has been accessed succesfully and that filein is ready to receiveint messages.

\section*{Examples}


O utput the content of a file in 8 -, 16-, or 32-bit chunks

\section*{See Also}
text
Format messages as a text file

Report information about the current \(M\) ax search path

\section*{Input}
any symbol The pathname of a file in the search path as a symbol. Input pathnames can contain slashes, colons, or backslashes as separators.

A pathname looks likethis:
"drive:|folderffilename.ext" (absolute pathname)
".Jmypatches/steaksauce.ext"(relative pathname)
bang A bang causes the currently saved path name(s) to be output as a list.
append The word append, followed by a symbol which specifies a folder, adds the folder to the list of paths (but does not save it in the Preferences file).
set The word set, foll owed by the name of a M ax search path type (search, startup, help, action, or default), sets the current search path to the type specified.
revert Causes the pathnames to bereset to the last set of \(M\) ax file preferences to be saved.
dear Causes the currently specified search path to be cleared.

\section*{Arguments}
symbol Obligatory. Specifies one of the M ax search path types (search, startup, help, action, or default)
int Optional. A number greater than zero specifies a slot in the Preferences file. If the argument is 0 or no number is supplied, the path will not be saved in the Preferences file- you can use thisfeature to createtemporary search paths for a patch. The action, help, and startup paths only have one slot. The search path can have up to 256 slots (normally thereare about 8). The default path is never saved in the Preferencesfile.

\section*{Output}
symbol The currently stored path name in response to abang.

\section*{Examples}


U sefilepath to check your search path or temporarily set search path slots for a patch

\section*{See Also}
\begin{tabular}{ll} 
conformpath & Convert paths of one pathtype and/or pathstyleto another \\
filedate & Report the modification date of a file \\
filepath & Report information about the current search path \\
folder & List the files in a specific folder \\
opendialog & Open adialog to ask for a file or folder
\end{tabular}

\section*{Input}
float In left inlet: Thenumber replaces the currently stored value and is sent out the outlet.

In right inlet:Thenumber replaces the stored valuewithout triggering output.
bang In left inlet: Sends the stored value out the outlet.
set In left inlet:Theword set, followed by a number, replaces the stored value without triggering output.
send In left inlet: Theword send, followed by a name of a receive object, sends the number stored in the float object to all receive objects with that name, without sending it out the float object's outlet.
int Converted to float.

\section*{Arguments}
float Optional. Sets an initial value to bestored in float. If there is no argument, the initial value is 0.0 . A float argument by itself, without the word float, is another way of creating and initializing a float object.

\section*{Output}
float A number is stored in float as asingle- precision floating point number. Theprecision possible in the decimal portion of the number decreases as theinteger part increases. Note: Because of the way decimal numbers are stored, a float value saved in a patcher file might be slightly altered when the file is reopened.

\section*{Examples}


Output thestored value Replacestored value and output it Initial valueis given

\section*{See Also}

\author{
int Storean integer value \\ pv \\ value \\ Tutorial 21 \\ Share variables specific to a patch and its subpatches \\ Share a stored message with other objects \\ Storing numbers \\ Data Structures Ways of storing data in M ax
}
int In left inlet: Thenumber is treated as the pitch value of a pitch-velocity pair and thenote is sent out.

In right inlet: Thenumber is stored as the velocity to be paired with numbers received in the left inlet.
list In left inlet:Thenumbers must beints. The first number is treated as the pitch, and the second number istreated as the velocity, of a pitch-velocity pair, and the numbers are sent out the outlets.
bang In left inlet:Immediately sends note offs for any pitches that have passed through as note-ons but not as note-offs by sending 0 out its right outlet followed by a pitch value out its left outlet.
dear In left inlet: Erases any numbers held by flush, without sending any note offs.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet: Theoutput is the pitch of the note-on or note-off.
Out right outlet: Thenumber is the velocity of the note on or note off.
Theflush object keeps track of the notes that have passed through it. W hen a bang is received in the inlet, note-off messages are provided for any notes that have passed through as note ons only.

\section*{Examples}


M ake sureall notes are turned off by providing note offs for held notes

\section*{See Also}
\begin{tabular}{ll} 
bag & Storea collection of numbers \\
borax & Report current information about note-ons and note-offs \\
makenote & Generatea note-off message following each note-on \\
midiflush & Send note-offs for hanging note-ons in raw M IDI data \\
offer & Storex,y pairs of numberstemporarily \\
stripnote & Filter out note-off messages, pass only note-on messages \\
sustain & Hold note-off messages, output them on command \\
Tutorial 13 & M anaging notedata
\end{tabular}

\section*{Input}
bang Gets the names of all files of a specific type within a specific folder, and outputs those names to be placed in a message object or a pop-up umenu object.
symbol Specifies the pathname of afolder in the search path, and causes the contents of that folder to be output for storage in aumenu or a message. Input pathnames can contain slashes, colons, or backslashes as separators.

A pathnamelooks like this:
"drive:|folderffilename.ext" (absolute pathname)
"./mypatches/steaksauce.ext"(relativepathname)
If the pathname contains any spaces, you will need to enclose the pathname in doublequotes in order to causefolder to understand the pathname as a single argument. Alternatively, you can precede each space with abackslash (I) so that folder won't treat that space as a special character.
types The word types, followed by one or morefour-letter type codes, sets the filetypes that the folder object will look for in the specified folder. Examplefour-letter type codes for files areTEXT for text files, maxb for M ax binary format patcher files, and AIFF for AIFF format audio files.

By default, the folder object looksfor TEXT and maxb (M ax binary) files.
Sameas bang.

\section*{Arguments}
symbol Optional. Specifies the absolutepath to a folder on any mounted volume.

\section*{Output}

O ut left outlet: W hen a pathnameor a bang is received in the inlet, the first messagethat is sent out the left outlet isclear, which is intended to erasethe contents of a receiving message or umenu object.
append Out left outlet: Immediately following the clear message, each filename in the specified folder is sent out in alphabetical order preceded by the word append.
int Out right outlet:W hen a pathnameor a bang is received in the inlet, the number of items in the folder is sent out the right outlet.

\section*{Examples}
baig to list all matching

menu of text files found.
Read in filenames from a folder, then call them up from a pop-up menu

\section*{See Also}
conformpath Convert paths of one pathtypeand/or pathstyleto another
filein
filepath
opendialog
pcontrol

Read in a file of binary data
Report information about the current search path
Open a dialog to ask for a file or folder
Open and close subwindows within a patcher
record Starts recording integers received in the inlet.
bang Starts playing back the sequencestored in follow.
start The word start by itself has the same effect as bang. The word start, followed by a number, plays the stored sequence at a tempo determined by thenumber. The message start 1024 indicates normal tempo. If the number is 512 , follow plays the sequence at half the original recorded speed, start 2048 plays it back at twicethe original speed, and so on.
follow Thefollow message is the main featurethat distinguishes follow from seq. In effect, follow is like a score reader, comparing a live performance with theone previously stored.

Theword follow, and a number, causesfollow to begin comparing incoming numbersto its own stored numbers, beginning at the specified index (the specified event in its own stored sequence). When follow is following, and a number is received that matches the number recorded in follow, it sends out the index of that number.

The follow object is a forgiving score reader, and will try to follow along even if the incoming numbers do not exactly match the recorded sequence. If a number arrives that does not match the next number, or either of the two subsequent numbers in the sequence, follow does nothing. If a number arrives that matches a number up to two notes ahead in the sequence, follow assumes that the performer simply missed a noteor two, and jumps ahead to the matched number.
stop Stops follow from recording, playing, or following.A stop message need not be received before switching directly from recording to playing, following to recording, etc.
next Causes follow to send out theindex and thestored number it is currently trying to match, and move on to the next number.
append Starts recording at the end of the stored sequence, without erasing the existing sequence.
int When follow is recording, the numbers received in its inlet are recorded asa sequence. Thenumbers may be bytes of MIDI messages (from midiformat or midiin), exactly as with the seq object. However, follow differs from seq in its ability to record individual integers; with follow you can record notes as a single pitch value. W hether the performanceisrecorded as completeM IDI messagesor just as note-on pitches, follow can effectively step through the note-on pitch numbers later, when following a performance.

When follow is following, numbers received in its inlet are compared to thenumbers recorded in the sequence. W hen a number is received that matches the number in the sequence, follow sends out the index of that number.
float Converted to int.
delay The word delay, followed by a number, sets the onset time, in milliseconds, of the first event in the recorded sequence.
hook Theword hook, followed by a float, multiplies all the event times in the stored sequence by that number. For example, if the number is 2.0 , all event times will be doubled, and the sequencewill play back twice as slowly. M ultiplications can even beperformed whilethe sequenceisplaying.
write Opens a standard SaveAs dialog box to save thefollow sequence as a file.
read The word read with no arguments puts up a standard Open Document dialog box for choosing a sequencefileto load into follow. If read is followed by a symbol filename argument, the named file is located and loaded into follow.
print Printsthefirst few events of the recorded sequencein theM ax window.
dump Calls up thestandard Open Document dialog box, so that a previously recorded sequence or standard M IDI filecan beopened as text and displayed in a new Untitled text window. This in fact has no direct effect on thefollow object, but does allow you to view or edit a sequence, saveyour changes in a file, then load the new file into follow with a read message.

\section*{Arguments}
any symbol Optional. The argument isthe name of a file containing a previously recorded sequence, to be read into follow automatically when the patch isloaded.

\section*{Output}
int Out left outlet: W hen follow isfollowing, and the number received in the inlet matches the next number in the stored sequence(or oneof the two numbers after that), the index of the matched number is sent out. The index of the next number is also sent out when a next message is received.

O ut right outlet: When follow receives a bang or a start message, therecorded numbers are played back. W hen follow isfollowing, and a next message is received, the next number in the recorded sequence is sent out.

\section*{Examples}


A notethat matches the recorded note can trigger a process, or the notes can be stepped through

\section*{See Also}
seq detonate
Tutorial 35
Sequencing

Sequencer for recording and playing M IDI
Graphic score of noteevents
seq and follow
Recording and playing back MIDI performances

\section*{Input}
anything Sends any message to all receive objects which share the name currently referred to by forward.
send The word send, followed by the name of a receive object, sets the destination for any subsequent messages received by theforward object. This ability to changethe destination of messages on thefly distinguishes forward from the send object.

\section*{Arguments}
any symbol Optional. Sets the name for the receive object which will receive messages. This name can later bechanged with thesend message.

\section*{Output}
anything Thereareno outlets. A message (other than send) received in the inlet of forward is sent out the outlet of each receive object of the samename, even if the receive is in another patch.

\section*{Examples}


\section*{See Also}
message
receive
route
send
value
Tutorial 24

Note: The fpic object requires that QuickTime beinstalled on your system to open any files other than PICT files. If you are using M ax on Windows, we recommend that you install QuickTime and choose a complete install of all optional components.

\section*{Input}
(mouse) In an unlocked patcher, you can change the offset of the picture by holding down theShift and Command keys on M acintosh or Shift and Control keys on Windows and dragging on fpic; the current offset of the picture is shown in theA ssistanceportion of the patcher window as you drag.
autoerase The word autoerase, followed by a nonzero number, causes the picture to erase after a new picture is loaded. This mode isdisabled by default (autoerase 0 ).
autofit The word autofit, followed by a nonzero number, scales thegraphic to fit in the bounding rectangle of thefpic object.
erase The word erase will erase the current picture and then redraw it.
link The word link, followed by symbol which specifies a filename, it will check to see if the graphic has already been loaded by another fpic object. If the object has al ready been loaded into RAM , the fpic object will reference theimage loaded earlier, conserving memory resources.
matrix Theword matrix, followed by ninefloating point numbers, reloads the current file into RAM after performingatransformation matrix operation on theimage. This transformation is the sameoneused for themapping in QuickTime of points from one coordinate space(i.e, theoriginal image) into another coordinate space (a scaled, rotated, or translated version of the original image).

Thetransform matrix operation consists of ninematrix elements
\begin{tabular}{lll}
\(a\) & \(b\) & \(u\) \\
\(c\) & \(d\) & \(v\) \\
\(t_{-} x\) & \(t_{-} y\) & \(w\)
\end{tabular}
if \(u\) and \(v\) are 0 ., and \(w\) is 1 ., we havethe following translation formula.
\[
\begin{aligned}
& x^{\prime}=a^{*} x+c^{*} y+t_{-} x ; \\
& y^{\prime}=b^{*} x+d^{*} y+t_{t}
\end{aligned}
\]

Thefollowing formulas are used for scaling/rotation:
\[
a=x s c a l e^{*} \cos (\theta)
\]
\[
\begin{aligned}
& b=y s c a l e * \sin (\theta) \\
& c=x \text { scale* }(-\sin (\theta)) \\
& d=y s c a l e e^{*} \cos (\theta)
\end{aligned}
\]

For moreon thetransformation matrix, consult theAppleQuickTimeDeveloper documentation found at:
http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/iqMovieToolbox.c.htm\#18006
noscale Theword noscale disables image scaling,
offset The word offset, followed by two numbers, specifies thenumber of pixels by which the left upper corner of the picture isto be offset horizontally and vertically from theleft upper corner of the fpic box. By default the left upper corner of the picture is located at the left upper corner of fpic (that is, with an offset of 0,0 ). With successiveslightly different offset messages, a picture can be moved inside fpic, and fpic can window different portions of a large picture. (In order to give the appearance of smooth transitions when moving an image, the old image is not erased when using theoffset message. This may cause an undesired appearance if your picture contains a blank background that doesn't cover up what's beneath it.)
pict The word pict, followed by the name of a graphics file in M ax's search path, opens thefile and displays the picture, replacing whatever picture was previously displayed. Thefpic object acceptsPICT files and, if QuickTimeVersion 3.0 or later is installed, other picture file formats that are listed in theQuickTime appendix.
read The word read, followed by a symbol which specifies a filename, looks for aQ uickTime graphic file with that name in M ax's file search path, and opens it if it exists, displaying it in a graphic window. If the filename contains any spaces or special characters, the name should be enclosed in doublequotes or each special character should be preceded by a backslash ( \()\). The word read by itself puts up a standard Open Document dialog box and displays the common graphicsfiles supported by QuickTime.
readany The word readany, followed by a symbol which specifies afilename, functions in thesamemanner as theread message, except that the O pen D ocument dialog box does not filter its display by the currently supported filetypes.
rect The word rect, followed by four numbers that specify the size of scaling rectangle to apply to fit the input image within, loads the graphics file from disc into RAM and displays it. The first two numbers specify the placement in the graphic window as offset values, and the second two numbers specify the width and height, in pixels, of the rectangle.
scalemode The word scalemode, followed by number in the range \(0-3\), sets the scaling mode used by thefpic object.

Display a picture from a graphics file

If the fpic object is set to scaling mode 0, no scaling is performed; the image is displayed as read into memory.

If the fpic object is set to scaling mode 1 , scaling is performed using the QuickTimetransformation matrix (seethematrix message for more information); the image will be scaled and rotated according to the current or default settings of the transformation matrix. The matrix variables can be changed using thefpic object's Inspector or by using the matrix message.

If the fpic object is set to scaling mode 2, rectangular scaling is performed (seethe rect messagefor moreinformation). Theimage will beloaded and displayed according to the current or default settings of therect message.

If the fpic object is set to scaling mode 3 , the image is autosized; the fpic object scales the graphic to fit in the window currently displayed.
storage The word storage, followed by two numbers which specify horizontal and vertical distances in pixels, will load only a portion of thegraphic image into RAM, which can beused to conserve memory resources.

Note: if either of the arguments are 0 , fpic will not limit its storage.
time The word time, followed by a number which specifies atime in QuickTimetime units, loads an individual frame from a QuickTime movie and displays it. Typically, QuickTimemovies display at a rate of 600 units/second. The default is 0 (i.e., frameone).

\section*{Inspector}

The behavior of a fpic object is displayed and can beedited using its Inspector. If you have enabled the floating inspector by choosing Show Floating I nspector from theW indows menu, selecting any fpic object displays the fpic Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

The fpic Inspector lets you set the following attributes:
Picture 0 ffset specifies the number of pixels by which the left upper corner of the picture is to be offset horizontally and vertically from the left upper corner of the fpic box. By default the left upper corner of the picture is located at the left upper corner of ficic (that is, with an offset of 0,0 ). This offset can bechanged by entering new pixel values into the number boxes. The default is no offset (i.e. 0 horizontal, 0 vertical).

TimeOffset mode allows you to specify a frame offset in QuickTimetime units and load an individual frame of a movie as a graphic. Thedefault is 0 (i.e., frame one).

Display a picture from a graphics file

TheScaling M odepop-up menu can beused to select the type of scaling used by thefpic object. There are four scaling modes available: TheN one option (the default) performs no image scaling. Choosing theM atrix option will open a patcher window and let you input matrix values for image scaling and rotation. If you have not previously specified matrix values, the defaults will beused. The Rectangular option also brings up a patcher window which lets you specify the position of the rectangle within the graphic window, in relative coordinates, and the width and height, in pixels, of the rectangle(thedefault values areall set to 0). TheAuto-Fit option will automatically scaletheimage to fit the display area.

Internal Storage can beused to conserve RAM by only loading a portion of the graphic fileinto RAM . The area is specified by horizontal and vertical pixel values. Note: if either value is entered as 0 , fpic will not limit its storage.

ThePictureFileoption letsyou choosea picturefilefor thefpicobject to display by clicking on the Open button. Thecurrent file's nameappears in thetext box to the left of the button. You can also choose a fileby typing its namein this box, or by dragging a fileicon from theFinder into this box.

TheRevert button undoes all changes you've madeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object beforeyou opened the Inspector window by choosing Undo Inspector C hanges from the Edit menu whiletheInspector is open.

\section*{Arguments}
(Get Info... ) After placing an fpic object in a patcher window, while it isstill selected, choose the Get Info... command from the Object menu. This brings up the Inspector window for thefpic object, where you can choose a graphics fileto display inside the fpic object's box. The picture appears at 100\% size, and thefpic object's box may then be resized manually to accommodateit. Thelower right part of the picturewill becropped by an fpic box which is smaller than the size of the picture.

Thefpic object issimply for displaying pictures in patcher windows. The same visual effect can be achieved by choosing thePaste Picture command from the Edit menu, but that includes the picture in the patcher file, often making thefile slow to save and load. Instead, fpic just references the graphics file on disk. A nother advantage of using the fpic object is that it may reducedisk space and memory usage, sincethe same picturefile may be referenced in many patcher windows, rather than being saved in each one. The external graphics file must be in M ax's search path, however, in order to be automatically di splayed thenext timethepatch is opened.

\section*{Output}

None.

\section*{Examples}


Placea picturein a patch
( for the sheer beauty of it)...
...or makeit functional by placing ubutton objects over it.

\(M\) akea slide show by changing pictures, or movea picture by changing its offset

\section*{See Also}
\begin{tabular}{ll} 
imovie & Play aQuickTimemoviein a patcher window \\
Icd & Draw graphics in a patcher window \\
matrixcrtrl & M atrix-styleswitch control \\
panel & Colored background area \\
pictctrl & Picture-based control \\
pictslider & Picture-based slider \\
ubutton & Transparent button, sends a bang \\
Menus & Explanation of commands
\end{tabular}

\section*{Input}
bang In left inlet: Draws a framed rectangle using the current screen coordinates, drawing mode, and color.
int In left inlet: Sets the left screen coordinate of the rectangle and draws the shape.
In 2nd inlet: Sets the top screen coordinate of the rectangle.
In 3rd inlet: Sets the right screen coordinate of the rectangle.
In 4th inlet: Sets the bottom screen coordinate of the rectangle.
In 5th inlet: Sets the drawing mode of the rectangle.Thefollowing are drawing mode constants; not all modes will be available on all operating systems.
\begin{tabular}{llll} 
Copy & 0 & blend & 32 \\
Or & 1 & addPin & 33 \\
Xor & 2 & addOver & 34 \\
Bic & 3 & subPin & 35 \\
NotCopy & 4 & transparent & 36 \\
NotOr & 5 & adMax & 37 \\
NotXor & 6 & subOver & 38 \\
NotBic & 7 & adMin & 39
\end{tabular}

In 6th (right) inlet: Sets the paletteindex (color) of theframe according to the graphics window's current palette. W hen the monitor is in black and white mode, any nonzero index isblack, and 0 is white.
frgb In left inlet: The word frgb, followed by three numbers between 0 and 255 , sets the RGB values for the color of the frame the next time it is drawn.
priority In left inlet: The word priority, followed by a number greater than 0 , sets a frame object's sprite priority in its graphics window. O bjects with lower priority will draw behind those with a higher priority.

\section*{Arguments}
any symbol Obligatory. Thefirst argument to frame must bethe name of a graphics window into which the rectangle will bedrawn. The window need not exist at thetimethe frame object is created, but the rectangle will not bedrawn until the name matches that of an existing and visiblewindow.
int Optional. Sets theinitial sprite priority of the frame. If no priority is specified, the default is 3 .

\section*{Output}
(visual) W hen theframe object'sassociated graphics window isvisible, and abang message or number is received in its left inlet, a shape is drawn in thewindow, and the object's previously drawn rectangle(if any) is erased.

\section*{Examples}

See examples under oval or rect. frame can be directly substituted for oval, rect, or ring.

\section*{See Also}
\begin{tabular}{ll} 
graphic & Window for drawing sprite based graphics \\
Icd & Draw graphicsin a patcher window \\
oval & Draw solid oval in a graphic window \\
rect & Draw solid rectanglein a graphic window \\
ring & Draw framed oval in a graphic window \\
Graphics & O verview of M ax graphics windows and objects
\end{tabular}

\section*{Input}
symbol Thefromsymbol object accepts a symbol for input, and outputs a list of numbers or messages correspond to the "contents" of the symbol. Thefromsymbol object is useful for parsing a text symbol composed of numbers, (e.g., "3.556.520") or dividing a symbol up into individual messages.

\section*{Arguments}

None.

\section*{Output}
messages, lists, or numbers

A list of numbersor messages which correspond to parsed contents of theoriginal symbol.

\section*{Examples}


\section*{See Also}
sprintf
tosymbol
zl

Format a message of words and numbers
Convert messages, numbers, or lists to a single symbol
Multi-purposelist processor

\section*{Input}
float In left inlet: Thenumber is sent out the right outlet, then the number in the right inlet is sent out the left outlet.

In right inlet: Thenumber is stored to be sent out the left outlet when a number is received in the left inlet.
int If there is a float argument, the numbers are converted to float. If there is an int argument or no argument, thenumber received in the right inlet is stored as an int.
list In left inlet: Thenumbers arestored in fswap. Thefirst number is sent out the right outlet, then the second number is sent out the left outlet.
bang In left inlet: Swaps and sends out the numbers currently stored in fswap.

\section*{Arguments}
int or float Optional. Sets an initial value for thenumber which isto be sent out the left outlet. If there is no argument, the initial value is 0 . If there is an int argument or no argument, an int is sent out theleft outlet. (The number sent out the right outlet is alwaysafloat.)

\section*{Output}
int When a number is received in the left inlet, thenumber in each inlet is sent out the opposite outlet. If there is an int argument or no argument, an int is sent out the left outlet.
float Thenumber sent out theright outlet is always a float. Thenumber sent out the left outlet is a float only if there is a float argument.

\section*{Examples}


Numbers aresent out in reverse order from the order in which they were received

Reversethe sequential order of two decimal numbers

\section*{See Also}
\begin{tabular}{ll} 
pack & Combinenumbers and symbolsinto a list \\
swap & Reversethe sequential order of two numbers \\
unpack & Break alist up into individual messages
\end{tabular}
list In left inlet: \(x\) and \(y\) values for a data pair stored in funbuff. If the \(x\) value is the same as an \(x\) value already stored in funbuff, the previously stored pair is replaced by thenew pair.
int In left inlet: The number is the \(x\) value of an \(x\), \(y\) pair. If a \(y\) value has been received in the right inlet, the two numbers are stored together in funbuff. Otherwise, thex value causes the correspondingy valuestored in funbuff to be sent out the left outlet.

If thereis no stored \(x\) value which matches the number received, funbuff uses the closest \(x\) value which is less than the number received, and sends out the correspondingy value.

In right inlet: Thenumber is a y value which will bepaired with thenext \(x\) value received in the left inlet, and stored in funbuff.
bang In left inlet: Prints information in theM ax window concerning the current status of funbuff's contents: how many elements it contains, the minimum and maximum \(x\) and \(y\) values it contains, and its domain and range(themaximum minus the minimum, for the \(x\) and \(y\) axes respectively).
float In either inlet: Converted to int.
clear Erases the contents of funbuff.
copy Copies the current selection (made by using theselect message) into theglobal funbuff clipboard. Thedata stored on this clipboard can then bepasted into another funbuff object using the paste message.
cut Copies the current selection (madeby using theselect message) into the global funbuff clipboard and deletes it from the funbuff object. Thedata stored on this clipboard can then be pasted into another funbuff object using the paste message.
delete In left inlet: The word delete, followed by two numbers, looks for such an \(x\), y pair in funbuff, and deletes it if it exists. If delete isfollowed by only onenumber, only the \(x\) value is sought, and deleted if it is present.
dump In left inlet: Sends all the stored pairs out the middle and left outlets in immediate succession. They values are sent out the middle outlet, and thex values are sent out the left outlet, in alternation. The pairs are sent out in ascending order based on thex value.
embed Theword embed, followed by a non-zero number, causes the funbuff data to be stored inside the patcher. The default setting is not to store thefunbuff data inside the patcher.
find The word find, followed by a number, will output (out the left outlet) all x values (indexes) whosey value is equal to the number indicated.
goto The word goto, foll owed by a number, sets a pointer to thex value (index) specified by the number.A subsequent next message will return they value at the specified x .
interp In left inlet:Theword interp, followed by a number, uses that number as an x value, measures its position between its two neighboring x values in the funbuff, and then sends- out the left outlet- they valuethat holds a corresponding position between the two neighboring y values. If the received number is already thex value in astored \(x, y\) pair, the corresponding y value is sent out. If the received number exceeds the minimum or maximum \(x\) values stored in funbuff, they value that's associated with theminimum or maximum \(x\) valueis sent out. If the funbuff is empty, 0 is sent out.
interptab In left inlet:The word interptab, followed by a number and the name of a named table object functions similarly to theinterp message (mentioned above), except that it uses the data in the table as an interpolating function. This allows you to easily perform non-linear interpolation between consecutive values in afunbuff.
max Sends the maximum y value currently stored in the funbuff out the left outlet.
min Sends the minimum y value currently stored in the funbuff out the left outlet.
next Finds thex value pointed to by the pointer (or, if the pointer points to a number not yet stored as an \(x\) value, to the next greater \(x\) value), and sendsthe corresponding y value out the left outlet. Also, funbuff cal culates the difference between that \(x\) value and the value previously pointed to by the pointer, sends the difference out the middle outlet, and resets the goto pointer to the next greater x value.
paste Theword paste will copy the contents of theglobal funbuff clipboard into afunbuff object. The contents of the clipboard are set using theselect, copy and cut messages. These messages provide a handy way of copying data between different funbuff objects in any open patchers.
read Calls up the Open D ocument dialog box so that a file of \(x, y\) values can be read into funbuff. If the word read is followed by a symbol, M ax looks for a file with that name(in the file search path) to load directly into thefunbuff. Thefunbuff fileformat is described on the next page.
select In left inlet: The word select, followed by an two integers representing a starting index and a range will select a region of thefunbuff which can beedited using the cut, copy and paste messages. For exampleselect 23 will select the part of afunbuff from index 2 through index 5 .
set In left inlet: The word set, followed by oneor morespace-separated pairs of numbers, stores each pair as \(x, y\) pair.
undo The undo message is used to undo the results of the previous cut or paste message.
write Calls up the standard SaveAs dialog box, so that the contents of funbuff can be saved as a separatefile. If the word write isfollowed by asymbol, the contents of the funbuff are saved immediately in afile, using the symbol as the filename.

\section*{Arguments}
any symbol Optional. The argument specifies the name of a fileto be read into funbuff when the patch is loaded. Changes to the contents of onefunbuff will not affect the contents of another funbuff object with the same name.

A filefor funbuff can also becreated using atext editor window, beginning thetext with the word funbuff, followed by alist of space separated numbers which specify alternatingx and y values.A funbuff that has been saved as a file can beviewed and edited as text by choosing \(\mathbf{O}\) pen as Text... from the Filemenu. Numbers in the form of text can bepasted in from other sources such as the editing window of a capture object, or even from another program such as a word processor.

\section*{Output}
int Out left outlet: When an \(x\) value is received in the left inlet, the correspondingy value is sent out. ( \(O r\), if there is no such \(x\) value yet stored in funbuff, the y value corresponding to the next lesser \(x\) value is sent out.) When the word next is received in the left inlet, funbuff sends out the y value that corresponds to thex value pointed to by its pointer (or, if thereis no such \(x\) value, they value of thenext greater \(x\) value).

Out middle outlet: When the word next is received in its left inlet, funbuff sends out the difference between the \(x\) value pointed to by its pointer, and the x value previously pointed to, then resets the pointer to the next x value.
bang Out right outlet:W hen the pointer reaches the end of a funbuff, no numbers are sent out in responseto a next message, but abang is sent out to notify that the end has been reached.

\section*{Examples}


Pairs or lists are stored as \(x\), \(y\) pairs; an \(x\) value alone, or next, sends out a y value

Store the pairs \(0,0 \mathrm{and} 10,100 \mathrm{and} 30,200\)
set \(0 \quad 0 \quad 1010030200\)
\begin{tabular}{|l|l}
\hline interp 18 & Compare 18 to is \(x\) value \\
neighbors 10 and 30
\end{tabular}
funbuff
\(140 \quad 140\) i \(40 \%\) of the way from 100 to 200,

Delate the pair that has sin \(x\) value of \(10(10,100)\)
delete 10
\begin{tabular}{|l} 
interp 18 Compare 18 of is x value \\
neighbors \(0 \operatorname{and} 30\)
\end{tabular}
funbuff

Interpolating between points stored in funbuff

\section*{See Also}
coll Store and edit a collection of different messages
envi
funbuff
line
table
Tutorial 27
Timeline
Script-configurable envelopein a patcher window
Storex,y pairs of numbers together
Output numbers in a ramp from one value to another
Store and graphically edit an array of numbers
Your object
Graphically edit a score of \(M\) ax messages
int In any inlet:Thenumber of the inlet and the received number are sent out as a list.
float Converted to int.
list In any inlet:Thenumber of the inlet isprepended to thelist, and thenew list is sent out. In a list floats are not converted to ints. The list may contain ints, floats, and symbols (provided that the first element of the list is not a symbol).
bang In any inlet:Thenumber of theinlet and the stored (most recently received) number in that inlet are sent out as a two-item list.

\section*{Arguments}
int Optional. The first arguments sets the number of inlets in thefunnel. If there is no argument there will betwo inlets. The second argument specifies an offset for the first inlet number. If no second argument is present, the inlets are numbered beginning with 0 .

\section*{Output}
list When a number or list is received in any inlet, funnel outputs a list consisting of the inlet number followed the input. funnel is designed for "funneling" many streams of numbers into theenv or envi objects, but it can be useful in conjunction with other objects such as coll, funbuff and table.

\section*{Examples}


Usefunnel to tag incoming data, or to storedata into a coll object

\section*{See Also}
\begin{tabular}{ll} 
env & Script-configurable envelopeeditor \\
envi & Script-configurable envelopein a patcher window \\
spray & Distribute an integer to a numbered outlet
\end{tabular}

\section*{Input}
int In left inlet: The number specifies an open outlet through which to pass all messages received in the right inlet.A number in the left inlet does not trigger any output itself.
float In left inlet: Converted to int.
bang In left inlet: Reports the current open outlet, or 0 if closed, out the left outlet. This message isdesigned to beused in conjunction with thegrab object.
anything In right inlet: All messages are passed out the open outlet, which is specified by thenumber in the left inlet.

\section*{Arguments}
int Optional. Specifies the number of outlets. Limited between 1 and 10 . If there is no argument, there is only one outlet.

\section*{Output}
anything Messages received in the right inlet are passed out the outlet specified by the number in the left inlet. If the number in the left inlet is 0 , or if no outlet number has been received yet, all messages are ignored. If the number in the left inlet is less than 0 , messages are sent out the leftmost outlet. If it i s greater than the number of existing outlets, messages are sent out therightmost outlet.

\section*{Examples}


This one closes the door behind itself

\section*{See Also}
\begin{tabular}{ll} 
Ggate & Pass the input out one of two outlets \\
Gswitch & Receive theinput in one of two inlets \\
onebang & Traffic control for bang messages \\
route & Selectively pass the input out a specific outlet \\
send & Send messages without patch cords \\
switch & Output messages from a specific inlet \\
Tutorial 17 & Gates and switches
\end{tabular}

\section*{Input}
various The gestalt object accepts a four-letter symbol specifying a Gestalt selector (a term originating from the M acintosh OS). Examples of useful four-letter codes include sysv for system version and qtim for QuickTimeversion. For a completelist of Gestalt selectors refer to A ppledeveloper documentation (http://developer.apple.com).On Mac OS, theobject uses theM acintosh Gestall featureto get a response to the selector. On Windows this feature is emulated, and may conse quently report slightly different, though meaningful, information.T he response and an error codeare sent out the object's outlets.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet If therewas no error in obtaining the responseto a selector to the object, the responseis sent out the left outlet. Binary or hex display and/or the use of the bitwise and operator \& may aid in interpreting the response.

O ut right outlet: If there was an error in obtaining the response to a selector, an error code is sent out the right outlet. Refer to Appledeveloper documentation for a completelist of error codes. If the input selector was undefined, -1 is sent out. If therewas no error, 0 is sent out.

\section*{Examples}

gestalt can tell you information about the system in use, plus information about hardware features
gestalt

\section*{See Also}
screensize
Output themonitor size

Pass theinput out one of two outlets

\section*{Input}
int In left inlet:Thenumber specifies which one of the two outlets is to beopen. 0 specifies the left outlet, any number other than 0 specifies theright outlet. The arrow on Ggate points to theopen outlet.
bang In left inlet: Causes the arrow to point to theother outlet. Clicking on Ggate with themousehas the same effect.
float In left inlet: Converted to int.
anything In right inlet: All messages are passed out theopen outlet.

\section*{Arguments}

None.

\section*{Output}
anything M essages received in the right inlet are passed out one of the two outlets. If the number in the left inlet is 0 , incoming messages are sent out the left outlet. If the number in the left inlet is not 0 , messages are sent out the right outlet.

\section*{Examples}


Specify one of two outlets


Any comparison can be used as a criterion

\section*{See Also}
\begin{tabular}{ll} 
gate & Pass theinput out a specific outlet \\
Gswitch & Receive theinput in one of two inlets \\
onebang & Traffic control for bang messages \\
pictctrl & Picture-based control \\
route & Selectively pass the input out a specific outlet \\
send & Send messages without patch cords \\
switch & Output messages from a specific inlet \\
Tutorial 17 & Gates and switches
\end{tabular}

\section*{Input}
anything Themessage is sent out the right outlet, or if a second argument is present the message is sent to receive objects named by the second argument.
set
If a second argument has been typed into grab specifying the name of a receive object, then the word set, followed by a symbol, specifies the name of a (different) receive object via which grab can grab messages from remote objects.

\section*{Arguments}
int Optional. The first argument sets the number of outlets, in addition to the right outlet. If there is no argument, grab has 1 additional outlet.
symbol Optional. If a symbol is present as a second argument, the message received in the inlet is sent to all receive objects named by the symbol, instead of being sent out the right outlet. In this case the rightmost outlet, which would normally send out the incoming message if no second argument were present, will not exist.

\section*{Output}

\author{
anything
}

Out right outlet: Theright outlet should beconnected only to theleftmost inlet of other objects. The message received in the inlet is sent out to the left inlet of all objects connected to the right outlet. W hatever goes out their outlets, however, is then intercepted by grab.

O ut other outlets: W hatever would normally be sent out the outlets of the objects connected to the right outlet, is sent out grab's outlets instead, in response to a message from grab. W hatever would be sent out the leftmost outlet of theother objects is sent out the leftmost outlet of grab, and so on. Note: Only the output that is sent out theoutlets of other objects can beintercepted by grab. Other types of output, such astransmission of M IDI messages or printing in the M ax window, cannot be intercepted by grab. Also, grab does not intercept the output of timing objects such as seq, metro, and clocker.

Connecting the right outlet of grab to the inlet of a patcher object, however, will not grab the output of the subpatch. It will simply grab theoutput of theinlet object insidethe subpatch, which is exactly the same as its input. H owever, grab can communicate with remote objects via a receive object named as the second argument to grab.

If a second argument is present, themessage received in the inlet is sent directly to receive objects named by the argument instead of being sent out the right outlet. A ny such receive objects should be connected only to the leftmost inlet of other objects. Therightmost outlet, which would otherwise be used to grab theoutput of other objects, does not appear if the second argument is used.

Notethat if grab is connected to other objects remotely via numerous receive objects of the samename, theorder in which grab communicates with thoseother objects is undefined, so the order in which their output will be sent out of thegrab object's other outlets is unpredictable.

\section*{Examples}


Get an object's output by "grabbing" it before it comes out the outlet

grab can communicate with any receive object specified by a set message

\section*{See Also}
preset
table

Store and recall the settings of other objects
Store and graphically edit an array of number

\section*{Input}
open Causes thegraphics window associated with the graphic object to become visible. The window is also brought to the front. Double-clicking on the graphic object in a locked patcher has the sameeffect.
wclose Causes the window associated with thegraphic object to become invisible.

\section*{Arguments}
symbol Optional. Identifies the graphic object's window. Drawing and animation objects use this symbol to tell M ax which window to draw in. If no argument is typed in, the window will be named Graphics-1 (and subsequent graphics windows will benumbered sequentially).
int Optional. Following the name of the graphic object, four coordinates can be specified for the location of the window on the screen. Thenumbers represent the screen coordinates of the left, top, right, and bottom corners (respectively) of the drawing area. N ote that when you save a patch containing a graphic object with no coordinate arguments, the current window location is saved. The coordinate arguments are useful in the case where you want the object's window to beguaranteed to appear in a certain position each time the patch is opened, regardless of where it may have been dragged in the past.

Optional. Following the name of the graphic object, but preceding the four coordinatearguments, a fifth non-zero number argument may beinserted, which will causethe graphics window'stitle bar to behidden. A graphics window without a title bar can still bedragged by Command-clicking on it on M acintosh or Con-trol-clicking on Windows.

\section*{Output}

None. Other objectsdraw into a graphic object's window.

\section*{Examples}


The graphic object creates a window for the output of graphics objects. The window can be resized by dragging in the lower right corner where you'd expect the grow box to be.

Window for drawing sprite- based graphics

\section*{See Also}
\begin{tabular}{ll} 
frame & Draw framed rectanglein a graphic window \\
graphic & Window for drawing sprite based graphics \\
Icd & Draw graphicsin a patcher window \\
oval & Draw solid oval in a graphic window \\
pict & Draw picturein a graphic window \\
rect & Draw solid rectangle in a graphic window \\
ring & Draw framed oval in a graphic window \\
Graphics & Overview of Max graphicswindows and objects \\
Tutorial 42 & Graphics
\end{tabular}

\section*{Input}
int In left inlet:Thenumber specifies which one of the other two inlets is to beopen. 0 specifies the middle inlet, any number other than 0 specifies the right inlet. The arrow on Gswitch points to theopen inlet.
bang Causes the arrow to point to the other inlet. Clicking on Gswitch with the mouse has the same effect.
float In left inlet: Converted to int.
anything In middle or right inlet: M essages received in the open inlet are passed out the outlet, while messages received in the other inlet areignored.

\section*{Arguments}

None.

\section*{Output}
anything If the number in the left inlet is 0 , all messages received in the middle inlet are passed out the outlet, and messages received in the right inlet are ignored. If the number in the left inlet is not 0, messages received in the middle inlet areignored, and all messages received in the right inlet are passed out the outlet.

\section*{Examples}


Specify one of two inlets


Any comparison can be used asa criterion

\section*{See Also}
\begin{tabular}{ll} 
gate & Pass the input out a specific outlet \\
Gate & Pass the input out one of two outlets \\
pictctrl & Picture -based control \\
receive & Receive messages without patch cords \\
route & Selectively pass the input out a specific outlet \\
switch & Output messages from a specific inlet \\
Tutorial 17 & Gates and switches
\end{tabular}

\section*{Input}
(mouse) W hen thecursor moves within thehint object's rectangle, its text message will appear in a colored area beneath the rectangle after the specified delay.
(Font menu) The appearance of thehint object can bealtered by selecting it and choosing a different font or size from the Font menu.
delay Theword delay, followed by a number, setsthe delay in milliseconds until thehint appears. The default is 1000 (i.e., one second).
brgb (W indowsonly) Theword brgb, followed by threenumbers between 0 and 255, sets the RGB values for the background color of thehint object. The default value is white (brgb 255255 255).
frgb (W indows only) The word frgb, followed by three numbers between 0 and 255, sets theRGB values for thetext displayed by thehint object. The default value is black (frgb 000 ).
set Theword set, followed by any message, will replace the message stored in hint. This message will bedisplayed when the mouse is positioned over thehint object after an interval of time specified by thedelay message.

\section*{Inspector}

Thebehavior of ahint object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any hint object displays thehint Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

Thehint Inspector lets you set the following attributes:
Typethetext you want displayed when the mouse is positioned over the area bounded by thehint object into the Set Hint Text box.

ThePop-up D elay lets you set the delay in milliseconds until the hint appears. The default is 1000 (one second).

Check Interval sets the interval in milliseconds at which the mouse position is checked. Thedefault is 100.

If the Redraw Behind Hint checkbox is checked, anything in the patcher window which is underneath thehint will beerased and redrawn. This modeshould be used if thehint message will appear, in an area over something which could change its appearance whilethehint is visible(i.e., a number box or a slider). The default is on (checked).

The Revert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
message Themessage stored in thehint object.

\section*{Examples}


\section*{See Also}
comment umenu

Explanatory noteor label
Pop-up menu, to display and send commands
int In left inlet: histo keeps count of how many times it has received a number between 0 and 127 in the left inlet. When a number is received, histo includes it in the count, sends the number of times that number has been received out the right outlet, and passes the number itself out the left outlet. Numbers outsidethe range 0-127 areignored.

In right inlet: H as the same effect as a number in the left inlet, except that the number is not counted by histo.
clear Erases thememory of histo, to begin anew histogram.
bang In left inlet: Using the number most recently received in the left inlet, histo reports out theright outlet how many times that number has been received, and sends the number itself out the left outlet. If no number has been previously received in the left inlet, 0 i s sent out both outlets.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet:Thenumber received in theinlet.
Out right outlet: The count of the number of times that number has been received.

\section*{Examples}


Store histogram of thenumbers received; display it in a table

M ake a histogram of the numbers received

\section*{See Also}

\author{
anal M akeahistogram of number pairs received \\ prob Makeweighted random series of numbers \\ table \\ Tutorial 33 \\ Quantile \\ Store and graphically edit an array of numbers \\ Probability tables \\ Using table for probability distribution
}
int Thenumber received in the inlet is displayed graphically by hslider, and is passed out theoutlet. O ptionally, hslider can multiply the number by some amount and add an offset to it, before sending the number out its outlet.

Thehslider will also send out numbers in response to mouseclicking or dragging.
float Converted to int.
bang Sends out the number currently stored in hslider.
color Theword color, followed by a number from 0 to 15 , setsthe color of the center portion of thehslider to one of theobject colors which arealso available via theColor command in the \(O\) bject menu.
local Theword local, followed by a non-zero number, enables object response to mouse clicks (the default). Themessagelocal 0 disables theobject's response to the mouse; thehslider object will respond only to input in its inlet and ignoreall mouseclicks.
min Theword min, followed by a number, sets valuethat will be added to thehslider object's value before it is sent out the outlet. The default is 0 .
mult The word mult followed by a number, specifies a multiplier value. Thehslider object's valuewill bemultiplied by this number before it is sent out theoutlet. The multiplication happens beforetheaddition of the \(O\) ffset value. The default value is 1 .
resolution The word resolution, followed by a number, sets the sampling interval in milliseconds. This controls the rate at which the display is updated as well as the ratethat numbers are sent out the hslider object's outlet.
set Theword set, followed by a number, resets the value displayed by hslider, without triggering output.
size Theword size, followed by a number, sets the range of thehslider object. The default value is 128 . Setting the size to 1 disables thehslider visually ( since it can only display one value). A ny specified size less than 1 will be set to 2 .

\section*{Inspector}

Thebehavior of an hslider object isdisplayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any hslider object displays the hslider Inspector in thefloating window. Selecting an object and choosing Get Info... from the \(O\) bject menu also displays the Inspector.

The hslider Inspector lets you enter a Slider Range value. Numbers received in the inlet are automatically limited between 0 and the number 1 less than the specified range value. The default range value is 128 . You can specify an 0 ffset value which will beadded to thenumber, after multiplication. Thedefault offset valueis 0 . The hslider Inspector also lets you specify aM ultiplier. Thehslider object's value will be multiplied by this number before it is sent out theoutlet. Themultiplication happens beforethe addition of the Offset value. The default multiplier value is 1.

TheRevert button undoes all changes you'vemadeto an object's settings since you opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
int Numbers received in theinlet, or produced by clicking or dragging on hslider with the mouse, arefirst multiplied by themultiplier, then have the offset added to them, then are sent out the outlet.

\section*{Examples}


Produce output by dragging onscreen...

or use to display numbers passing through

\section*{See Also}
\begin{tabular}{ll} 
kslider & Output numbers from a keyboard onscreen \\
multislider & Multipleslider and scrolling display \\
pictctrl & Picture-based control \\
pictslider & Picture-based slider \\
rslider & Display or change a range of numbers \\
slider & Output numbers by moving a slider onscreen \\
uslider & Output numbers by moving aslider onscreen \\
Tutorial 14 & Sliders and dials
\end{tabular}

\section*{Input}
int Thenumber in each inlet will bestored in place of the \$i or \$f argument associated with it. (Example: Thenumber in the second inlet from the left will bestored in place of the \(\$ 12\) and \(\$ \mathrm{f} 2\) arguments, wherever they appear.)
float Thenumber in each inlet will bestored in place of the \(\$\) or \(\$\) i argument associated with it. Thenumber will betruncated by a \(\$ i\) argument.
symbol In left inlet: Theword symbol, followed by a symbol (a word), will be stored in place of the \(\$ 1\) argument.
bang In left inlet: Evaluates the conditional statement using the values currently stored.
Any of the above messages in the left inlet will evaluate the conditional statement and send out the result. A ny inlets which have not yet received a value have the value 0 by default.

Thenumber of inlets is determined by how many different changeablearguments aretyped in. Themaximum number of inletsis 9 .
list In left inlet: The items of the list are treated as if each had comein a different inlet, and the conditional statement is evaluated. If the list contains fewer items than there are inlets, the most recently received value in each remaining inlet is used.
set In left inlet: Theword set, followed by oneor morenumbers, treats thosenumbers as if each had come in a different inlet, replacing the stored value with the new value, but the conditional statement is not evaluated and nothing is sent out the outlet. If there are fewer numbers in the message than there are inlets, the stored value in each remaining inlet is left unchanged.

\section*{Arguments}

Obligatory. The arguments for theif object start with a conditional statement that uses the same syntax as expr. Refer to the description of the expr object for details. Theword then follows the conditional statement, which isthen followed by a message expression described below. After the message expression, there is an optional else and a second message expression.
if evaluates the conditional expression, and if the result is non-zero, evaluates the message expression after the word then. Otherwise, it evaluates the second message expression after the word else (or does nothing in the case where no else and second message expression have been typed in.
then, else M essage expressions are similar to what you type into a message box, with the following differences:
\$11,\$f1,\$s1 You use \$i1, \$11, or \$s1 instead of \$1 for changeable arguments.
send No commas or semicolons are allowed. M essages can be sent to remotereceive objects by preceding the message expression with send, followed by the name of the receive object.
out2 The keyword out2 in a message expression creates a second, right outlet for theif object. If out2 precedes a message expression, the result of the expression is sent out the right outlet instead of the left outlet.

\section*{Output}
anything Themessage after thethen or else portion of the arguments is sent out the outlet. If the word out2 is present as an argument, there will betwo outlets, and messages following out2 will be sent out the right outlet. If the word send is present as an argument, the word that follows it isthe name of a receive object, and the message that follows it will be sent to receive objects with that name.

\section*{Examples}


Complex comparisons and results can be described in a single object

\section*{See Also}
\begin{tabular}{ll}
\(!=\) & Comparetwo numbers, output 1 if they are not equal \\
\(\ll=\) & Islessthan, comparison of two numbers \\
\(==\) & Islessthan or equal to, comparison of two numbers \\
\(>\) & Compare two numbers, output 1 if they areequal \\
\(>=\) & Isgreater than, comparison of two numbers \\
expr & Isgreater than or equal to, comparison of two numbers \\
select & Evaluatea mathematical expression \\
Tutorial 38 & Select certain inputs, pass therest on \\
expr and if
\end{tabular}

Note: Theimovie object requires that QuickTimebeinstalled on your system. If you areusing M ax on W indows, we recommend that you install QuickTime and choose a completeinstall of all optional components.

\section*{Input}
(see movie) All messages recognized by themovie object aresimilarly recognized by imovie.
border Theobject is initially shown with a black lineborder drawn around itsmovie. The message border 0 erases theblack line border; border 1 redraws the border.

\section*{Arguments}
(Get Info... ) Optional. Selecting theobject (when the patcher window is unlocked) and choosing the Get Info... command from the O bject menu opens a standard file dialog, allowing you to select a QuickTime movieto be read into the object automatically when the patch is loaded. Themoviemust belocated in M ax'sfile search path (specified with theFile Preferences... command in the Options menu) in order for imovie to find it automatically.

\section*{Output}
int Out left outlet: The end time of the movieis sent out in response to thelength message; the current time in the movie is sent out in response to thetime message; 0 is sent out in responseto thestart message.

O ut middleoutlet: Thehorizontal position of the mouse, relative to the left edge of the movie, is sent out when the mouse is clicked or dragged insidethemovie.

O ut right outlet: Thevertical position of themouse, relative to the top edge of the movie, is sent out when the mouse is clicked or dragged insidethemovie.

\section*{Examples}


A moviecan bedisplayed within a patch, and mouse motion can be detected within it

\section*{See Also}
Icd
Draw graphics in a patcher window
movie
playbar
Play a QuickTimemoviein a window
QuickTimemovieplay controller
int A number sent to theIncDecobject's inlet sets the valuethat will beincremented or decremented by clicking on thetop or bottom of half of theobject. Thenumber is not sent out the outlet. IncDec is designed to be used with user interface objects such as thenumber box, dial, and the various sliders.
(mouse) A mouse click increments or decrements thestored value(depending on which arrow is clicked) and sends it out the outlet.
(Font menu) Theheight of an IncDec object can bealtered by selecting it and choosing a different font or size from the Font menu.

\section*{Arguments}

None.

\section*{Output}
int When you click on thetop half of an IncDec object, it sendsout a value that is one greater than the last value received at its inlet or sent out its outlet, whichever happened most recently. Holding the mouse button down continues to increment the output, gradually increasing in rate of output.

The same is true for the bottom half of IncDec, except that the values are decremented.

\section*{Examples}

Standard amsagement with a Number box


You can also arrange the patch cords in sin X (and then bide them)


IncDec workswell in combination with number box and hslider

\section*{See Also}
counter number box hslider umenu uslider

Count the bang messages received, output the count Display and output a number
O utput numbers by moving a slider onscreen
Pop-up menu, to display and send commands
O utput numbers by moving a slider onscreen

\section*{Input}
(patcher) Each inlet object in a patcher will show up as an inlet at the top of an object box when the patch is used inside another patcher (as an object or a subpatch). M essages sent into such an inlet will be received by theinlet object in the subpatch.A patcher can have a maximum of 250 signal inlets. Thenumber of data inlets isa much bigger number than that.

\section*{Inspector}

A descriptiveA ssistance message can be assigned to an inlet object and can be edited using its Inspector. If you haveenabled the floating inspector by choosing Show Floating Inspector from theW indows menu, selecting any inlet object displays theinlet Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

Typing in the D escribeO utlet text area specifies the content of theA ssistancemessage.

The Revert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector C hanges from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
anything In a subpatch inlet sends out whatever messages it receives through patch cords from the patch that contains it.

\section*{Examples}


Inlets of the subpatch...

correspond to theinlet objects in the subpatch

\section*{See Also}
\begin{tabular}{ll} 
bpatcher & Embed a visible subpatch inside a box \\
outlet & Send messages out of a patcher \\
pcontrol & Open and close subwindowswithin a patcher \\
receive & Receive messages without patch cords \\
send & Send messages without patch cords \\
Tutorial 26 & Thepatcher object
\end{tabular}

\section*{Input}
int In left inlet: The number replaces the currently stored value and is sent out the outlet.

In right inlet:Thenumber replaces the stored valuewithout triggering output.
float Converted to int.
bang In left inlet: Sends the stored value out the outlet.
set In left inlet:Theword set, followed by a number, replaces the stored value without triggering output.
send In left inlet: The word send, followed by the name of a receive object, sends the value stored in int to all receive objects with that name, without sending it out the outlet of the int.

\section*{Arguments}
int Optional. Sets an initial valueto bestored in int. If there is no argument, theinitial value is 0 . An int argument by itself, without the word int, is another way of creating and initializing an int object.
float Converted to int.

\section*{Output}
int A number isstored in (and output from) int as a long (32-bit) integer.

\section*{Examples}


Output the stored value


Replacethestored value and output it


Initial value isgiven

\section*{See Also}
\begin{tabular}{ll} 
float & Storea decimal number \\
pv & Share variables specific to a patch and its subpatches \\
value & Share astored messagewith other objects \\
Tutorial 21 & Storing numbers
\end{tabular}

\section*{Input}
list Thenumbers in thelist are sent out the outlet in sequential order.
int or float Thenumber is sent out the outlet.
bang Sends the number or list most recently received, in sequential order.

\section*{Arguments}

None.

\section*{Output}
int The numbers received in the inlet are sent out one at atime.

\section*{Examples}


Numbers in a list pass through iter one at a time

\section*{See Also}
\begin{tabular}{ll} 
cycle & Send a stream of data to individual outlets \\
thresh & Combinenumbers into a list, when received close together \\
unpack & Break alist up into individual messages \\
zl & Multi-purpose list processor \\
Tutorial 30 & Number groups
\end{tabular}

\section*{Input}
(keyboard) Theinput to key comes directly from the computer keyboard. There are no inlets.

\section*{Arguments}

None.

\section*{Output}
int Output is sent each timea key is depressed on the computer keyboard. (Holding the key down does not produce repeated output.)

Out left outlet: TheASCII value of the typed key.
Out middle outlet: Thekey code of thetyped key.
Out right outlet: The output values can be sent through the \& object to create toggles set by each modifier key. The numerical output of the right outlet is listed below along with the argument to the object that will create a toggle.:
\begin{tabular}{|c|c|c|}
\hline M odifier Key 0 & Output & Toggle \\
\hline key events & 128 & \& 128 (reports 0 on W indowsif a mouse button is down, always reports 0 on Macintosh \\
\hline WindowsControl key & 384 & \& 256 (system uses this so it is not reported) \\
\hline M acintosh Command key & 384 & \& 256 (system uses this so it is not reported) \\
\hline Shift key & 640 & \& 512 \\
\hline Caps Lock key (on) & 1152 & \& 1024 \\
\hline WindowsAlt key & 2176 & \& 2048 (on Windows the system uses this so it is not reported) \\
\hline M acintosh Option key & 2176 & \& 2048 \\
\hline Windows R. M ouse Button & n 4224 & \& 4096 \\
\hline M acintosh Control key & 4224 & \& 4096 \\
\hline
\end{tabular}

\section*{Examples}


Keys typed on the computer keyboard can beused to trigger messages

\section*{See Also}
\begin{tabular}{ll} 
keyup & \begin{tabular}{l} 
Report key releases on the computer keyboard \\
numkey
\end{tabular} \\
Interpret numbers typed on the computer keyboard \\
spell & Convert input to ASCII codes \\
sprintf & Format a message ef wordsand numbers \\
Tutorial 20 & Using the computer keyboard
\end{tabular}

\section*{Input}
(keyboard) Theinput to keyup comes directly from the computer keyboard. Thereareno inlets.

\section*{Arguments}

None.

\section*{Output}
int Output is sent each timea key is released on the computer keyboard. (Nothing is sent when the key is first depressed.)

Out left outlet:TheASCII value of the typed key.
Out right outlet: The key code of thetyped key.
Out right outlet: Theoutput values can be sent through the \& object to create toggles set by each modifier key. Thenumerical output of the right outlet is listed below along with the argument to the o object that will create a toggle.:
\begin{tabular}{|c|c|c|}
\hline difier Key 0 & Output & Toggle \\
\hline key events & 128 & \& 128 (reports 0 on W indows if a mouse button is down, always reports 0 on Macintosh \\
\hline WindowsControl key & 384 & \& 256 (system uses this so it is not reported) \\
\hline M acintosh Command key & 384 & \& 256 (system uses this so it is not reported) \\
\hline Shift key & 640 & \& 512 \\
\hline Caps Lock key (on) & 1152 & \& 1024 \\
\hline WindowsAlt key & 2176 & \& 2048 (on Windows the system uses this so it is not reported) \\
\hline M acintosh Option key & 2176 & \& 2048 \\
\hline Windows R. M ouse Button & n 4224 & \& 4096 \\
\hline M acintosh Control key & 4224 & \& 4096 \\
\hline
\end{tabular}

\section*{Examples}


ASCII value is sent when key is released

Used with key to measure how long a key is down

\section*{See Also}
key
mousestate
numkey
spell
sprintf
Tutorial 20

Report key presses on the computer keyboard Report the status and location of the mouse
Interpret numbers typed on thecomputer keyboard
Convert input to ASCII codes
Format a message of words and numbers
Using the computer keyboard

\section*{Input}
int In left inlet: Thenumber received in theinlet is displayed graphically by kslider if it falls within its displayed range. The current velocity value(from 1 to 127) that kslider holds is sent out its right outlet, followed by the received number out the left outlet.

In right inlet: The number received in the right inlet sets the output key velocity without triggering output.
(mouse) kslider also sendsout numbers when you click or drag on it with the mouse. The velocity valueis determined by the vertical position of the mouse within each key. Higher vertical positions producehigher velocities, to a maximum of 127.

If the kslider object is in polyphonic mode, you need to click on a key twice: once to send a note-on, and once again for a note-off.

Clicking on the very rightmost edge of thekslider sendsout the note of the key \(C\) that would bejust to the right of the keys that arevisible.
float Converted to int.
bang In left inlet: Sends out the pitch and velocity values currently stored in kslider.
chord In left inlet: Theword chord, followed by a list of M IDI notename and velocity pairs, can beused to play chordson the kslider in polyphonic mode (set by the mode 1 message). Thechord message sends note-offs for currently held notes, followed by note-on commands for the specified note and velocity pairs. W hen the kslider object's state is saved by a preset object in polyphonic mode, the preset object will storechord messages.
clear In left inlet: The clear message will clear any currently highlighted notes on the keyboard, but will not trigger any output.
color In left inlet: The word color, followed by a number from 0 to 15 , sets the color of the keyboard that is highlighted to oneof theobject colors that arealso available with the Color submenu of the \(O\) bject menu.
flush In left inlet: When thekslider object is in polyphonic mode(set by themode 1 message), theflush message will send note-offs to currently held notes and clear the kslider object's display.
frgb In left inlet: The word frgb, followed by threenumbers between 0 and 255 , sets the RGB values for the color of the part of the keyboard that ishighlighted (default 128128 128).
mode In left inlet: Theword mode, followed by a 0 or 1, selects monophonic or polyphonic operation for the kslider. mode0 (default) sets monophonic mode. Only
one key can be selected and displayed at onetime. mode 1 sets the kslider to polyphonic mode. In polyphonic mode, kslider keepstrack of note-ons and note-offs, so it mirrors which notes are currently held down on your M IDI keyboard. A key is "turned off" by sending thekslider object a key on message with a velocity of 0 .
offset In left inlet: The word offset, followed by a number, sets an offset value in octaves for the kslider object. The default kslider keyboard outputs notes from the lowest octave of the M IDI keyboard range (c-2). The message offset 5 would mean that thekslider object's leftmost key would beC3. The default is 3 .
range In left inlet: Theword range, followed by a number, sets the range of thekslider object in octaves. The default value is 4 .
set In left inlet: The word set, followed by a number, changes the value displayed by kslider, without triggering output.

In left inlet: The word size, followed by a0 or 1, sets the size of the keyboard display. size 0 (default) sets the large keyboard, and key 0 selects the small keyboard.

\section*{Inspector}

Thebehavior of a kslider object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any kslider object displays the kslider Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

Thekslider Inspector lets you enter aSlider Range value(default 4) that sets the range of the kslider object in octaves. An 0 ffset value (default 3) specifies the number of octaves thelowest note on the displayed keyboard will from C-2 (the lowest M IDI C). theK eyboard Sizebuttons select the size of thekeyboard, and the Keyboard M odebuttons select monophonic or polyphonic modes. TheC olor option lets you use a swatch color picker or RGB values to specify the color of the highlighted portion of the keyboard. Thedefault color is 128128128.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
int kslider sends its current velocity value out its right inlet, followed by the(displayable) pitch value out its left outlet, when a number is received in its inlet or you click or drag on theobject.

\section*{Examples}


Produce output by clicking on the keyboard...

or use to display incoming pitches

\section*{See Also}
hslider
makenote
notein
noteout
pictslider
rslider
slider
uslider
Tutorial 14

Output numbers by moving a slider onscreen
Generate a note-off message following each note-on
Output received MIDI note messages
Transmit MIDI notemessages
Picture-based slider
Display or change a range of numbers
Output numbers by moving a slider onscreen
O utput numbers by moving a slider onscreen
Sliders and dials

In M ax 4.0 and later, all Icd object drawing commands arenow lower case. For backwards compatibility, old style capitalized message names arestill understood; you can use either lineto or LineTo.

\section*{Input}
(mouse) You can draw freehand in Icd with the mouse (provided this featurehas not been turned off with a local 0 message). Themouse will draw with thecurrent pen and color characteristics, and the mouse location will be sent out theoutlet.
ascii The word ascii, followed by a number between 0 and 255 , writes the character corresponding to thatASCII value at the current pen position, then moves thepen position to theright of that character. Numbers that exceed the \(0-255\) range are restricted to that range with a modulus operation.
backsprite Theword backsprite, followed by asymbol, sets thenamed sprite's drawing order so that it is drawn first (and displayed last). This command can be used to alter the order in which sprites aredrawn. (N ormally, sprites aredrawn in theorder they are recorded.)
border border 1 sets Icd to draw a border around its window, which is on by default. A message of border 0 turns this feature off.
brgb Theword brgb, followed by three numbers between 0 and 255, specify an RGB value sets the current background color of thelcd object.
clear Erases the contents of Icd.
clearpicts Deletes all of an Icd object's named pictures.
clearregions Deletes all of an Icd object's named regions.
clearsprites Deletes all of an Icd object's named sprites.
dipoval followed by four int arguments specifying the left, top, right, and bottom extremities of an oval, clips drawing commands to the oval. These extremities are specified in pixels, relative to the top left corner of thelcd display area.
clippoly Theword dippoly may befollowed by as many as 254 int arguments that would specify a series of x/y pairs that define a polygon to which Icd will clip drawing commands. Thesex/y pairs arespecified in pixels, relative to thetop left corner of thelcd display area.
cliprect Theword diprect, followed by four int arguments specifying the left, top, right, and bottom positions of a rectangle, clipsIcd drawing commandsto the rectangle. Theseedgepositions are specified in pixels, relative to thetop left corner of thelcd display area.
diprgn Theword diprgn, followed by a symbol, clips drawing commands with the named region.
cliproundrect he word cliproundrect, followed by six int arguments specifying the left, top, right, and bottom positions of a rectangle and the amount of horizontal and vertical roundness in pixels, clips drawing commands to a rounded rectangle. The edge positions are specified in pixels, relative to the top left corner of thelcd display area.
closeregion Theword doseregion, followed by a symbol argument that names the region, turns off region definition and associates the defined region with the symbol. After the closeregion message, drawing commands function normally again.
closesprite The word closesprite, followed by a symbol argument that names the sprite, turns off sprite command collection and associates the defined region with the symbol. After the closesprite message, drawing commands function normally again.
color The word color, followed by a number from 0 to 255, specifies a color (from M ax's color palette) for subsequent graphicsdrawn in Icd. Numbersthat exceed the 0 255 range are restricted to that range with a modulus operation.
deletepict The word deletepict, followed by a symbol, deletes the named picture.
deleteregion The word deleteregion, followed by a symbol, deletes the named region.
deletesprite The word deletesprite, followed by a symbol, deletes the named sprite.
drawpict Theword drawpict, followed by a symbol, draws the named picture. Optionally theremay follow four numbers specifying a destination rectangle in which the picture is scaled and drawn, and source rectanglethat specifies the area of the pictureto use in the operation. These rectangles are specified as left, top, width, and height values in pixels. Thedestination rectangleis relative to thetop left corner of thelcd display area. The source rectangle is relativeto the top, left corner of the picture. If not present, these rectangles are both set to bethe same size as the picture.
drawsprite Theword drawsprite, followed by a symbol, draws the named sprite. Optionally this may befollowed by a pair of numbers that specify a horizontal and vertical offset for drawing the sprite.
enablesprites enablesprites 1 turns on the drawing of sprites. Themessageenablesprites 0 turns this feature off (the default). When sprites are enabled, Icd consumes morememory.
font The word font, followed by two numbers, specifies a font ID and a font size to be used when drawing text in response to a write or ascii message. Note that most font ID numbers depend on what fonts are present in the Fontsfolder in the System Folder, so the effect of a font message may vary from one computer to another.
\begin{tabular}{|c|c|}
\hline & Fonts can alternately be specified by substitut \\
\hline framearc & Same as paintarc except that only the unfilled outline of the arc isdrawn. \\
\hline frameoval & Same as paintoval except that only theunfilled outline of the oval is drawn. \\
\hline framepoly & Same as paintpoly except that only the unfilled outline of the polygon is drawn. \\
\hline framerect & Same as paintrect except that only the unfilled outline of the rectangle is drawn. \\
\hline framergn & Same as thepaintrgn message except that only the unfilled outline of the region is drawn. \\
\hline frameroundrect & Same as paintroundrect except that only the unfilled outline of the rounded rectangle is drawn. \\
\hline frgb & The word frgb, followed by threenumbers between 0 and 255, specify an RGB value sets the current foreground color of thelcd object. \\
\hline frontsprite & The word frontsprite, followed by a symbol, sets the named sprite's drawing order so that it isdrawn last (and displayed first). This command can be used to alter theorder in which sprites aredrawn. (Normally, sprites are drawn in the order they are recorded.) \\
\hline getpenloc & The word getpenloc outputs a message consisting of the word penloc followed by two numbers, out thelcd object's right outlet. The numbers represent local coordinates relativeto thetop-left corner of thelcd display area. Thefirst number is the number of pixelsto theright of that corner, and the second number isthenumber of pixels down from that corner. \\
\hline getpixel & Theword getpixel, followed by two numbers which specify thelocation of apixel in local coordinates relative to the top-left corner of thelcd display area, outputs a message consisting of the word pixel followed by five numbers out thelcd object's right outlet. Thefirst threenumbers, in the range \(0-255\) represent the \(R G B\) values of thepixel at the specified location, followed by two numbers which specify the relativex and y coordinates of the selected pixel. If a pixel is out of range, thegetpixel message will output pixel 000 xy w, where x and y are theout of range location specified. \\
\hline hidesprite & Turns off thedrawing of a named sprite in Icd. \\
\hline idle & idle 1 turns on the reporting of idlemouse position over an Icd object. The coordinates of the mouse position are sent out the middle outlet as a two-item list as the mouse moves. The numbers represent local coordinates relative to the top-left corner of thelcd display area. Thefirst number is thenumber of pixelsto theright of that corner, and the second number is the number of pixels down from that corner. idle 0 turns off this feature, which is off by default. \\
\hline
\end{tabular}
line Theword line, followed by two int arguments for horizontal and vertical offset, in pixels, reative to the current pen position, draws a line from the current pen position to a point determined by the specified offset, and that point becomes thenew pen position. Positive arguments draw the lineto the right or down; negative arguments draw up or to the left.
linesegment The word linesegment, followed by four int arguments that specify the endpoints of a line segment, draw aline. Thenumbers represent the horizontal and vertical offset of the beginning endpoint, and the horizontal and vertical offset of the finishing endpoint, in pixels, relative to the top left corner of thelcd display area. Optionally, a color may follow. If there is one additional int argument, the color specifies a color from \(M\) ax's color palettein the same way as the color message. If there are three additional int arguments, the color specifies a color as an RGB valuein the same way as the frgb message.
lineto The word lineto, followed by two int arguments for horizontal and vertical ending point, draws a linefrom the current pen position to the position specified by the arguments.
local local 0 turns off drawing in thelcd with the mouse; local 1 turns the featureback on. In either case, Icd will still report the location of the mouse as it is dragged within theobject's rectangle.
move Moves the pen position a certain number of pixels down from, and to the right of, its current position. The word move must befollowed by two int argumentsfor horizontal and vertical offset, in pixels, relativeto the current pen position. Negative arguments may beused to movethe pen position up or to the left.
moveto Sets the pen position at which thenext graphic instruction will bedrawn. The moveto message must includetwo int arguments for horizontal and vertical offset, in pixels, relative to the upper left corner of thelcd display area.
noclip Removes any clipping areathat may bein place.
onscreen onscreen 1 turns on the memory-saving feature of using the onscreen window for drawing. A message of onscreen 0 turns this feature off. O nscreen mode is off by defaul. W hen not using onscreen mode, Icd consumes more memory, but remembers its contents so that it is not erased when covered as happens with the onscreen mode.
oprgb The word oprgb, followed by three numbers between 0 and 255 , specify an RGB valueused as the opcolor for penmodes that support it. For moreinformation on on the effects of each drawing mode, refer to theAppleD eveloper website at
http://developer.apple.com/documentation/QuickTime/IN M AC/M ACWIN/ imCIrQuickDraw.a.htm
paintarc The word paintarc, followed by six int arguments that specify the left, top, right, and bottom extremities of an oval across which the arc will bedrawn, and the start and end anglein degrees, paints an arc. The extremities are specified in pixels, relative to the top left corner of thelcd display area. Optionally, a color may follow. If there is one additional int argument, the color specifies a color from M ax's color palette in the same way as the color message. If there are three additional int arguments, the color specifies a color as an RGB value in the same way as the frgb message.
paintoval The word paintoval, followed by four int arguments specifying the left, top, right, and bottom extremities of an oval, paints an oval. These extremities are specified in pixels, relative to the top left corner of thelcd display area. Optionally, a color may follow. If there is one additional int argument, the color specifies a color from M ax's color palettein the same way as the color message. If there are three additional int arguments, the color specifies a color as an RGB value in the same way as thefrgb message.
paintpoly Theword paintpoly may befollowed by as many as 254 int arguments that would specify a series of \(\mathrm{x} / \mathrm{y}\) pairsthat define a polygon to be painted in Icd. These x/y pairs are specified in pixels, relative to the otop left corner of thelcd display area. O ptionally, a color may follow thelast \(x / y\) pair that is the same as the first one. If there is one additional int argument, the color specifies a color from M ax's color palettein the same way as the color message. If there are three additional int arguments, the color specifies a color as an RGB value in the same way as thefrgb message.
paintrect Theword paintrect, followed by four int arguments specifying the left, top, right, and bottom positions of a rectangle, paints a rectangle. The edge positions are specified in pixels, relativeto the top left corner of thelcd display area. Optionally, a color may follow. If there is one add ditional int argument, the color specifies a color from M ax's color palette in the same way as the color message. If there are three additional int arguments, the color specifies a color as an RGB value in the same way as thefrgb message.
paintrgn Theword paintrgn, followed by asymbol, paintsthe named region (filled). Optionally this may befollowed by a pair of integer arguments which specify a horizontal and vertical offset to which the region's coordinates will berelative, and a color.If thereis oneadditional int argument for the color, the color specifies a color from Max's color palette in the same way as the color message. If there are three additional int arguments, the color specifies a color as an RGB value in the same way as thefrgb message.
paintroundrect The word paintroundrect, followed by six int arguments specifying the left, top, right, and bottom positions of a rectangle and the amount of horizontal and vertical roundness in pixels, paints a rounded rectangle. The edgepositions arespecified in pixels, relative to the top left corner of thelcd display area. Optionally, a color may follow. If therei s one additional int argument, the color specifies a color
from M ax's color palette in the sameway as the color message. If there are three additional int arguments, the color specifies a color as an RGB value in the same way as thefrgb message.
penmode Theword penmode, followed by a number in the range \(0-7\), sets the transfer mode for subsequent drawing operations. Thefollowing are transfer mode constants;
\begin{tabular}{ll} 
Copy & 0 \\
Or & 1 \\
Xor & 2 \\
Bic & 3 \\
NotCopy & 4 \\
NotOr & 5 \\
NotXor & 6 \\
NotBic & 7
\end{tabular}

For moreinformation on the effects of each drawing mode, refer to theApple Developer website at
http://developer.apple.com/documentation/QuickTime/IN M AC/M ACW IN/ imCIrQuickDraw.a.htm
pensize Theword pensize must be followed by an int argument to set thecurrent pensize in pixels.
readpict The word readpict followed by a symbol which specifies a filename, looks for a QuickTimegraphic file(a .pct fileopenableon W indows using theQuickTime PictureViewer for W indows) with that name in M ax's file search path, and reads thepicturefilefrom disk into RAM. Thisnamed picture can then bedrawn in Icd with thedraw pict and tilepict messages. In response to the readpict message, the object sends a message out the right outlet of thelcd object consisting of the word pict followed by a symbol which specifies the name of the picturefileand two numbers which specify the file's width and height. If the read is unsuccessful, the error message pict <pictname> error will be sent out the right outlet.
recordregion Initiates the recording of drawing commands which will bestored in a named region. While recording, drawing commands will haveno visibleeffect on the contents of the lcd object's window.
recordsprite Initiates the recording of drawing commands which will be stored in a named sprite. W hilerecording, drawing commands will haveno effect on the contents of the led object's window.
reset Erases the contents of Icd and resets pen state to default values. The reset message is equivalent to the sequence
clear
```

pensize 1
penmode0
frgb 000(black)
brgb 255 255 255(white)
moveto OO

```
scrollrect The word scrollrect, followed by six int arguments that specify the left, top, right, and bottom positions of a rectangle to be scrolled and thenumber of pixels to scroll in the x and y direction, scrolls s rectangle within thelcd object's display area.
size Changes the size of thelcd object. Theword sizemust be followed by two int arguments which specify the dimensions (horizontal and vertical) in pixels of thenew size.
textface Theword textface, followed by one or more names specifying text style(s), sets the font style(s) to be used when rendering text. Text style names are normal, bold, italic, underline, outline, shadow, condense, and extend.
textmode The word textmode, followed by a number in the range \(0-7\), sets the transfer mode for subsequent drawing operations. For more information on the effects of each drawing mode, refer to theA ppleD eveloper website at

\section*{http://developer.apple.com/documentation/QuickTime/IN M AC/M ACWIN/ imClrQuickDraw.a.htm}
tilepict The word tilepict, followed by a picture name argument, fills a rectangle by tiling a picture. O ptionally there may follow, four numbers that specify a destination rectanglein which the picture istiled and four numbers that specify a source rectanglethat specifies the area of the pictureto usein theoperation. Theserectangles arespecified as left, top, width, and height values in pixels. Thedestination rectangle is relativeto the top left corner of thelcd display area. The source rectangle is relative to the top, left corner of the picture. If not present, the destination rectangle is set to the same size of IId, and the source rectangle is set to be the same size as the picture.
write The word write, foll lowed by any symbol, writes that symbol beginning at the current pen position, and movesthepen position to theend of thetext.
writepict The word writepict, followed by an optional filename argument, writes the current contents of thelcd display area to a PICT file (a.pct fileopenable on Windows using the QuickTimePictureViewer for Windows). If no filename argument is present, aSaveAsdialog will prompt you to choose a filename and location to writethePICT file.

\section*{Inspector}

Thebehavior of an Icd object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any Icd object displays theld Inspector in the floating window. Selecting an object and choosing Get Info... from the Object menu also displays the Inspector.

Thesize of thelcd display, in pixels, can be set by typing in theW idth and H eight number boxes. Thedefault size of thelcd object is 128 pixels high and 128 pixels wide.

Checking Local M ousing M odelets you draw in the lcd display ares with the mouse. This feature is enabled by default.

TheD raw Border checkbox is enabled by default. Checking it creates a border around thelcd object's display area.

Checking the Respond to IdleM ousing option will report idle-time mouse positions over the Icd object. This feature is disabled by default.

Checking the O nscreen M ode option will set thelcd object to remembers its contents so that it is not erased when it is covered. This feature is disabled by default.

Checking theEnableSprites option will enablethedrawing of sprites. This feature is disabled by default. W hen sprites areenabled, Icd consumes morememory.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu while the Inspector is open.

\section*{Arguments}

None.

\section*{Output}
list Out 1st outlet: W hen you click and drag in thelcd display area with the mouse button held down, the coordinates of the mouse position aresent out the outlet as a two-item list as the mouse moves. Thenumbers represent local coordinates relativeto the top-left corner of thelcd display area. Thefirst number isthenumber of pixels to the right of that corner, and the second number is the number of pixels down from that corner.
int Out 3rd outlet:A 1 is sent out the 2nd outlet if themousebutton iscurrently being held down. A 0 is sent, otherwise.
list Out 2nd outlet: When you click and drag in thelcd display area with the mouse button held down, the coordinates of the mouse position are sent out the outlet as atwo-item list as the mouse moves. Thenumbers represent local coordinates relativeto the top-left corner of thelce display area. Thefirstnumber is thenumber of pixels to the right of that corner, and the second number is the number of pixels down from that corner.
list Out 1st outlet: W hen you draw in thelcd with the mouse button held down, the coordinates of the mouse position are sent out the outlet as atwo-item list as the mouse moves. The numbers represent local coordinates relative to thetop-left corner of Icd. Thefirst number is the number of pixels to the right of that corner, and the second number is thenumber of pixels down from that corner.
list Out 4th outlet:W hen mouseidlemodeisusing theidle messageor by enabling the Respond to IdleM ousing Inspector option, a list of current mouse coordinates is sent out the third outlet when the mouse is positioned over thelcd object's display area.
update Out 4th outlet:The word update is output whenever Icd receives an update message from M ax telling it to redraw itself. This is only donewhen Icd is in onscreen mode
penloc Out 4th outlet:In response to thegetpenloc message, Icd outputs a message consisting of the word penloc followed by two numbers representing the pen location in local coordinates relative to the top-left corner of thelcd display area. Thefirst number isthenumber of pixels to theright of that corner, and the second number is the number of pixels down from that corner.

D raw graphics in a Patcher window

\section*{Examples}


D raw an angular snakediagram usinglcd

\section*{See Also}
\begin{tabular}{ll} 
frame & Draw framed rectanglein a graphic window \\
graphic & Window for drawing sprite based graphics \\
mousestate & Report thestatus and location of the mouse \\
oval & Draw solid oval in a graphic window \\
panel & Colored background area \\
rect & Draw solid rectangle in a graphic window \\
ring & Draw framed oval in a graphic window \\
Tutorial 43 & Graphics in a patcher \\
Graphics & O verview of M ax graphics windows and objects
\end{tabular}
int If thenumber is 0 , led shows its darkened state, and outputs 0 . If thenumber is not 0 , led shows its brightened state and outputs 1 .
float Converted to int.
bang Flashes led on and off quickly, and outputs 0 .
Clicking on an led toggles it back and forth between bright and dark, outputting1 and 0 .
blinktime In left inlet: the word blinktime, followed by a number, specifies the duration (in milliseconds) that led will flash when it is clicked upon or receives abang message.
pict In left inlet: the word pict, followed by an integer from 0 to 4, changes the color used by led.
set The word set, followed by a non-zero number causes led to show its brightened state, but causes no output; set 0 shows the led object in a darkened state, but causes no output.
toggle Switches theled from dark to bright and sends 1 out theoutlet; or vice-versa, from bright to dark, sending0 out the outlet.

\section*{Inspector}

Thebehavior of an led object is displayed and can beedited using its Inspector. If you have enabled the floating inspector by choosing Show Floating Inspector from theW indows menu, selecting any led object displays the led Inspector in the floating window. Selecting an object and choosing Get Info... from the O bject menu also displaystheInspector.

Theled Inspector lets you set the following altributes:
TheLED Pict option lets you usefrom among five colors for theled object's display: red (thedefault), green, blue, yellow, or black and white.

Flash Time specifies the duration (in milliseconds) that led will flash when it is clicked upon or receives a bang message. The default is 150 .

TheRevert button undoes all changes you've madeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
int Theoutput is 1 when led is bright, 0 when it is dark. A bang in the inlet flashesled on and off and sends 0 out the outlet.

\section*{Examples}


Displays an on/off state, announces activity with a flash, or can be used as a toggle

\section*{See Also}
\begin{tabular}{ll} 
button & \begin{tabular}{l} 
Flash on any message, send a bang \\
Picture- based control
\end{tabular} \\
pictrl & \begin{tabular}{l} 
Report a change in zero/non-zero values \\
togedge
\end{tabular} \\
toggle & Switch between on and off (1 and 0) \\
Tutorial 40 & Automatic actions
\end{tabular}

\section*{Input}
list Thefirst number specifies a target value, and the second number specifies a total amount of time (in milliseconds). In that amount of time, numbers are output regularly in a line from the currently stored value to the target value.
int or float In left inlet: Thenumber is the target value, to be arrived at in the time specified by the number in the middleinlet. If no time has been specified sincethelast target value, the time is considered 0 and line immediately outputs the target value.

Note: theoutput type for the line object is set by using the first argument to the object (seeA rguments).

In middle inlet: Thenumber is thetime, in milliseconds, in which to arrive at the target value.

In right inlet: Thenumber is the interval (in milliseconds) at which intermediary numbers are regularly sent out.
clock The word clock, followed by the name of an existing setclock object, sets line to be controlled by that setclock rather than by M ax's internal millisecond clock. The word clock by itself setsline back to using M ax's regular millisecond clock.
stop In left inlet: Stopsline from sending out numbers, until a new target value is received.
set In left inlet: Theword set, followed by a number, makes that number the new starting valuefrom which to proceed to the next received target value. Theset message also stopsline if it is in the process of sending out numbers.

\section*{Arguments}
int or float
Optional. The first argument sets theoutput typefor theobject- if thefirst argument is an int, the lineobject outputs integer values, and afloat will set the line object to output floating point values. The first argument also sets theinitial value to bestored in line and theoutput type for theobject. If there is no argument, the initial value is 0 and theoutput typeisint. The second argument sets an initial value for thegrain, the time interval at which numbers are sent out. If the grain is not specified, line outputs a number every 20 milliseconds. Theminimum grain allowed is 1 millisecond; any number less than 1 will be set to 20 .

\section*{Output}
int Out left outlet: Numbers aresent out at regular intervals, describing a straight line toward a target value. If a new target value and time are specified beforetheline is completed, thenew linestarts from the most recent output value, in order to avoid discontinuities.

If a value is received in the left inlet without an accompanying time value, it is sent out immediately (time is considered 0 ).
bang Out right outlet: When line has arrived at itstarget value, bang is sent out.
Note: In practice, the target value is arrived at in just under the amount of time specified (timeminus grain).

\section*{Examples}


Output values in a straight line...


Reset when finished

\section*{See Also}
envi
funbuff
setclock
uzi
Tutorial 31

Script-configurable envelopein a patcher window
Store x,y pairs of numbers together
Control the clock speed of timing objects remotely
Send a specific number of bang messages
Using timers

There are no inlets. O utput is triggered automatically when thefile is opened, or when the patch is part of another filethat is opened.

\section*{Arguments}

None.

\section*{Output}
bang Sent automatically when the patch is loaded. You can also causeloadbang to send out a bang by double-clicking on it in a locked patcher, or by sending aloadbang message to a thispatcher object in the same patcher. Holding down the Shift and Command keys on M acintosh or Shift and Control keys on Windows whilea patch is loading prevents loadbang objects in that patch from sending any output.

\section*{Examples}


Set initial values when a patch isloaded...

or start a process automatically

\section*{See Also}
active
button
closebang
thispatcher
Tutorial 40

Send 1 when patcher window is active, 0 when inactive
Flash on any message, send a bang
Send a bang when patcher window is closed
Send messages to a patcher
Automatic actions
int In left inlet:Thenumber istreated as apitch valuefor a M IDI note-on message. It is paired with a velocity value and the numbers aresent out theoutlets. After a certain time, a note- off message ( a note-on with a velocity of 0 ) is sent out for that pitch.

In middle inlet:Thenumber is stored as a velocity to be paired with pitch numbers received in the left inlet.

In right inlet:Thenumber is stored as the duration (in milliseconds) that makenote waits before a note-off message is sent out.
float Converted to int.
list The second number is treated as the velocity and is sent out the right outlet. The first number is treated as the pitch and is sent out the left outlet.A corresponding note off message is sent out later.
stop Causes makenote to send out immediate note offs for all pitches it currently holds.
clear Erases all notes currently held by makenote, without sending note offs.

\section*{Arguments}
int Optional. Thefirst argument sets an initial velocity value to be paired with incoming pitch numbers. If there is no argument, theinitial velocity is 0 .

The second optional argument sets an initial note duration (time before a noteoff issent out), in milliseconds. If the second argument is not present, thenote-off follows the note on immediately.
float Converted to int.

\section*{Output}
int Out left outlet: Thenumber received in the left inlet is sent out immediately, paired with a velocity valueout theother outlet. After a certain duration, thesame number is sent out paired with avelocity of 0 .

Out right outlet:Thenumber in the middle inlet is sent out as a velocity value in conjunction with a pitch value out the left outlet. A fter a certain duration, 0 i s sent out paired with the same pitch.

\section*{Examples}


Supply note-offs for note-ons generated within M ax

\section*{See Also}
flush
midiout
noteout
stripnote
xnoteout
Tutorial 13
Providenote-offs for held notes
Transmit raw M IDI data
Transmit M IDI note messages
Filter out note-off messages, pass only note-on messages
Format M IDI note messages with release velocity
M anaging notedata
int If thenumbers match the arguments, in the proper order, they are sent out as a list.
clear Causes match to forget all numbers it has received up to that time.
set Theword set, followed by alist of numbers, specifies a new series of numbers match will look for.

\section*{Arguments}
list Obligatory. The arguments specify numbersto look for, in the proper order. The word \(n n\) can be used as a wild card that will match any number.

\section*{Output}
list Thenumbers received in the inlet are compared with the arguments. If the numbers are the same, and in the same order, they are sent out the outlet as a list.

\section*{Examples}


Numbers must bethe same, and in the sameorder

\section*{See Also}
iter
pack select

Break a list up into a series of numbers
Combinenumbers and symbolsinto a list
Select certain inputs, pass the rest on
matrixctrl is a user interface object that consists of a rectangular grid of switch-like controls called cells. All of the cells in a matrixctrl object have the same appearance and behavior. Each cell has two or morestates. By default, the cells have two states, representing "off" and "on." You can create cells with any number of states. Clicking on a cell increases its state by one.After a cell reaches its last state, it returns to its zero state when clicked again - thus, a cell with only two states will toggle back and forth between these states with each mouse click.
matrixctrl was originally constructed to control theM SP object matrix ~, but is useful for other user interface applications, such as groups of switches, groups of visual indicators, and drum-machine-oriented sequencers.

Note: The matrixctrl object requires that QuickTimebeinstalled on your system to open any files other than PICT files (i.e., files with a.pct extension on Windows). If you are using Max on Windows, we recommend that you install QuickTime and choose a complete install of all optional components.

\section*{Input}
(Mouse) A mouseclick on a cell will increase its value by one. Values in matrixctrl will wrap back to 0 once they have reached their maximum possible state. Dragging across several cells will set their values to that of the first cell clicked. D ragging across cells while holding down theShift key will allow you to drag in straight horizontal or vertical lines only.
bang A bang causes matrixctrl to dump its current statein lists of threevalues for each cell pair, in theformat
horizontal-coordinatevertical-coordinatevalue
list A list of ints setscells in thematrixctrl object using the format <horizontal-coordinate vertical-coordinate value>. Multipletriplets of values can beused to set more than one cell. C coordinates for the cells start at 0 in the upper-left hand corner and the values for each cell start at 0 and go up to the value range minus one, set by the object's inspector. Substituting the symbolsinc and dec in place of the value will increment or decrement that cell coordinate by a value of one. Changing the cell state with a list causes the list to be output from matrixctrl.
set The word set, foll owed by a list as described above, changes the state of matrixctrl without echoing the values to the output.
active The word active, followed by a0 or 1, causes matrixctrl to ignore or respond to mouse clicks, respectively. By default, matrixctrl responds to mouse clicks.
bkgndpicture The word bkgndpicture, followed by a symbol that specifies afilename, designates the graphics file that the matrixctrl object will usefor the matrix background image. The matrixctrl object accepts PICT files and, if QuickTimeVersion 3.0 or later is installed, other picturefile formats that are listed in the QuickTime appendix. The symbol used as afilenamemust either bethename of a filein \(M\) ax's cur-
rent search path, or an absolute pathnamefor thefile(e.g. "MyDisk:/Documents/UI Pictures/CoolBkgnd.pct"). The word bkgndpicture by itself puts up a standard O pen D ocument dialog box and displays the common graphics files supported by QuickTime.
cellpicture The word cellpicture, followed by a symbol that specifies a filename, designates the graphics file that the matrixctrl object will usefor each cell. The matrixctrl object acceptsPICT files and, if QuickTimeVersion 3.0 or later is installed, other picture file formats that arelisted in theQuickTimeappendix.The symbol used as a filename must either bethe nameof afile in M ax's current search path, or an absolute pathnamefor thefile(e.g."MyDisk:/Documents/Ul Pictures/Cell.pct"). The word cellpicture by itself puts up a standard O pen D ocument dialog box and displays thecommon graphics files supported by QuickTime.
clickedimage The word dickedimage, followed by a nonzero value, specifies that the graphics file used by thematrixctrl object contains an additional image to be displayed when a cell isclicked.
dickvalue The word dickvalue, followed by a number, toggles the click value mode. If thedickvalue message is followed by a 0 or a positive number, clicking on a cell sets its value to thegiven number. If dickvalue isfollowed by a negative number, the matrixctrl object reverts to its default behavior in which clicking a cell increments its value. Thedickvalue message allows the use of the matrixctrl object to creategrid editors by creating graphics files which contain a sequence of images, each of which is assigned to adifferent value; as you click through thesequence of images, the cell image will changeto reflect velocity, note, etc.
disablecell The word disablecell, followed by a list of number pairs which specify the horizontal and vertical coordinates of a cell or cells, sets the designated cell or cells so that they do not respond to mouse clicks. Thedisablecell message expects at least one pair of numbers, but more may be added to disable multiplecells (e.g., disable 003 4912 ). Although disabled cells will ignore mouse clicks, their values can be set using messages.
enablecell Theword enablecell, followed by alist of number pairs which specify thehorizontal and vertical coordinates of a cell or cells, will set any designated cell or cells which have been disabled using the disablecell message to respond to mouse clicks again. The enablecell message expects at least one pair of numbers, but more may be added to enablemultiplecells (e.g., enable 111222).
getrow Theword getrow, followed by a number, sends the values of the cells in the row designated by the number out its right outlet.
getcolumn The word getcolumn, followed by a number, sends the values of the cells in the column designated by the number out its right outlet.
horizontalmargin Theword horizontalmargin, followed by a number, sets a horizontal margin (in pixels) between theoutermost cells and the edge of the matrixctrl object's bounding box.
horizontalspacing Theword horizontalspacing, followed by a number, sets the horizontal distance(in pixels) between adjacent cells in the matrixctrl object.
imagemask The word imagemask, followed by a nonzero value, specifies that the matrixctrl cell graphics file has additional rows of images for use as image masks.
inactiveimage The word inactiveimage, followed by a nonzero value, specifies that the matrixctrl cell graphics filehas additional rows of images for use in an inactivestate(set with an active 0 message).
invisiblebkgnd The word invisiblebkgnd, followed by a nonzero value, specifies that thematrixctrl will bedrawn without a background image, and its cells will be superimposed over any underlying M ax objects. invisiblebkgnd 0 di sables this feature.
one/row The word one/row, followed by a nonzero value, only allows one cell per row to havea non-zero state. Setting any cell in a row to a non-zero state causes any other non-zero cells to change to the zero state. one/row 0 removes this constraint.
one/column Theword one/column, followed by a nonzero value, only allows onecell per column to have non-zero state. Setting any cell in a column to a non-zero state causes any other non-zero cells to change to the zero state. one/column 0 removes this constraint.
one/matrix Theword one/matrix, followed by a nonzero value, only allows one cell in theentire object to have a non-zero state. Setting any other cell in the matrix to a non-zero state causes any other non-zero cells to change to the zero state. one/matrix 0 removes this constraint.
range Theword range, followed by an int, sets the number of possible states each cell can have. It must be set to a value of at least 2 (for states 0 and 1 ).
verticalmargin The word verticalmargin, followed by a number, sets a vertical margin (in pixels) between the outermost cells and the edge of the matrixctrl object's bounding box.
verticalspacing Theword verticalspacing, followed by a number, sets the vertical distance(in pixels) between adjacent cells in the matrixctrl object.

\section*{Inspector}

Thebehavior of a matrixctrl object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating
Inspector from theW indows menu, selecting any matrixctrl object displaysthe
matrixctrl Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

TheCell Spacing number boxes set the horizontal and vertical distance(in pixels) between adjacent cells in the matrixctrl object.

The M argin number boxes are used to specify horizontal and vertical margins (in pixels) between the outermost cells and the edge of the object's bounding box.

Checking the H as Clicked Images option will use an alternate set of image frames in your graphics fileto give the cell adifferent appearancewhen the user clicks and dragsit.

TheH as InactiveImagescheckbox tells the matrixctrl object that your graphicsfiles have additional images for the cell's inactive state. Leavethis box unchecked if the picturefiles used by the control do not have these images.

If you want to use image masks in your cell's graphics file to draw the cell, select theH as ImageM ask option. M asks can be used to create cells with a non-rectangular shape. If your cell picturehas separate images for the clicked and/or inactive state, you must supply masks for those as well.

Checking the Invisible Background box tells the matrixctrl object not to draw anything for the background of the matrix. The cells will appear to "float" over any underlying objects.

TheO nePer Column, O nePer Row, and OnePer M atrix checkboxes definethe matrixctrl object's behavior. If checked, matrixctrl only allows one cell per column, row, or in the entireobject to have a non-zero state. Setting any cell to a non-zero state causes any other non-zero cells to change to the zero state.

Cell ValueR ange is used to set the number of possible states each cell can have. It must be set to a value of at least 2 ( for states 0 and 1 ).

Cell PictureFile and Background PictureFile lets you choose graphics files for the matrix cells and its background by clicking on the \(O\) pen buttons. It can open PICT files and, if QuickTimeVersion 3.0 or later is installed, other picturefile formats that arelisted in the QuickTimeappendix. Thecurrent file's name appears in thetext box to the left each of the buttons. You can also choose a file by typing its namein this box, or by dragging thefile's icon from the Finder into this box.

The Revert button undoes all changes you'vemadeto an object's settings since you opened the Inspector. You can also revert to thestate of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Picture File Format}

Background picturefiles for matrixctrl can beany M acintosh PICT fileor, if QuickTimeVersion 3.0 or later is installed, other picturefileformats that arelisted in the QuickTimeappendix.If thematrixctrl is larger than thechosen picture, copies of the picture will be added to fill theobject.

Cell picturefiles must bein thefollowing format:


The pictureis made up of a grid of images. All images havethe same width and height. Each column of images represents onecell state. The picture must have at least two columns, since cells must have at least two states.

Thefirst row of images is used for the idle(or "not clicked") appearance of the cells. The first row of images is mandatory; all subsequent rows areoptional. The second row areimages for the clicked appearance; these images will be used to draw the cell when it is clicked. The appearance of the cell reverts to its idle image when the mouse is released. Thethird row of images are used when thematrixctrl is in its inactive state, i.e. when it has received an active 0 message.

Image masks can beused to create cells with non-rectangular outlines. These masks are in the lower rows of the picturefile. If you wish to usemasksfor any of the cell images, you must providemasks for all of them - each row of images will have a corresponding row of masks. Likeall masksfor M ax's picture-based controls, black pixels create areas of the corresponding image that will bedrawn, and while pixels create invisible areas.

\section*{Output}
list When a cell changes state in response to a mouse click, a list is sent out the matrixctrl object's left outlet. Thelist contains the row, column, and value(state) of the clicked control. Individual cells can also be set by sending lists to theobject's left inlet. Rows and columnsarenumbered starting with zero, at the upper-left corner of the matrix.

The numbers received in the inlet are compared with the arguments. If the numbers are the same, and in the same order, they are sent out the outlet as a list.

\section*{Examples}

matrixctrl can beused to control multiple gates and switches at once

\section*{See Also}
\begin{tabular}{ll} 
dial & Output numbers by moving a dial onscreen \\
hslider & Output numbers by moving a slider onscreen \\
kslider & Output numbers from a keyboard onscreen \\
pictctrl & Picture-based control \\
pictslider & Picture-based slider \\
rslider & Display or change a range of numbers \\
slider & Output numbers by moving a slider onscreen \\
ubutton & Transparent button, sends a bang \\
uslider & Output numbers by moving a slider onscreen \\
Tutorial 14 & Sliders and dials
\end{tabular}
int In left inlet: If thenumber is greater than the value currently stored in maximum, it is sent out the outlet. Otherwise, the stored value is sent out.

In right inlet: Thenumber is stored for comparison with subsequent numbers received in the left inlet.
float Converted to int, unless there is a float argument, in which case all numbers are compared as floats.
list In left inlet: Thenumbers in the list areall compared to each other, and the greatest value is sent out the outlet. The valuestored in maximum is replaced by thenext greatest value in the list.Themaximum object accepts lists of up to 256 elements.
bang In left inlet: Sends the most recent output out the outlet again.

\section*{Arguments}
int or float Optional. Sets an initial value to becompared with numbers received in the left inlet. If the argument contains decimal point, all numbers are compared as floats, and theoutput is a float. If there is no argument, theinitial valueis 0 .

\section*{Output}
int Thenumber received in the left inlet is compared with the value currently held by maximum (or numbers received as a list are compared with each other), and the greatest of the numbers is sent out the outlet.
float Only if there is an argument with a decimal point.

\section*{Examples}


Theoutput is the greater of two numbers, or the greatest in a list of numbers

\section*{See Also}
\begin{tabular}{ll} 
minimum & Output the smallest in a list of numbers \\
past & Report when input increases beyond a certain number \\
peak & If a number is greater than previous numbers, output it \\
\(>\) & Is greater than, comparison of two numbers
\end{tabular}

\section*{Input}
int or float Thenumber is added to the sum of all numbers received up to that point, and the mean is sent out.
bang Sends out the previous output (the stored average value).
list Thenumbers in the list are added together, the sum is divided by thenumber of items in the list, and the mean is sent out. All previously received numbers are cleared from memory.
clear Resets the contents of theobject to zero.

\section*{Arguments}

None.

\section*{Output}
float Out left outlet: Themean (average) value of all numbers received up to that point, or of all the numbers received together in a list.
int Out right outlet: How many numbers have been included in the averaging process.

\section*{Examples}


Find the average value of many numbers

\section*{See Also}
accum
anal
bag
histo
prob

Store, add to, and multiply a number
M akea histogram of number pairs received
Storea collection of numbers
M akea histogram of the numbers received
\(M\) ake weighted random series of numbers

The menubar object provides control over theM acintosh menu bar. It allows your patch to put up its own menus, and add itemsto standard File and Edit menus. W hen a menu item is chosen, the item number is sent out the outlet corresponding to the menu containing the item. You configure the menubar by writing a script in a text editor window availableby double-clicking on theobject in a locked patcher.

\section*{Input}
int A nonzero number displays the menubar object's menus, 0 restores the previous contents of themenu bar (either theM ax menusor themenus of another menubar object).
checkitem Followed by a menu number, an item number, and a code 0 or 1 , checkitem putsa check beforethe specified item if the code is 1 , otherwise it removes the check.
enableitem Followed by a menu number, an item number, and a code 0 or 1 , enableitem enables thespecified item if the codeis 1, otherwiseit disables (and grays out) the item.
markitem (M acintosh only) Followed by a menu number, an item number, and an ASCII character code, markitem places the character next to the specified item. Common mark character ASCII codes are 18 for the check mark and 19 for the diamond mark. You may also wish to use theem dash (209) or bullet (165).
(menu bar) W hen the menubar object has been activated (by a nonzero number in its inlet) and an item is selected in themenu bar, themenu number and item number are received by themenubar object, and theitem number is sent out the appropriate outlet.

\section*{Arguments}
int Optional. Thefirst argument setsthenumber of menus in theobject's menu bar. If present, it must be at least 5 (one additional menu). The four default menus, which are always present, areFile, Edit, Windows., and Help. On M acintosh, the Standard System M enu with theAppleicon and the M ax/M SP application menu will appear to the left of theother menus.

The second optional argument is a numerical codeto indicatethat certain items in the default menus areto beremoved from those menus. The codeis a sum of thefollowing values assigned to thecommandsto besuppressed: \(1=0\) verdrive in the Optionsmenu, 2=Resume, and 4=Midi Setup.... in theFilemenu For example, to eliminatethe 0 verdrive and Midi Setup commandsfrom theEdit menu, the appropriate second argument is5 (1+4).

\section*{Script Messages}

You define a menubar with a series of script messages, typed into a text editor window opened by double-clicking on a menubar object in a locked patcher. W hen you close the script window and confirm saving the changes, the script file is interpreted. If there are no errors, the customized menu bar will be ready for use when menubar receives a nonzero number in its inlet.

Each message should bepreceded by \#X and end with a semicolon (;). Thefirst script message must beapple and the last end. An example script follows the definition of the messages.

\section*{Messages to Modify Standard Menus}

M essage Arguments
about •Text of the first menu item (i.e. About M y Program... ).
On the M acintosh theA bout item appears as the first item in the application menu (Max/M SP menu). On Windows, it appears as thefirst item in theH elp menu. The message apple may be used optionally for compatibility with older M acintosh versions of Max .

\section*{file •Item number to output}
-Text of item to add to filemenu
Thefile message inserts items at the top of thestandard Filemenu (beforethe Midi Setup... menu item). Each item has a number associated with it which is sent out the when theitem is chosen. Theorder in which your additional items appear in the Filemenu is determined by their order in the script, not by the (arbitrary) number associated with each item.
edit •Item number to output
-Text of item to add to edit menu
Theedit message inserts items into the standard Edit menu after the Clear item and beforethe \(\mathbf{O}\) verdrive and Resumeitems (which are moved into the Edit menu when menubar is activated). A blank line separates the custom inserted items from the default items. Each item has a number associated with it which is sent out the third outlet of menubar when theitem is chosen. Theorder in which your additional items appear in theEdit menu is determined by their order in the script, not by the (arbitrary) number associated with each item.
newitem • Item number to output.
Thenewitem messagefollowed by a non-zero number directs Max to send the specified number out themenubar object's Filemenu outlet when the user chooses the New command from the Filemenu, instead of opening a new patcher window. The messagenewitem 0 (or the absence of any newitem message) causes the New command to behave normally.
open •Item number to output.
Theopen messagefollowed by a non-zero number directs M ax to send the specified number out the menubar object's File menu outlet when the user chooses the Open...command from the Filemenu, instead of displaying theO pen Document dialog box. The message open 0 ( or the absence of any open message) causes the Open... command to behavenormally.
closeitem (No arguments.)
Causes a Closeitem to appear in the File menu, for closing the active window.
saveas •Item number to output.
The saveas messagefollowed by a non-zero number directs M ax to send the specified number out themenubar object's Filemenu outlet when the user chooses Save or SaveAs... from the File menu, instead of performing the standard Save actions. Thenumber sent out theoutlet when Save is chosen will be1 less than the number sent when SaveAs... is chosen. Themessage saveas 0 (or the absence of any saveas message) causes the Save and SaveAs... commands to behave normally.

\section*{Messagesfor Creating New Menus and Items}

Message Arguments
menutitle •M enu number (must be at least 5 and must not exceed the number of outlets specified in the argument to menubar
- Nameof menu

The menutitle message adds a new menu beforetheW indow menu. Thefirst additional menu is number 5 . Themenu number determines both theorder of the additional menu in themenu bar and theoutlet it uses when the user chooses its items. A menutitle message must appear in the script before any item messages that refer to its menu number.
item •M enu number
- Item number
-Text of item
-(Optional.) "M eta-characters"
Theitem message adds an item to an additional menu previously defined with a menutitle message. The order in which your items appear in the menu is determined by their order in the script, not by the (arbitrary) number associated with each item. The item number argument only specifies the number which is sent out the menubar object's outlet when the user chooses this item. It's a good idea to start your item numbers at 1 and list the items in the order you want them to appear in a menu.

You can alter the appearanceof amenu item by including "meta-characters" in the item text. For moreon metacharacters, consult theAppleQuickTimeD eveloper documentation found at:
http://developer.apple.com/documentation/Carbon/Reference/M enu_M anager/ menu_mgr_refffunction_group_4.html

A few of the recognized meta-characters are:
I followed by a character, assignsthat character as a Command-key equivalent < followed by B, I, O, S, or U, specifies a font style (such as Ofor outline) ! foll owed by a character, marks the menu item with that character (disables the menu item

Thus, these special characters cannot appear as part of the actual item text. For example, thetext On/Off will appear as "Onff_ 0 ", not as "O n/Off".

\section*{Completing the Script Definition}

Message Arguments
end (No arguments.)
Theend message builds the menus and reports any errors encountered.

\section*{Output}
int Thedefault menubar object has four outlets. If the menubar object has been activated (by receiving a nonzero number in its inlet), the leftmost outlet sends a 1 when the first item in theA pple menu is chosen. The second outlet sends the item number when an extraitem is chosen from theFilemenu. Thethird outlet sends theitem number when an extraitem is chosen from theEdit menu. Thefourth outlet sends an item number when the user chooses an item from theW indows menu. If additional menus have been defined, item numbers aresent out the additional outlets to theright, starting with thefifth one.

\section*{Examples}

Here is an examplemenubar script:
```

\#X about About Note Algorithms...;
\#X closeitem;
\#X menutitle 5 Algorithm;
\#X item 5 1 Transpose;
\#X item 5 2 Invert;
\#X item 5 3 Randomize;
\#X end;

```

Notethat we suggest capitalizing each letter in a menu item to maintain a consistent style with other items in themenu.

The above script is used in a menubar in the following example, which uses the extra menu to switch among three note-processing algorithms.


An implementation of the examplemenubar script

\section*{See Also}
umenu
Pop-up menu to display and send commands
Menus
Explanation of commands

The message object ( a box that displays and sends out a message) is often referred to as themessage box, in order to distinguish it from amessage (the data that is actually sent from oneobject to another).
bang Sends out the contents of the message box.A mouseclick on the message box has the same effect.
int or float Thenumber replaces the valuestored in the argument \(\$ 1\), if such an argument exists, then sends out the contents of themessage box.
list Each item in the list is stored in place of its corresponding \$ argument, if such an argument exists, then the contents of themessage box are sent out.
append The word append, followed by a message, appends that message (preceded by a space) at theend of the contents of the message box, without triggering output.
color Theword color, followed by a number from 0 to 15 , sets the color of themessage box to oneof theobject colors which arealso availablevia the Color command in theO Oject menu.
open Opensthe message Inspector window. If the word open is followed by a 1, the contents of the message box will be sent out its outlet when the text field in the Inspector window ischanged or the Inspector window isclosed. The second optional argument to theopen message is a symbol which specifies the prompt that will appear at the top of the dialog box. The default prompt isSet M essageText. Use doublequotes if you want to include spaces in the prompt.
prepend The word prepend, followed by a message, places that message (followed by a space) beforethebeginning of thecontents of themessage box, without triggering output.
set The word set, followed by a message, sets the contents of the message box to that new message, without triggering output. The word set by itself erases the contents of themessage box.
symbol Theword symbol, followed by a symbol, stores that symbol in the\$1 argument, then sends out the contents of themessage box.

\section*{Inspector}

The contents of the message object can bechanged by selecting theobject and choosing Get Info... from the O bject menu. You cannot usetheInspector for the message object in a floating window.

Typing in the Set M essage Text text area specifies the contents of themessage box.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}
anything Theinitial contents of the message box aretyped in when the patcher window is unlocked. Any message of up to 256 items can be contained in a message box. Certain characters have special meaning.
\$ A dollar sign (\$), followed immediately by a number in the range 1-9, is a changeable argument. This argument's value can bereplaced by the corresponding item in a list received in the inlet. (Example: \(\$ 2\) stores the second item in a list as its value before sending out the contents of the message box.) The value of a changeable argument is initially 0 .

A comma (,) divides a message into separate messages which will be sent out in order. (Example: 3,4,5 sends out 3, then 4, then 5.)
; A semicolon (;) sends a message to a receive object. Thefirst item following a semicolon is the name of the receive object. The rest of the message (or up to the next semicolon) is sent to that object, rather than out the outlet. The first item after the semicolon can bea changeable argument, so an incoming message can set the destination of the message" on thefly."

1 A backslash (\\) is used to negatethe special traits of a special character. W hen a backslash immediately precedes a dollar sign, comma, or semicolon, the character is treated as a normal character. (Example: Notes played were \(\mathrm{Q}, \mathrm{El}\), and G .)

\section*{Output}
anything The contents of themessage box are normally sent out the outlet. If a semicolon is present, the rest of the message (or up to the next semicolon) is sent to the specified receive object, rather than out theoutlet.

\section*{Examples}


Send a simple message, or construct a message of any degree of complexity

\section*{See Also}
append Append arguments at the end of a message
prepend
receive
Tutorial 1
Tutorial 25
Place one message at the beginning of another
Receive messages without patch cords
Saying"H ello!"
\(M\) anaging messages

\section*{Input}
int or float In left inlet: A ny number other than 0 starts metro. At regular intervals, metro sends a bang out the outlet. 0 stops metro.

In right inlet: Thenumber is the time interval, in milliseconds, at which metro sends out a bang. A new number in the right inlet does not take effect until the next output is sent. The metro object's minimum interval time is 02 second.
bang In left inlet: Starts metro.
stop In left inlet: Stops metro.
clock The word clock, followed by the name of an existing setclock object, sets the metro to becontrolled by that setclock rather than by M ax's internal millisecond clock. The word clock by itself sets metro back to using M ax's regular millisecond clock.

\section*{Arguments}
int or float
Optional. Thefirst argument sets an initial valuefor thetimeinterval at which metro sends its output. If there is no argument, the initial timeinterval is 5 milliseconds. Any argument less than 5 will be set to 5 . If the second argument is 1 , metro uses the M IDI M anager external clock (see the ext message discussion above). If thesecond argument is0 or not present, metro uses M ax's internal millisecond clock.

\section*{Output}
bang A bang is sent immediately when metro is started, and at regular intervals thereafter.

\section*{Examples}


Repeatedly send a message or trigger a process

\section*{See Also}
\begin{tabular}{ll} 
clocker & Report theelapsed time, at regular intervals \\
counter & Count thebang messages received, output the count \\
delay & Delay a bang before passing it on \\
setclock & Control theclock speed of timing objects remotely \\
tempo & Output numbers at a metronomic tempo \\
uzi & Send a specific number of bang messages \\
Tutorial 4 & Using metro
\end{tabular}
int midiflush expects raw MIDI data from a sourcesuch as seq or midiin. midiflush passes the data through unchanged, and observes which note on messages on each channel have not received matching note off messages.
bang When midiflush receives abang, it outputs M IDI note off messages for all note- ons which havenot been matched by note offs since theobject was created (or thelast bang message was sent).
dear Erases any note-ons held by midiflush, without sending any note offs.

\section*{Arguments}

None.

\section*{Output}
int midiflush passes all its input through to its output, and sends M IDI note off messages (as a series of numbers) for all note ons which have not been matched by note-offs at its input.

\section*{Examples}


W hen midiflush receives a bang, it supplies note-offsfor any held note-ons

\section*{See Also}
\begin{tabular}{ll} 
flush & Providenote-offs for held notes \\
midiin & Output received raw M IDI data \\
midiinfo & Set pop-up menu with names of M IDI devices \\
midiout & Transmit raw M IDI data \\
seq & Sequencer for recording and playing M IDI
\end{tabular}

Numbers received in the inlets are used as data for MIDI messages. The data is formatted into a completeM IDI message (with the status byte determined by the inlet) and sent out the outlet as individual bytes.
list In leftmost inlet: The first number is a pitch value and the second number is a velocity value, to be formatted into a note-on message.

In 2nd inlet:Thefirst number is an aftertouch (pressure) value and thesecond number is a pitch value (key number), to beformatted into a polyphonic key pressuremessage.

In 3rd inlet:Thefirst number is a control value and the second number is a controller number, to beformatted into a control message.
int In 4th inlet: The value is formatted into a program change message.
In 5th inlet:The value isformatted into an aftertouch (channel pressure) message.

In 6th inlet:The value is formatted into apitch bend message.
In rightmost inlet:Thenumber isstored as the channel number of theMIDI messages. The actual value of the status byte is dependent on the channel. Numbers greater than 16 are wrapped around to stay between 1 and 16 .
float Converted to int.

\section*{Arguments}

Optional. Sets an initial valuefor the channel number of the M IDI messages. Numbers greater than 16 arewrapped around to stay between 1 and 16 . If there is no argument, the channel number is initially set to 1 .
float Converted to int.

\section*{Output}
int MIDI messages are sent out as individual bytes, for recording by theseq object or for transmission by themidiout object.

\section*{Examples}


Numbers are formatted into M IDI messages and sent out asindividual bytes

\section*{See Also}
\begin{tabular}{ll} 
borax & Report current information about note-ons and note-offs \\
midiinfo & Set pop-up menu with names of M IDI devices \\
midiout & Transmit raw M IDI data \\
midiparse & Interpret raw M IDI data \\
M IDI & M IDI overview and specification \\
Tutorial 34 & M anaging raw MIDI data
\end{tabular}

\section*{Input}
(MID) midiin receives all M IDI messages from a M IDI input device.
enable Themessageenable 0 d isables the object, causing it to ignoresubsequent incoming M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which the object receives incoming M IDI messages. The word port is optional and may beomitted.
(mouse) Double clicking on a midiin object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port from which to receiveincoming M IDI messages. If there is no argument, midiin receives from porta (or the first input port listed in the MIDI Setup dialog.)

\section*{Output}
int All M IDI messages received from the specified port are sent out the outlet, byte-by-byte. Note that midiin does not "clean up" any use of running status in the incoming M IDI stream.

\section*{Examples}


M IDI messages received in a port areoutput by a midiin object

\section*{See Also}
\begin{tabular}{ll} 
midiout & Transmit raw M IDI data \\
midiparse & Interpret raw M IDI data \\
midiinfo & Set pop-up menu with names of M IDI devices \\
notein & Output received M IDI notemessages \\
rtin & Output received M IDI real time messages \\
sysexin & Output received M IDI system exclusivemessages \\
xnotein & Interpret M IDI notemessages with release velocity \\
xbendin & Interpret extra precision M IDI pitch bend messages \\
Tutorial 34 & M anaging raw M IDI data \\
Using M IDI & Using M ax with M IDI \\
M IDI & M IDI overview and specification \\
Ports & How M IDI ports arespecified
\end{tabular}

\section*{Input}
int In left inlet: Causes midiinfo to send out a series of messages containing the names of the current M IDI output devices. Those messages can be used to set the individual items of a pop-up umenu object connected to the midiinfo object's outlet. The number received in the midiinfo object's left inlet is then sent in a set message to set the currently di splayed menu item.

In right inlet: Causes midiinfo to send out a series of messages containing the names of the current M IDI input devices. Those messages can be used to set the individual items of a pop-up umenu object connected to themidiinfo object's outlet. The number received in the midilinfo object's left inlet is then sent in a set messageto set the currently displayed umenu item, unlessthenumber is less than zero, in which case no set message is sent.
bang In left inlet: Same as int, but doesn't send a set message after setting the umenu items. Theequivalent messageto bang for retrieving input devicenames is-1 in the right inlet.

In left inlet: C auses midiinfo to send out a series of messages containing thenames of all M IDI controllers (devices that transmit M IDI) in the current M IDI setup. Those messages can beused to set the individual items of a pop-up umenu object connected to the midiinfo object's outlet. The word controllers may befollowed by a number, which sets the pop-up umenu to that item number after the menu items have been created.

\section*{Arguments}

None.

\section*{Output}
dear midiinfo first sends a clear message out its outlet to clear all the receiving umenu object's items.

Immediately after sending theclear message, midiinfo sends an append message for each M IDI input or output device name, to set the items of a connected umenu object. The devicenames will be sent out in the order in which they appear in Max's MIDI Setup dialog.
set If the incoming messageto midiinfo is an integer greater than or equal to zero, a set message is sent after the append messages, to set the currently displayed menu item.

\section*{Examples}


Get output devicenames for M IDI output objects

... and for MIDI input objects

\section*{See Also}
midiin
midiout
umenu
Using M IDI
Ports

Output received raw M IDI data
Transmit raw M IDI data
Pop-up menu to display and send commands
Using M ax with MIDI
How MIDI ports arespecified

\section*{Input}
int Thenumber is transmitted as a byte of a M IDI message to the specified port.
float Converted to int.
list Thenumbers aretransmitted sequentially as individual bytes of a M IDI message to the specified port.
enable Themessageenable0 disablestheobject, causing it not to transmit M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port Theword port, followed by a letter a-z or the name of a M IDI output port or device, specifies the port used to transmit the M IDI messages. The word port is optional and may beomitted.
(mouse) D oubleclicking on a midiout object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port for transmitting M IDI data. If there is no argument, midiout transmits out porta (or the first output port listed in theMIDI Setup dialog.)
(MIDI name) Optional. Thenameof a M IDI output devicemay beused as the first argument to specify the port.

\section*{Output}
(MIDI) Thereare no outlets. Theoutput is a byte of a M IDI messagetransmitted directly to theobject's M IDI output port.

\section*{Examples}

midiout a


midiout b

M IDI bytes received in theinlet aretransmitted out the specified port

\section*{See Also}
\begin{tabular}{ll} 
midiformat & Preparedata in theform of a M IDI message \\
midiin & Output received raw M IDI data \\
midiinfo & Set pop-up menu with names of M IDI devices \\
noteout & Transmit M IDI note messages \\
sxformat & Prepare M IDI system exclusivemessages \\
xbendout & Format extra precision M IDI pitch bend messages \\
xnoteout & Format M IDI notemessages with release velocity \\
Tutorial 34 & M anaging raw M IDI data \\
Using M IDI & Using M ax with M IDI \\
MIDI & MIDI overview and specification \\
Ports & How M IDI portsare specified
\end{tabular}
int Numbers received in the inlet aretreated as bytes of a M IDI message (usually from a seq or midilin object). The status bytedetermines the outlet which will be used to output the data bytes.
float Converted to int.
bang Clears themidiparse object's memory of any partial MIDI message received up to that point.

\section*{Output}
list Out leftmost outlet: A note-on message. Thefirst number is a pitch value and the second number is a velocity value.

Out 2nd outlet:A polyphonic key pressure message. Thefirst number is an aftertouch (pressure) value and thesecond number is a pitch value (key number).

Out 3rd outlet:A control message. The first number is a control value and the second number is a controller number.
int Out 4th outlet: Thenumber is a program change.
Out 5th outlet:Thenumber is an aftertouch (channel pressure) value.
Out 6th outlet:Thenumber is a pitch bend value.
Out rightmost outlet:Thenumber is the MIDI channel number.

\section*{Examples}


Interpret the meaning of M IDI messages and filter different types of data

Interpret raw
MIDI data

\section*{See Also}
\begin{tabular}{ll} 
borax & Report current information about note-ons and note-offs \\
midiformat & Preparedatain theform of a M IDI message \\
midiin & Output received raw M IDI data \\
midiinfo & Set pop-up menu with names of M IDI devices \\
Tutorial 34 & M anaging raw MIDI data \\
MIDI & MIDI overview and specification
\end{tabular}
int In left inlet: If the number is less than the value currently stored in minimum, it is sent out the outlet. Otherwise, the stored value is sent out.

In right inlet:Thenumber is stored for comparison with subsequent numbers received in the left inlet.
float Converted to int, unless there is a float argument, in which case all numbers are compared as floats.
list In left inlet:Thenumbers in the list are all compared to each other, and the smallest value is sent out the outlet. The valuestored in minimum is replaced by thenext smallest value in the list. The minimum object accepts lists of up to 256 elements.
bang In left inlet: Sends the most recent output out the outlet again.

\section*{Arguments}
int or float Optional. Sets an initial valueto be compared with numbers received in the left inlet. If the argument contains a decimal point, all numbers are compared as floats, and the output is a float. If there is no argument, the initial value is 0 .

\section*{Output}
int Thenumber received in the left inlet is compared with the value currently held by minimum (or numbers received as a list are compared with each other), and the smallest of the numbers is sent out the outlet.
float Only if there is an argument with a decimal point.

\section*{Examples}


The output is the lesser of two numbers, or the smallest in a list of numbers

\section*{See Also}
maximum trough <

Output the greatest in a list of numbers
If a number is less than previous numbers, output it Islessthan, comparison of two numbers

\section*{Input}
(keyboard) Thekeyboard input to modifiers comes directly from the computer keyboard.
bang Sends out a report of the current modifier key states.
interval The word interval foll owed by a number, specifies the rate, in milliseconds, used when polling the state of the modifier keys. A value of zero disables polling.

\section*{Arguments}
int Optional. Specifies a polling rate in milliseconds. The default value is 0 (no polling).

\section*{Output}
int Output is sent whenever a modifier key is pressed down on the computer keyboard. M odifier key states are reported as 0 (not pressed) or 1 (pressed).

Out left outlet:Theon/off state of the Shift key.
Out second outlet:Theon/off state of the C aps Lock key.
Out third outlet: theon/off stateof the O ption key on M acintosh or theAlt key on Windows.

Out fourth outlet: theon/off state of the Control key.
Out fifth outlet: theon/off state of theCommand key on M acintosh or the Control key on Windows.

Note: Thefourth and fifth outlets both report the on/off state of the Control key on W indows, since the Command key on M acintosh is equivalent to the Control key on Windows. For cross-platform uses, W indows users should usethefifth outlet of the modifiers object for reporting theC ontrol key state. Thefourth outlet also reports the Control key on Windows so that (older) M acintosh patches that usethiskey can beopened on Windows systems. TheM acintosh Control key normally corresponds to the right-hand mouse button on Windows. Seethe section on file and key mappings in the M ax Tutorialsfor a completediscussion of cross-platform keyboard issues.

\section*{Examples}


M odifier keystyped on the computer keyboard can be used to trigger messages

\section*{See Also}
key
keyup
numkey
Report key presses on the computer keyboard Report key releases on the computer keyboard
Interpret numbers typed on thecomputer keyboard
int If the mouse button is up, the number is sent out the outlet. Otherwise, thenumber isignored.

\section*{Arguments}

None.

\section*{Output}
int Thenumber received in the inlet is sent out only if the mouse button is up.

\section*{Examples}


\section*{See Also}
mousestate
Tutorial 39
Report the status and location of themouse
M ouse control

\section*{Input}
bang Sends out the current horizontal and vertical coordinates of thelocation of the mouse, as well as the change in location since the last output.
poll Causes mousestate to send out the mouse location, and the changein mouse location, whenever the mouse is moved, as well as when abang is received. If poll is followed by the name of a graphics window, the coordinates returned by mousestate will be local to the graphics window, and only sent whilethegraphics window is visible.
nopoll Undoes a poll message, reverting mousestate to its normal condition of waiting for abang before reporting.

Resets the point mousestate considers as the 0,0 point from which to measurethe mouse location. The current location of the mouse is considered thenew 0,0 point.
reset Resets the 0,0 point to its default setting, in the upper left corner of the screen.

\section*{Arguments}

None.

\section*{Output}
int mousestate must have received at least onebang or poll message in its inlet before any output is sent out.

Out left outlet: Each timethemouse button is pressed, 1 is sent out. Each timethe mouse button is released, 0 is sent out.

Out 2nd outlet:Thehorizontal location of themouse, measured in terms of the number of pixels the mouse is to theright of the 0 point.

Out 3rd outlet:Thevertical location of themouse, measured in terms of thenumber of pixels themouse is below the 0 point.

Out 4th outlet:Thechange in horizontal location of the mouse, sincethelast time the mouse location was reported.

Out right outlet:The change in vertical location of the mouse, since the last time the mouse location was reported.

\section*{Examples}


The mouse can providecontinuous or discrete values

\section*{See Also}
mousefilter Pass numbers only when the mouse button is up
Tutorial 39
M ouse control

Note:Themovie object requires that QuickTime beinstalled on your system. If you areusing Max on W indows, we recommend that you install QuickTime and choose a completeinstall of all optional components.T he movie object plays a QuickTime moviein its own window, and the imovie object plays a QuickTime moviein a box inside a patcher window.

\section*{Input}

All messages below, recognized by themovie object, are similarly recognized by imovie.
int Sets the current time location of the movie. If the movie is playing, it will play from thenewly set location. 0 is always the beginning. The end time varies from one movieto another. (Thelength message reports the end time location out the left outlet.)
active Theword active, followed by a nonzero number, makesthe movie active(the default). Followed by a 0 , active makes the movieinactive. An inactive movie will not play or changelocation.
autofit Theword autofit, followed by a nonzero number, scales the movieto fit in the window currently displayed.
bang Sameas resume.
border Theword border, followed by a0 or 1, toggles the movie's border type. Themessageborder 1 (the default) uses the traditional M acintosh-style border for the movie window. Themessageborder 0 displays only the rectangle in which the movieplays.
clear Has the same effect as dispose with no arguments.
dispose Closes the movie window if it is open, and removes all movies from themovie object's memory. If the word dispose isfollowed by the name of a loaded movie, only the named movie will be removed.
getrate Reports the current rate multiplied by 65536 out the right outlet. Thus, normal speed is reported as 65536 , half speed is reported as 32768 , double speed backward is reported as-131072, etc. If the moviei is not playing, the rate is reported as 0 , and if no movie has yet been loaded nothing is sent out.
length Reports the end time location of the movie.
loadintoram The word loadintoram, followed by a nonzero number, attemptsto load the entire movie into memory, if possible. Thedefault is 0 .
loop Theword loop, followed by a nonzero number, turns looping for the current film on. loop 0 (the default) disables looping.
loopend Theword loopend, followed by a number, sets the end point of a loop. The default value is corresponds to theend of the film.
loopset Theword loopset, followed by two numbers, setsthe beginning and end points of a loop. the default values are 0 (i.e., the start of thefilm) for the start point and the end of thefilm for theendpoint.
loopstart Theword loopstart, followed by a number, sets the beginning point of aloop. The default value is 0 (i.e., the start of thefilm).
matrix Theword matrix, followed by ninefloating point numbers, reloads the current movieinto RAM after performing a transformation matrix operation on the image. Thistransformation is the sameoneused for the mapping in QuickTime of points from one coordinate space(i.e, theoriginal image) into another coordinate space ( a scaled, rotated, or translated version of the original image).

Thetransform matrix operation consists of ninematrix elements

if \(u\) and \(v\) are \(0 .\), and \(w\) is \(1 .\), we have the following translation formula.
\[
\begin{aligned}
& x^{\prime}=a^{*} x+c^{*} y+t_{-} x \\
& y^{\prime}=b^{*} x+d^{*} y+t_{-} y
\end{aligned}
\]

Thefollowing formulas are used for scaling/rotation:
\[
\begin{aligned}
& a=x s c a l e * \cos (\theta) \\
& b=y s c a l e * \sin (\theta) \\
& c=x \operatorname{scale}^{*}(-\sin (\theta)) \\
& d=y s c a l e * \cos (\theta)
\end{aligned}
\]

For moreon the transformation matrix, consult theAppleQuickTimeDeveloper documentation found at:
http://developer.apple.com/techpubs/quicktime/qtdevdocs/IN M AC/QT/ iqM ovieToolbox.c.htm\#18006
mute Theword mute, followed by a nonzero number, turns off the movie's sound (if it has any). Followed by a 0 , mute turns on the movie's sound (the default).

\footnotetext{
next Theword next, followed by a number, moves the time location ahead by that amount. If no number is supplied, next moves thetime ahead by 5 . (Theactual time meaning of these units varies from movieto movie.)
nextmovie Stops themovie if it is playing, and switches to the moviethat was loaded just prior to the current movie. (Themovies are stored in reverse order from theorder in which they wereloaded.) If there is no prior movie, nextmovie wraps around back to the most recently loaded movie. Note that thetitle of the moviewindow is not automatically changed, even though the"current movie" has been changed by nextmovie.
open Brings themoviewindow to the foreground (applies only to movie, not imovie).
passive Theword passive, followed by a nonzero number, sets the passivemode. In passive mode, starting a movie will not cause the frameto change unless a bang message is received. passive 0 (the default) sets the movieobject to respond to normal start messages.
pause Stopsthemovie.
prev Theword prev, followed by a number, moves the time location backward by that amount. If no number is supplied, prev moves thetimebackward by 5.
quality The word quality, followed by a number, sets theminimum interval, in milliseconds, between movie redraws. Thedefault is 0 (i.e., no minimum).
rate Theword rate, followed by one or more integers or floats, sets the playing speed of the movie. If rate is followed by one integer, that number is taken to bea whole number playing speed. If rate isfollowed by two numbers, the first number is taken to be the numerator and the second the denominator of a fractional speed. 1 isthe normal playing speed, 0 means the movie is stopped, and a negative rate plays backwards. rate 12 would play the movieat half speed. Immediately after you send a non-zero rate message, the movie will begin playing, so you may wish to precedeany rate messages with an integer to locateto the desired starting position.
read Theword read, followed by a symbol, looksfor a QuickTime moviefile with that name in M ax's filesearch path, and opens it if it exists, displaying the movie's first frame in a movie window. If the filename contains any spaces or special characters, the name should beenclosed in doublequotes or each special character should be preceded by a backslash (\\). Theword read by itself puts up a standard O pen Document dialog box and reads in any moviefile you select. Theread message will open at least 26 different types of files that can beopened by QuickTime, theseinclude moviefiles such asM PEG, audio files includingAIFF and M P3, and graphics files including GIF and JPEG.
readany The readany message opens any type of file, using QuickTime routines to try to interpret it as a movieor other supported media file.
}
rect Theword rect, followed by four numbers, specifies the size of the rectangle in which the movie is displayed within the movie window. Thefirst two numbers specify the position of the rectangle within themovie window, in relative coordinates, and the second two numbers specify the width and height, in pixels, of the rectangle.
resume Begins playing the moviefrom its current location, at the most recently specified rate.
start Sets the movie's rate to 1 and begins playing from the beginning. If the word start is followed by the name of a specific loaded movie, that movie becomes the current moviebeforestarting.
startat The word switch, followed by a number, set the current time location of the movie and begins playing from that point.
stop Stopsthemovie.
switch Theword switch, followed by a symbol, make the named moviethe active one without changing thetransport state (See the start message).
time Reports the current timelocation of the movie.
title Sets thetitle of themovie window to the name of the current movie. This is necessary in conjunction with thenextmovie message (or astart message specifying a different movie) if you want thetitle of the movie window to show the name of the current movie correctly. You can set thetitle of the movie window to any text you want, using the messagetitle followed by a symbol.
vol The word vol, followed by a number, sets the movie's sound volume. Any number less than 1 mutes the sound. Themaximum volume is 255 .
wclose Closes themoviewindow.
windowpos The word windowpos, followed by four numbers, specifies the location and size of themovie window on the screen. The four numbers specify the left, top, right, and bottom of the moviewindow in global coordinates. This message is only supported by themovie object, not the imovie object.

\section*{Arguments}

\author{
symbol
}

Optional. Specifies the name of a QuickTimemoviefileto be read into movie automatically when the patch is loaded. The same effect can be achieved for imovie by selecting theobject in an unlocked patcher and choosing Get Info... from theO bject menu to select a moviefile. Both objects retain thename(s) of the movie(s) they have loaded at thetimethat the patch is saved, and attempt to load the samemovie(s) the next timethepatch is opened.

\section*{Output}
int Out left outlet:Thecurrenttimelocation, when atime messageis received; theend time location when alength message is received.

Out middleoutlet:Thehorizontal position of themouse, relativeto the left side of themovie box or window, when the mouse is clicked or dragged insidethemovie.

Out right outlet:Thevertical position of themouse, relativeto the top of the movie box or window, when the mouse is clicked or dragged inside the movie.

Also, in response to a getrate message, the current movierate multiplied by 65536 is sent out the right outlet.

\section*{Examples}


Play a QuickTimemovie, or movethrough it in a variety of ways


Hold multiplemovies (which arestored in reverse order from the order received)

\section*{See Also}
imovie
Play a QuickTime moviein a patcher window
record In left inlet: Begins recording all messages received in the other inlets. The word record, followed by one or moretrack numbers, begins recording thosetracks.

In other inlets: Begins recording messages on the track that corresponds to the inlet.
play In left inlet: Plays back all messages recorded earlier, sending them out the corresponding outlets in the same rhythm and at the same speed they were recorded. Theword play, followed by one or moretrack numbers, begins playing those tracks.

In other inlets: Plays back all messages on the track that corresponds to the inlet.
stop In left inlet: Stops mtr when it is recording or playing. The word stop, followed by oneor moretrack numbers, stopsthosetracks.

In other inlets: Stops the track that correspondsto the inlet.
next In left inlet: Causes each track to output only the next message in its recorded sequence. When anext message is received, the track number and thedelta timeof each message being output are sent out the leftmost outlet as a list. The word next, followed by oneor moretrack numbers, outputs the next messagestored in those tracks.

In other inlets: O utputs the next messagestored on thetrack that corresponds to theinlet.
rewind In left inlet: Resets mtr to thebeginning of its recorded sequence. This command is used to return to the beginning of the sequence when stepping through messages with next. To return to the beginning of a sequence while playing or recording, just repeat the play or record message. When mtr is playing or recording, astop message should precede a rewind message. The word rewind, followed by oneor moretrack numbers, returns to the beginning of thosetracks.

In other inlets: Returns the pointer to the beginning of the track that corresponds to theinlet.
mute In left inlet: Causes mtr to stop producing output, whilestill continuing to "play" (still moving forward in the sequence). The word mute, followed by one or more tracks, mutes thosetracks.

In other inlets: Mutes the track that corresponds to the inlet.
delay In left inlet: The word delay, followed by a number of milliseconds, sets the first delta time value of each track to that number, so that all tracks begin playing back that amount of time after theplay message i seceived.

In other inlets: Sets the initial delta time of the track that corresponds to the inlet.
first In left inlet: The word first, followed by a number of milliseconds, causes matr to wait that amount of time after a play message is received before playing back. Unlikedelay, first does not alter the deltatime value of the first event in atrack, it just waits a certain time (in addition to the first deltatime) before playing back from the beginning.
write In left inlet: Calls sup the standard SaveA sdialog box, allowing the contents of mtr to be saved as a separate file. Notethat the only way to save the contents of mtr is with the write message; the object's contents cannot be embedded in a patcher file.

In other inlets:Writes a file containing only thetrack that corresponds to the inlet.
read In left inlet: Callsup the standard Open D ocument dialog box, so that a previously saved file can be read into mtr .

In other inlets: O pens a file containing only the track that corresponds to the inlet.
int In any inlet other than the left inlet: If the track is currently being recorded, numbers received in that track's inlet are combined with adelta time(the number of milliseconds elapsed since the previous event) and stored in mtr .
list In any inlet other than the left inlet: If the track is currently being recorded, lists received in that track's inlet are stored in mtr, preceded by the deltatime.
any symbol In any inlet other than the left inlet: If the track is currently being recorded, symbols received in that track's inlet are stored in mtr , preceded by the deltatime.

Although mtr can record individual bytes of M IDI messages received from midiin, it stores each byte with a separate deltatime, and does not format theMIDI messages the way seq does. If you want to record completeM IDI messages and edit them later, seq is better suited for thetask. On the other hand, mtr is perfectly suited for recording sequences of numbers, lists, or symbols from virtually any object in M ax: specialized M IDI objects such as notein or pgmin, user interface objects such as number box, slider, and dial, or any other object.

In order for a fileto be read into mtr for playback, it must bein the proper format. An mtr multi-track sequence can even betyped in a text file, provided it adheres to the format. The contents of the different tracks are listed in order in an mtr file, and theformat of each track is as follows. N otethat a semicolon (;) ends each line.

Line 1: track <track number>; (Track in which to store subsequent data)
Line 2, etc.: <delta time> <message>;
Lastline: end;
(End of thistrack'sdata)
clear In left inlet: Erases the contents of \(m\) tr. The word clear, followed by one or more track numbers, clears thosetracks.

In other inlets: Erases the track that corresponds to the inlet.
unmute In left inlet: Undoes any previously received mute messages. The word unmute, followed by one or moretrack numbers, unmutes thosetracks.

In other inlets: Unmutes the track that corresponds to the inlet.

\section*{Arguments}
int Optional. Specifies the number of tracks in themtr. Thenumber of tracks determines the number of inlets and outlets in addition to the leftmost inlet and outlet. Up to 32 tracks are possible. If there is no argument, there will be only onetrack.

\section*{Output}
anything Out all track outlets: W hen a play message is received in the leftmost inlet, the messages stored in each track are sent out the outlet of that track, in the same rhythm and at the same speed they were recorded. A play message received in the inlet of an individual track plays that particular track.

When a next message is received in the leftmost inlet, the next message in each track is sent out its corresponding outlet. The word next, received in theinlet of an individual track, sends out the next message in that track.
list Out left outlet: Whenever a value is sent out in response to a next message, the track number and delta time of that value are sent out the left outlet as a two-item list.

\section*{Examples}


Record M IDI data or other events

\section*{See Also}
hslider
multislider
seq
timeline
rslider
uslider
Tutorial 14
Tutorial 36
Sequencing

Output numbers by moving a slider onscreen
Multipleslider and scrollingdisplay
Sequencer for recording and playing M IDI
Time-based score of \(M\) ax messages
Display or change a range of numbers
O utput numbers by moving a slider onscreen
Sliders and dials
Multi-track sequencing
Recording and playing back MIDI performances
int Sets all slider values and positions to the number received and outputs a list reflecting the current values. If the multislider data typeis set to float, the values in theincoming list are converted to floats.
float Sets all slider values and positions to the number received and outputs a list reflecting the current values. If the multislider data type is set to int, the values in the incoming list aretruncated and converted to ints.
list Sets each slider to a corresponding value in the list from left to right, with the first value in the list setting the first slider. If themultislider has a different number of sliders than is present in thelist, thenumber of sliders is changed to the number of items in the list. In such a case, the outside dimensions of themultislider will not change, only the width or height of thesliders.
bang Outputs the current slider values as a list.
border The word border, followed by an integer, tells a multislider which of its outside borders to draw. This is useful for placing multislider objects next to each other.

It is both easier and more customary to use the Inspector to set the colorsfor the border. The arguments to border are:
\begin{tabular}{ll} 
border 0 & Draw no borders \\
border 1 & Draw left border \\
border 2 & Draw right border \\
border 4 & Draw top border \\
border 8 & Draw bottom border
\end{tabular}

Any combination of borders can bedrawn by adding these values. For example, border 15 draws all borders.
brgb The word brgb, followed by threenumbers between 0 and 255 , sets the RGB values for the background color of the multislider object. Thedefault value is white (brgb \(255255255)\).
contdata The word contdata, followed by a oneor zero, allows continuous output mode to beturned on and off for non-scrolling display styles. If this mode is turned on, the multislider object will output a list of its current slider values each time the mouse is clicked and dragged. If this mode isturned off, themultislider will only output a list when the mouse button is pressed and when it is released. The continuous output mode can also be set using the Inspector.
displayonly Toggles display only mode on and off.W hen display only mode is on, the multislider object will not allow user interaction with the display. Thedefault is off ( 0 ).
echo Togglesecho modeon and off. When echo modeison, themultislider object will output any list received in its inlet. The default is off ( 0 ).
fetch Theword fetch, followed by a number, sends the value of the numbered slider out therightmost outlet.
frgb The word frgb, followed by three numbers between 0 and 255 , sets the RGB values for the slider color of the multislider object. Thedefault value is black (frgb 000 ).
interp The word interp, followed by a oneor zero, enables or disables interpolation mode. When interpolation modeis on (thedefault), the multislider object will output interpolated values when a slider is moved. In most cases you probably will not want to disableinterpolation mode.
\(\max\) Sets all sliders to their maximum values.
maximum The word maximum, followed by an integer or floating point value, sets the maximum range value for the multislider object. The default is 1.0 when using floating point sliders, and 127 when using integer sliders. This value can also be set using theInspector.

Sets all sliders to their minimum values.
minimum The word minimum, followed by an integer or floating point value, sets the minimum range valuefor the multislider object. The default is -1.0 when using floating point sliders, and 0 when using integer sliders. This value can also be set using the Inspector.
(mouse) The way that a multislider responds to the mouse is determined by its chosen display style(seeA rguments, below).A multislider will respond to mouseclicks when its display styleisnon-scrolling(Thin Lineor Bar). Clicking on a forward or reverse scrolling display multislider (Point Scroll or LineScroll) has no effect.

If continuous output modeis enabled, the list of the current values will be sent out each time the mouse moves while dragging. If the continuous output mode is off, this list is only sent out when the mouse button is pressed or released. Thecontinuous output option can be set in the multislider object's Inspector.

When the display styleisnon-scrolling, clicking on any slider in a multislider immediately positionstheslider at theclick point. Thecurrent value of all sliders is sent out. Dragging across a multislider will set the other sliders in the samemanner. If continuous output mode is enabled, the list of the current values will be sent out each time the mouse moves while dragging. If the continuous output mode is off, this list is only sent out when the mouse button is pressed or released. The continuous output option can be set in themultislider object's Inspector.

If the mouse is moved quickly across a range of sliders, the mouse's position is likely not to bepolled quickly enough by the computer to providea valuefor each
and every slider it appears to pass. By default, multislider will automatically interpolateslider values between successively polled mouse positions. You can use the interp messageto disableinterpolation, if desired.
peakhold The word peakhold, followed by a one or zero, enables or disables peak hold mode. When peak hold mode is on, the peak value of each slider is represented by a thin line, whose color can beset in the multislider object's Inspector. the peak values may be reset with the peakreset message.
peakreset Resets the current peak values to the current slider values.
quantiles In left inlet: The word quantiles, followed by a list of floats between 0 and 1.0 , multiplies each list element by the sum of all the values in themultislider. This result is then divided by \(2^{15}(32,768)\). Then, multislider sends out the address at which the sum of all values up to that address is greater than or equal to the result for each list element.
rgb2 The word rgb2, followed by threenumbers between 0 and 255 , sets the \(R G B\) values for the peak indicators when Peak-Hold display is turned on (seepeakhold and peakreset messages). The default value is grey (rgb2 127 127 127). The color can also be set using the Inspector.
select Selectively sets slider values. For example, select 13024550 sets the first slider to 30 , the second to 4 , and the fifth slider to 50 (the top or leftmost slider is always number 1).
set The word set, followed by a slider number and a value, sets the numbered slider to that value without triggering any output.
setborder The word setborder, followed by four integers representing the left, right, top and bottom borders of themultisilider object, set the object's borders. It is similar in function to the border message (see above). A 0 indicates that the specified border segment will not bedrawn, and al draws the border. Thedefault isto draw all borders (setborder 1111).
setminmax The word setminmax, followed by two floats or two integers, sets the low and high range values for the multislider object. The default values are -1.0 and 1.0 for floating point sliders and 0 and 127 for integer sliders.
setstyle The word setstyle, followed by an int in the range 0-5, sets the display style of the multislider object. The default valueisThin Line(setstyle 0). Thedisplay style values are:
\begin{tabular}{ll} 
setstyle 0 & Thin line \\
setstyle 1 & Bar \\
setstyle 2 & Point Scroll \\
setstyle 3 & Line Scroll \\
setstyle 4 & Reverse Point Scroll \\
setstyle 5 & ReverseLine Scroll
\end{tabular}

When the display style is set to Thin Lineor Bar, each slider displays its current value as a thin line. W hen one of the other (scrolling) display styles is chosen, each slider provides a continuously scrolling display of its current and most recent past values. (Thenumber of past values shown is determined by the display size of themultislider, in pixels.)

Note: A scrolling display multislider may not be ableto update at the rate it receives data. This can result in some data points not being displayed.
settype The word settype, followed by a 0 or 1, sets the multislider object for integer (0) or floating point (1) operation. The Inspector can also be used to set themultislider object's type. The default is integer (settype 1).
size Theword size, followed by a number, sets the number of sliders the multislider object has. The default is 1 , and the maximum number of sliders is 4096 .
sum Outputs a sum of all current slider values as a float.

\section*{Inspector}

Thebehavior of a multislider object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any multislider object displays the multislider Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

The multislider Inspector lets you set thefollowing attributes:
- Slider RangeM inimum and \(M\) aximum values. Thedefault \(M\) in. valueis-1. The default \(M\) ax. valueis 1 .
- Number of Sliders. The maximum number of sliders a multislider object can have is 4096, and the default is 1. You can also choose Integer or Floating Point sliders. The default is floating point.
- Slider Style. You can chooseThin line, Bar, Point Scroll, Line Scroll, Reverse Point Scroll, or Reverse LineScroll styles. W hen the display style is set to Thin

Line(the default) or Bar, each slider displays its current value as a thin line. When one of theother (scrolling) display styles is chosen, each slider provides a continuously scrolling display of its current and most recent past values. (The number of past values shown is determined by the display size of the multislider, in pixels.) You can also select Continuous D ata O utput and Peak Hold display modes(the default is off for both modes).
- Orientation lets you choose horizontal or vertical (default) data display.
- TheD raw Borders checkboxes let you specify borders for all four sides of the multislider object.
- TheColor option lets you use a swatch color picker or RGB values to specify colors for the Sliders, Background and Peak Indicators of themultislider object. The default color for thesliders is 000 , the default background color is 255255255 , and the default peak indicator color is 127127127.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
list Out left outlet: W hen a multislider receives a list, int, or float in its inlet, it outputs a list of its current values. Thelist is also sent out when the sliders are changed with themouse.
int or float Out right outlet:The value of a numbered slider specified by thefetch message. The output reflects the current data type settings (seethe settype message).

Examples

multislider drawing styles

\section*{See Also}
dial
hslider
kslider
matrixctrl
pictctrl
pictslider
rslider
slider
uslider
Tutorial 14

Output numbers by moving a dial onscreen
Output numbers by moving a slider onscreen
Output numbers from a keyboard onscreen
M atrix-style switch control
Picture-based control
Picture-based slider
Display or changea range of numbers
Output numbers by moving a slider onscreen
O utput numbers by moving a slider onscreen
Sliders and dials

\section*{Input}
anything Messages to betested to determine whether they are part of the same logical event. A logical event is oneof thefollowing: a mouse click, the ongoing polling of a mousedrag, an event generated by the scheduler (such as thebang from a metro), a M IDI event, or a keyboard event. next determines whether the current message is part of the same event asthe previously received message. For example, if you click on abang twice, the two bangs are not part of the same logical event. But if you put bang, bang in a message box, or use the uzi object to send out two bangs in a row, these bangs are part of the samelogical event.

\section*{Arguments}

None.

\section*{Output}
bang Out left outlet:A bang is sent out if the current message is not part of the samelogical event as the previously received message.

Out right outlet: A bang is sent out if the current message ispart of the samelogical event as the previously received message.

\section*{Examples}

next detects when separate \(M\) ax messages occur within the samelogical event.

\section*{See Also}
uzi
defer
delay
M essages

Send a specific number of bang messages
De prioritizea message
Delay a bang before passing it on
Using the commain a message box]

\section*{Input}
(MIDI) notein receives its input from aM IDI note on or note off message received from a MIDI input device.
enable Themessageenable 0 d isables the object, causing it to ignoresubsequent incoming MIDI data. The word enable followed by any non-zero number enables theobject once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which theobject receives incoming note messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on a notein object shows a pop-up menu for choosing a MIDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port from which to receive incoming note messages. If there is no argument, notein receives from all channels on all ports.
(MID name) Optional. Thename of a M IDI input device may be used as thefirst argument to specify the port.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to receive note messages. Channel numbers greater than 16 will bewrapped around to stay within the 1-16 range.
int A number alone can beused in place of aletter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
int Out left outlet: Thenumber is the pitch value of the incoming note message.
Out 2nd outlet:Thenumber is the velocity of theincoming note-on message if non-zero, O for a note off message. To receiverelease velocity, usexnotein.

If a specific channel number is included in the argument, there are only two outlets. If there is no channel number specified by the argument, notein will have a third outlet, on theright, which will output the channel number of the incoming note message.

\section*{Examples}

Receive from everywhere


Receive only from port b


Only from port b, chanuel 13


Note on messages can be received from everywhere, a specific port, or a specific port and channel

\section*{See Also}
\begin{tabular}{ll} 
ctlin & Output received M IDI control values \\
midiin & Output received raw M IDI data \\
noteout & Transmit M IDI note messages \\
rtin & Output received M IDI real time messages \\
xbendin & Interpret extra precision M IDI pitch bend messages \\
xnotein & Interpret M IDI notemessages with release velocity \\
Using M IDI & Using M ax with M IDI \\
Ports & How M IDI portsare specified \\
Tutorial 12 & Sending and receiving M IDI notes
\end{tabular}
int In left inlet:Thenumber isthepitch value of aM IDI notemessagetransmitted on the specified channel and port. Numbers arelimited between 0 and 127.

In middle inlet: Thenumber is stored as the velocity of a note message, to be used with pitch values received in the left inlet. Numbers are limited between 0 and 127.0 is considered a note off message, 1-127 are note- on messages.

In right inlet: Thenumber is stored as the channel number on which to transmit thenote on messages.
float Converted to int.
list In left inlet:Thefirst number is used as the pitch, the second number is used as the velocity, and the third number is used as the channel, of a transmitted M IDI notemessage.
enable Themessageenable0 disables theobject, causing it not to transmit MIDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port In left inlet: The word port, followed by aletter a-z or the name of a M IDI output port or device, specifies the port used to transmit the MIDI messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on a noteout object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port for transmitting M IDI note messages. Channel numbers greater than 16 received in the right inlet will bewrapped around to stay within the 1-16 range. If there is no argument, noteout initially transmits out port a, on MIDI channel 1.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to transmit notemessages. Channel numbers greater than 16 will bewrapped around to stay within the 1-16 range.
(MIDI name) Optional. Thenameof a M IDI output devicemay beused as the first argument to specify the port.
int A number alone can be used in place of aletter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
(MIDI) There are no outlets. Theoutputis a M IDI note-on message transmitted directly to the object's M IDI output port.

\section*{Examples}
\begin{tabular}{|l|l|}
\hline 6064 \\
\begin{tabular}{|c|}
\hline \begin{tabular}{l} 
Will transmit on \\
channel 13, port a
\end{tabular} \\
\hline noteout a \\
\hline \hline
\end{tabular} \\
\hline
\end{tabular}

Letter argument transmits to only oneport


0 therwise, number specifies both port and channel

\section*{See Also}
ctlout
midiout
notein
xbendout
xnoteout
Ports
Tutorial 12

Transmit M IDI control messages
Transmit raw M IDI data
Output received M IDI note messages
Format extra precision MIDI pitch bend messages
Format M IDI note messages with release velocity
How ports arespecified
Sending and receiving M IDI notes
int or float Thenumber received in the inlet is stored and displayed in thenumber box and sent out the outlet. A float is converted to int by an int number box, and vice versa.

W hen theactive patcher window is locked, numbers can beentered into a number box by clicking on it with the mouse and typing in a number on the computer keyboard. Typing the Return or Enter keys on M acintosh or the Enter key on Windows, or clicking outside the number box, sends the number out the outlet.

Dragging up and down on thenumberbox with the mouse (when thepatcher window is locked) moves the displayed value up and down, and outputs thenew values continuously. In the float number box, dragging to the left of the decimal point changes the value in increments of 1. Dragging to the right of the decimal point changes the fractional part of thenumber in increments of 0.01 .
bang Sends the currently displayed number out the outlet.
brgb The word brgb, followed by threenumbers between 0 and 255 , sets the RGB values for thebackground color of thenumber box. Thedefault value is white (brgb 255255 255).
color The word color, followed by a number from 0 to 15 , sets the background of the number box to one of the standard object colors which are also avail able via the Color submenu in the O bject menu.
flags The word flags, followed by a number, sets characteristics of the appearance and behavior of thenumber box. The characteristics (which are described on thenext page, under A rguments) are set by adding together specific numbers to designate the desired characteristics, as follows: 4=Bold type, 16=Hexadecimal display, \(32=\) No triangle, 64=Send on mouse-up only, 128=C an't change with mouse, 256=MIDI C3 display, 1024=Roland octal display, 2048=Binary display, 4096=MIDI C4 display, 8192 =Transparent display mode (useful for displaying and editing numbers over other objects). So, for example, flags 180
\((4+16+32+128=180)\) will set thenumber box to display its numbers in hexadecimal format, in bold type, with no triangle, and unchangeable by the mouse.
frgb The word frgb, foll owed by threenumbers between 0 and 255 , sets the \(R G B\) values for thenumber values displayed by thenumber box. Thedefault valueis black (brgb 000).
max Theword max, followed by a number, sets the maximum valuethat can bedisplayed or sent out by the number box. The word max by itself sets the maximum to None(removes a prior maximum value constraint).
\(\min\) The word min, followed by a number, sets the minimum value that can bedisplayed or sent out by the number box. The word min by itself sets the minimum to None(removes a prior minimum value constraint).
rgb2 The word brgb, followed by threenumbers between 0 and 255 , sets the RGB values for the number values displayed by thenumber box when it is highlighted or being updated. The default valueisblack (brgb 000 ).
rgb3 The word frgb, followed by three numbers between 0 and 255, sets the RGB values for the background color of the number box when it is highlighted or being updated. The default valueis white (brgb 255255255 ).
set The word set, followed by a number, sets the stored and displayed value to that number without triggering output.
(typing) W hen a number box ishighlighted (indicated by a filled-in triangle) in a patcher window, numerical keyboard input is sent to thenumber box to change its value. Clicking themouseor pressing Return on M acintosh or Enter on Windows stores a pending typed number.
(Font menu) Thefont and size of a number box can bealtered by selecting it and choosing a different font or size from theFont menu.

\section*{Inspector}

Thebehavior of a number box object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any number box object displays the number box Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also displaystheInspector.

Thenumber box Inspector lets you set the following attributes:
You can set the rangefor stored, displayed, typed, and passed-through values by typing values into the Range \(M\) in. and \(M\) ax. boxes. If theN o M in. and No M ax. checkboxes arechecked (the default state), thenumber box objects will have their minimum and maximum values set to "None." Unchecking these boxes sets the minimum and maximum values to 0.

The Options section of the Inspector lets you set the display attributes of thenumber box. O ther options available in the number box Inspector window are: Bold (to display in bold typeface), D raw Triangle(to havean arrow pointing to thenumber, giving it a distinctive appearance), O utput O nly on M ouse Up (to send a number only when the mousebutton is released, rather than continuously), Can't Change( to disallow changes with the mouse or the computer keyboard), and Transparent (to display only the number in thenumber box and not the box, so that the number box resembles a comment object).

TheD isplay Stylepop-up menu lets you select theway that number values arerepresented. Decimal is the default method of displaying numbers. H ex shows numbers in hexadecimal, useful for M IDI-related applications. Roland O ctal shows
numbers in a format used by some hardware devices whereeach digit ranges from 1 to \(8 ; 11\) is 0 and 88 is 63 . Binary shows numbers as ones and zeroes. M IDI Note Names shows numbers according to their M IDI pitch value, with 60 displayed as C3. NoteN ames C4 is the same as M IDI Note Names except that 60 is displayed as C4. With all display modes, numbers must betyped in theformat in which they aredisplayed.

The Color option lets you use a swatch color picker or RGB values used to display thenumber box and its background in its normal and highlighted forms. Number sets the color for the number displayed (default 000), Background sets the color for the number box object itself ( default 221221 221), Highlighted Number sets the color of the number di splay when the number box is selected or its values are being updated (default 222222 222), and Highlighted Background setsthecolor of thenumber box when it is highlighted or being updated (default 000 ).

The Revert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
int or float Thenumber displayed in thenumber box is sent out the outlet. Numbers received in theinlet or typed on the computer keyboard can exceed thelimits of thenumber box, but the value that gets stored, displayed, and sent out will automatically be limited to the specified range.

The number box does not resize itself automatically according to the size of the number it contains. If the number received is too long to bedisplayed in thenumber box, it is displayed in abbreviated form followed by an ellipsis(... ) in the case of an int number box, or as a plussign ( + ) in the case of a float number box.

The number isstored and sent out of thenumber box as usual, despitethis abbreviated display.

\section*{Examples}


Displays numbers passing through

\section*{See Also}
float
int
Tutorial 3
Tutorial 10

Store a decimal number
Store an integer value
About numbers
Number boxes

Can be used to output numbers

int Thenumber is an ASCII value received from akey or keyup object. When digits aretyped on the computer keyboard, numkey recognizes theASCII values and interprets them as thenumbers beingtyped.

Thekeys recognized by numkey are the digits \(0-9\), the Delete (Backspace) key, decimal point (period), Return, and Enter. Digits are combined as asinglenumber and stored in numkey.
bang Sends the number currently stored in numkey out the left outlet, and resest the stored number to 0 .
clear Resets the stored number to 0 .

\section*{Arguments}

Optional.A float argument causes numkey to understand the decimal point and thefractional part of anumber, and send outfloats instead of ints. (Theargument does not, however, set an initial value for numkey. The initial value is always 0 .)

\section*{Output}
int When digits aretyped on the computer keyboard, and theASCII value(from key or keyup) is received in theinlet, the digits are combined as a single number and stored in numkey. The stored number is sent out the right outlet each time anew digit istyped. TheD eletekey on M acintosh or Backspacekey on Windows erases the most recently typed digit, and sends the stored number out the right outlet. The period key acts as a decimal point and causes numkey not to store subsequent digits until anew number is started (unless there is a float argument). Typing the Return or Enter keys on M acintosh or the Enter key on Windows sends the stored number out the left outlet and resets the number stored in numkey to 0 , so that a new number can betyped in.
float When there is a float argument, numkey understands decimal points and fractional parts of a number, and sends out floats instead of ints.

\section*{Examples}


\section*{See Also}
key
keyup
number box
Tutorial 20

Report key presses on the computer keyboard Report key releases on the computer keyboard
Display and output a number
Using the computer keyboard

\section*{Input}
list In left inlet: Thefirst number is the x value, and the second number is they value, of an \(x, y\) pair to bestored in offer. Thefirst number must be an int; the second number may beafloat, but will be Converted to int.
int In left inlet:Thenumber specifies thex value of an \(x, y\) pair. If a \(y\) value has been received in theright inlet, thetwo numbers arestored together in offer; otherwise, offer looks for an x value that matches the incoming number, sends out the corresponding y value, then deletes the stored pair. If there is no \(x\) valuestored in offer that matches the number received, offer does nothing.

In right inlet: Thenumber specifies ay value to bestored in offer. Thenextx value (int) received in the left inlet causes the two numbers to be stored together as an \(x, y\) pair.
float In right inlet: Converted to int.
dear In left inlet: Deletes the entire contents of offer.

\section*{Arguments}

None.

\section*{Output}
int If the number received in the left inlet matches the \(x\) value of an \(x, y\) pair stored in offer, the correspondingy valueis sent out and the stored pair is deleted.

\section*{Examples}


A pair of numbers can bestored, then recalled a singletime.

\section*{See Also}
coll Store and edit a collection of different messages
funbuff
table
Store \(x, y\) pairs of numbers together
Store and graphically edit an array of numbers
bang In left inlet: Causes a bang to be sent out the left inlet only if a bang has been received in the right inlet since the last bang was sent out.

In right inlet: Resets onebang to permit a bang to besent out the next time a bang is received in the left inlet.
stop In left inlet: Undoes the effect of a bang in the right inlet.
anything In either inlet: Converted to bang.

\section*{Arguments}
int Optional. A non-zero argument sets onebang to permit abang to besent out the left outlet the first time abang is received in the left inlet.

\section*{Output}
bang When onebang receives abang in its left inlet, it sends a bang out its left outlet only if it has received a bang in its right inlet since the last time it sent out a bang. Otherwise, it sends a bang out its right outlet.

\section*{Examples}


Allow just one of ( potentially) many bang messages to get through

\section*{See Also}
gate
Ggate
Pass the input out a specific outlet
Pass the input out one of two outlets

Use theonecopy object inside a patcher that you want to place in the extras folder for inclusion in the Extras menu. When the patcher's name is chosen using the Extras menu, its window will be brought to the front instead of opened a second time if it has al ready been loaded. The patch will beloaded if it is not currently open. Theonecopy object cooperates with the Extrasmenu to ensure that only one copy of the patcher is opened at a time. H owever, opening the patcher containing a onecopy object by choosing \(\mathbf{O}\) pen... from theFilemenu will open additional copies.

\section*{Input}

None.

\section*{Arguments}

None.

\section*{Output}

None.

\section*{Example}

the presence of 'onecopy' in this patch prevents it from being accidentally opened multiple times.

Useonecopy to prevent multiplecopies of the same patch from beingopened from the Extras menu

\section*{See Also}
thispatcher
pcontrol

Send messages to a patcher
Open and closesubwindows within a patcher

\section*{Input}
bang Opens a standard O pen Document dialog box for choosing afile.
set Theword set, followed by afour-letter symbol (e.g., TEXX, maxb) which specifies a filetype, sets the opendialog object to search for the designated filetypewhen opening thedialogbox.

Sets opendialog to list audio files (AIFF, Sound Designer II, NeXT/Sun, and WAV, along with some generic datafiletypes).
types Theword types, followed by oneor morefour-letter type codes, determines which filetypes arelisted by the opendialog object. Exampletype codes for files are TEXT for text files, maxb for Max binary format patcher files, and AIFF for AIFF format audio files. types with no arguments makes the object accept all filetypes, which is thedefault setting.
any symbol Oneor more symbols are interpreted as one or moretypecodes used to determinewhich files arelisted by the opendialog object.

\section*{Arguments}
fold Optional. Sets opendialog to choose folders instead of files.
sound Optional. Sets opendialog to list audio files (AIFF, Sound Designer II,NeXT/Sun, and WAV, along with some generic data filetypes). TheQuickTime appendix lists all thefiles that can beopened.
any symbol Optional. Oneor more symbols set the list of filetypes that determine which files arelisted by theopendialog object.

\section*{Output}
symbol Out left outlet: The absolute pathname of thefile chosen by the user as a symbol. The output pathnames contain slash separators.

Absolute pathnames look likethis:
"C:/MaxFolder/extras/mystuff/mypatch.pat"
The conformpath object can be used to convert paths of one pathtypeand/or pathstyleto another.
bang If the dialog box is cancelled by the user, a bang message is sent out the right outlet.

\section*{Examples}


Look for folders or a certain kind of file

\section*{See Also}
\begin{tabular}{ll} 
conformpath & Convert paths of one pathtypeand/or pathstyle to another \\
dialog & Open a dialog box for text entry \\
dropfile & Definea region for dragging and dropping a file \\
date & Report current date and time \\
filedate & Report themodification dateof a file \\
filein & Read in afileof binary data \\
filepath & Report information about thecurrent search path \\
folder & List thefiles in a specific folder \\
strippath & Get filenamefrom an absolute pathname
\end{tabular}
(patcher) Each outlet object in a patch will show up as an outlet at the bottom of an object box when the patcher is used inside another patcher (as an object or a subpatch). Messages received in theoutlet object in the subpatch will come out of corresponding outlet in the subpatch's object box in the patcher that contains it.

\section*{Inspector}

A descriptiveA ssistance message can be assigned to an outlet object and can be edited using its Inspector. If you have enabled the floating inspector by choosing Show Floating Inspector from theW indows menu, selecting any outlet object displays theoutlet Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

Typing in the Describe O utlet text area specifies the content of theA ssistance message.

The Revert button undoes all changes you've madeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whilethe Inspector is open.

\section*{Arguments}

None.
Output
anything A ny messages received by outlet in a subpatch are sent out the outlet of that subpatch, through patch cords.

\section*{Examples}


Outlets of the subpatch object correspond to the outlet objects inside the subpatch

\section*{See Also}
\begin{tabular}{ll} 
bpatcher & Embed a visible subpatch inside a box \\
forward & Send remotemessages to a variety of objects \\
inlet & Receive messages from outsidea patcher \\
patcher & Create a subpatch within a patch \\
receive & Receive messages without patch cords \\
send & Send messages without patch cords \\
Tutorial 26 & Thepatcher object
\end{tabular}

\section*{Input}
bang In left inlet: Draws the oval using the current screen coordinates, drawing mode, and color.
int In left inlet: Sets the left screen coordinate of the oval and draws the shape.
In 2nd inlet: Sets the top screen coordinate of the oval.
In 3rd inlet: Sets the right screen coordinate of the oval.
In 4th inlet: Sets the bottom screen coordinate of the oval.
In 5th inlet: Sets the drawing mode of the oval. Thefollowing aredrawing mode constants; not all modes will be available on all operating systems.
\begin{tabular}{llll} 
Copy & 0 & blend & 32 \\
Or & 1 & addPin & 33 \\
Xor & 2 & addOver & 34 \\
Bic & 3 & subPin & 35 \\
NotCopy & 4 & transparent & 36 \\
NotOr & 5 & adMax & 37 \\
NotXor & 6 & subOver & 38 \\
NotBic & 7 & adMin & 39
\end{tabular}

In 6th (right) inlet: Sets the paletteindex (color) of theoval according to the graphics window's current palette. This setting has no effect when the monitor is in black and whitemode.
frgb In left inlet: The word frgb, followed by threenumbers between 0 and 255 , sets the RGB values for the color of the oval thenext time it isdrawn.
priority In left inlet: The word priority, foll owed by a number greater than 0 , sets an oval object's sprite priority in its graphics window. Objects with lower prior ity will draw behind those with a higher priority.

\section*{Arguments}
any symbol Obligatory. Thefirst argument to oval must be the name of a graphics window into which theoval will bedrawn. The window need not exist at the time theoval object is created, but the oval will not bedrawn unless the name matches that of an existing and visible window.
int Optional. Sets theinitial sprite priority of theoval. If no priority is specified, the default is 3 .

\section*{Output}
(visual) W hen the oval object's associated graphics window is visible, and abang message or a number is received in its left inlet, a shapeis drawn in thewindow, and the object's previously drawn oval (if any) is erased.

\section*{Examples}


Theoval object on the right will appear to pass in front of theoneon theleft when both moveacross the screen, since it has a higher sprite priority

\section*{See Also}
\begin{tabular}{ll} 
frame & Draw framed rectanglein a graphic window \\
graphic & Window for drawing sprite based graphics \\
Icd & Draw graphicsin a patcher window \\
rect & Draw solid rectanglein a graphic window \\
ring & Draw framed oval in a graphic window \\
Graphics & Overview of Max graphics windows and objects
\end{tabular}
int Thenumber is stored in pack as an item in a list, with its position in the list corresponding to the inlet in which it was received. A number in the left inlet is stored as the first item in the list, and causes the entire list to be sent out the outlet. If the inlet in which thenumber is received has been initialized with a float or symbol argument, theincoming number will be converted to a float or a blank symbol, respectively.
float Thenumber is stored in pack as an item in a list, with its position in the list corresponding to the inlet in which it was received. A number in the left inlet is stored as the first item in the list, and causes the entirelist to be sent out the outlet. If the inlet in which thenumber is received has been initialized with an int or symbol argument, the incoming number will beconverted to an int or a (blank) symbol, respectively. If no argument has been typed in, float is converted to int.
bang In left inlet: Causes pack to send out a list of the items currently stored.
any symbol If the inlet in which the symbol is received has been initialized with a symbol argument, the symbol is stored in the corresponding location in pack. Otherwise, the symbol is converted to 0 before being stored. A symbol in theleft inlet triggers output of the pack object's contents.
list Any multi-item message, regardless of whether it begins with a number, is treated as a list by pack. The first item in the incoming list is stored in pack in the location that corresponds to the inlet in which it was received, and each subsequent item is stored as if it had arrived in subsequent inlets (limited by thenumber of inlets available). A list received in the left inlet causes the entirestored list to be sent out theoutlet.
set Theword set, followed by any message, allows that message to be received by pack without triggering any output. A lthough a set message may be received in any inlet, it is only meaningful in theleft inlet, which is the only triggering inlet. In any other inlet, the word set is ignored and the rest of the message is used as normal.
nth Theword nth, followed by the number of an inlet (starting at 1 for the leftmost inlet), causes the value of the item stored at that location in pack to be sent out the outlet.
send In left inlet: The word send, followed by the name of a receive object, sends a list of thecurrently stored items to all receive objects with that name, instead of out pack object's outlet.

\section*{Arguments}
int, float, symbol Optional. Thenumber of inlets is determined by the number of arguments. Each argument sets an initial type and valuefor an item in the list stored by pack. If a number argument contains a decimal point, that item will be stored as a float. If the argument is a symbol, that item will be stored as a symbol. If there is no argument, there will betwo inlets, and the two list items will be set to (int) 0 initially. Note: Typing a list into an object box automatically identifies it as a pack object, so you may omit the word pack from theobject box, provided that you typein a list of arguments (that has at least two items and begins with a number).

\section*{Output}
list Thelength of the list is determined by thenumber of arguments. When input is received in the left inlet, the stored list is sent out the outlet.
int, float, symbol W hen thenth message is received, the value of the specified item is sent out.

\section*{Examples}


Numbers and symbolsmay bemixed as needed in pack

\section*{See Also}
\begin{tabular}{ll} 
bondo & Synchronize a group of messages \\
buddy & Synchronize arriving data, output them together \\
match & Look for a series of numbers, output it asalist \\
swap & Reverse the sequential order of two numbers \\
thresh & Combinenumbers into a list, when received close together \\
unpack & Break alist up into individual messages \\
z| & Multi-purposelist processor \\
Tutorial 30 & Number groups
\end{tabular}

The panel object lets you create rectangular background panels for use in creating user interfaces. You can also create rectangles with rounded corners and shading which can also be used as buttonswhen used in conjunction with ubutton object.

\section*{Input}
border Theword border, followed by a number, sets the size, in pixels of the panel object's border. Thedefault is 1.
brgb Theword brgb, followed by threenumbers between 0 and 255 , sets the RGB values for the color (Background) of the panel object. Thedefault valueisgray (brgb 192 192 192).
frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values for the border of the panel object. The default valueisblack (frgb 000 ).
rounded Theword rounded, followed by a number, sets the size, in pixels of the rounding of the panel object's corners. The default is 0 (no rounding).
shadow Theword rounded, followed by a positive or negativenumber, sets the size, in pixels for a"shadow" effect for the panel object. Positive numbers create a"raised" shadow effect, and negative numbers created a"recessed" effect. The default is 0 (no shadow).
size Theword size, followed by two numbers, specifies the width and height, in pixels, of the panel object. The default panel sizehas a width of 69 and a height of 57.

\section*{Inspector}

Thebehavior of a panel object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosingShow Floating Inspector from theW indows menu, selecting any panel object di splays the panel Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displays the Inspector.

TheW idth and \(H\) eight number boxes are used to set the size of the panel. The default panel size has a width of 69 and aheight of 57 . Border Size specifies the width, in pixels of the panel border. The default is 1 . Entering a value in the Shadow Sizenumber box sets the size of the panel's shadow. The default is 0 (no shadow). The number, of pixels, worth of rounding for the panel is specified by entering a number into the Rounded Corners box. Thedefault is 0 (no rounding).

TheC olor option lets you use a swatch color picker or RGB values used to set the border color and the framecolor. Frame setsthecolor for the border of the panel object (default 000 ), and Background setsthecolor for the panel (default 192192 192).

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}

None.

\section*{Examples}


Shop around for that perfect background color using the swatch object

\section*{See Also}
\begin{tabular}{ll} 
fpic & Display a picturefrom a graphics file \\
Icd & Draw graphicsin a patcher window \\
pict & Draw picturein a graphic window \\
ubutton & Transparent button, sends a bang
\end{tabular}

\section*{Input}
list Thenumbers in the list are compared to the arguments. If all of the numbers in the list are greater than or equal to the corresponding arguments, abang is sent out theoutlet. Before a bang is sent again, however, past must receive a clear message, or must receive another list in which the number that equaled or exceeded its argument goes back below (is less than) its argument.
int or float If there i s only one argument, and the input is greater than or equal to it, and the previous input was not greater than or equal to it, past sends a bang out the outlet.
dlear Causes past to forget previously received input, readying it to send abang messageagain.
set Theword set, followed by oneor morenumbers, sets the numbers which must be equaled or exceeded by the numbers received in the past object's inlet.

\section*{Arguments}
list Setsthenumbers which must beequaled or exceeded by the numbers received in theinlet.
int Sets a singlenumber which must be equaled or exceeded by the number received in theinlet.

\section*{Output}
bang
If all of the arguments are equaled or exceeded by the numbers received in the inlet, past sends out a bang. Otherwise, past does nothing. A bang is sent only as a number increases past its threshold. O nce thethreshold has been passed, the number must go below the threshold again, then increase past it, before another bang will besent.

\section*{Examples}


Send out bang only when the input goes past the threshold in an upward direction

\section*{See Also}
```

maximum
peak
>

```

O utput the greatest in a list of numbers If a number is greater than previous numbers, output it Is greater than, comparison of two numbers

\section*{Input}
anything Thenumber of inlets in a patcher object is determined by thenumber of inlet objects contained within its subpatch window.

\section*{Arguments}
any symbol(s) Optional. The subpatch can begiven a name by the argument, so that its name appears in thetitle bar of the subpatch window. The namein thetitle bar of the subpatch window is displayed in brackets to indicatethat it is part of another file. If there is no argument typed in, the subpatch window is named [sub patch]. Different patcher objects that share the same name arestill distinct subpatches, and do not share the same contents.

\section*{Output}
anything Thenumber of outlets a patcher object has is determined by thenumber of outlet objects contained within the subpatch window. O utput can also besent via send and value objects contained in the subpatch. The actual messages sent out of a patcher object depend on the contents of the subpatch.

When a patcher object is first created, the subpatch window is automatically opened for editing. To view or edit the contents of a patcher object (or any subpatch object) Iater on, double-click on the object when the patcher window is locked.

All the objects in a subpatch of a patcher object are saved as part of the patcher which contains the object.

\section*{Examples}


A patch can be contained (and saved) as part of another patch

\section*{See Also}
\begin{tabular}{ll} 
bpatcher & Embed a visible subpatch inside a box \\
inlet & Receive messages from outsidea patcher \\
outlet & Send messages out of a patcher \\
pcontrol & Open and close subwindows within a patcher \\
thispatcher & Send messages to a patcher \\
Tutorial 26 & Thepatcher object
\end{tabular}

\section*{Input}
open Opens thepatcher window of any subpatches or patcher objects connected to the pcontrol object'soutlet.
close Closes the patcher window of any subpatches or patcher objects connected to the pcontrol object's outlet.
enable The word enable, followed by any number other than 0 , enables theM IDI objects contained in the subpatches or patcher objects connected to the pcontrol object's outle. A message of enable 0 disables the M IDI objects in those subpatches.

If a second non-zero numerical argument is added, the enable message will disable/enable the patcher and its subpatchers. The enable message also affects the enabling/disabling of M SP audio processing (in addition to M IDI) within the selected patch.
load The word load, followed by the name of a patcher file, opens that file if it can be found in M ax's search path. Thefile name may optionally befollowed by up to ninenumbers and/or symbols, which will be substituted for the appropriate changeable \#arguments (\#1 to \#) in the patch being opened.
shroud The word shroud, foll owed by thename of a patcher file, opens that file but does not show its window. (Usethis message with care, sincehaving patchers open but invisible can potentially lead to some disconcerting results.)
help Theword help, followed by a symbol, opens a help filein M ax's max-help folder with the name of the symbol followed by .help.

\section*{Arguments}

None.

\section*{Output}

Any subpatches or patcher objects connected to the pcontrol object's outlet can have their patcher window opened or closed, or MIDI enabled/disabled, when the appropriate messageis received in theinlet of pcontrol.

\section*{Examples}


Display the contents of "About This Patch"
patcher About This Patch


Show/hidea subpatch window, or enable/disableitsM IDI objects

\section*{See Also}
\begin{tabular}{ll} 
bpatcher & Embed a visible subpatch insidea box \\
inlet & Receive messages from outsidea patcher \\
patcher & Create a subpatch within a patch \\
thispatcher & Send messages to a patcher \\
Tutorial 40 & Automatic actions
\end{tabular}

\section*{Input}
int In left inlet: If the input is greater than the value currently stored in peak, it is stored as thenew peak value and is sent out.

In right inlet: Thenumber is stored in peak as the new peak value, and is sent out.
float Converted to int.
list In left inlet: The second number is stored as thenew peak value and is sent out, then thefirst number is received in the left inlet.
bang In left inlet: Sends the currently stored peak value out the left outlet.

\section*{Arguments}

None. Theinitial valuestored in peak is 0 .

\section*{Output}
int Out left outlet: New peak values aresent out. (A number received in theright inlet is always thenew peak value.)

Out middle outlet: If the number received is a new peak value, the output is1. If the number received in the left inlet is not a new peak value, the output is 0 .

O ut right outlet: If the number received is a new peak value, the output is 0 . If the number received in theleft inlet is not a new peak value, the output isl.

\section*{Examples}


Find thegreatest in a series of numbers


A number in theright inlet always sets a new peak

\section*{See Also}
maximum
past
trough
>

O utput the greatest in a list of numbers
Report when input increases beyond a certain number
If a number is less than previous numbers, output it
Is greater than, comparison of two numbers

\section*{Input}
(MIDI) pgmin receives its input from aM IDI program change message received from a MIDI input device.
enable Themessageenable 0 d isables the object, causing it to ignore subsequent incoming M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which the object receives incoming program change messages. The word port is optional and may beomitted.
int Thenumber istreated as if it were an incoming M IDI program change value. If thereis aright outlet, 0 is sent out in lieu of aM IDI channel number. Theprogram number plus 1 is sent out the left outlet, and is not limited in the range 1 to 128.
(mouse) Doubleclicking on a pgmin object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port from which to receive incoming program change messages. If there is no argument, pgmin receives from all channels on all ports.
(MID name) Optional. Thename of a M IDI input device may be used as the first argument to specify the port.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific MIDI channel on which to receive program change messages. Channel numbers greater than 16 will bewrapped around to stay within the 1-16 range.
int A number alone can be used in place of a letter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
int If a specific channel number is included in the argument, there is only one outlet. Theoutput is the incoming program number on the specified channel and port. Note: The pgmin object always adds 1 to the incoming program number. Thus, an incoming program change value of 32 will come out the outlet of pgmin as 33 .

If there is no channel number specified by the argument, pgmin will have a second outlet, on the right, which will output the channel number of the incoming program changemessage.

\section*{Examples}

Receive from everywhere


Receive only from port b


Only from port b, chanmel 13


Program changes can be received from everywhere, a specific port, or a specific port and channel

\section*{See Also}

\author{
midiin \\ pgmout \\ Tutorial 16 \\ Output received raw M IDI data \\ Transmit M IDI program changemessages \\ M oreM IDI ins and outs \\ Using M IDI \\ Using M ax with M IDI \\ Ports \\ How M IDI ports arespecified
}

\section*{Input}
int In left inlet:Thenumber has 1 subtracted from it and then is transmitted as a program change value on the specified channel and port. Numbers arelimited between 1 and 128 , and are sent out as program changes 0 to 127 .

In right inlet: The number is stored as the channel number on which to transmit the program change messages.
float Converted to int.
list In left inlet:Thefirst number is the program number +1 , and the second number is the channel, of aMIDI program change message, transmitted on the specified channel and port.
enable Themessageenable0 disables theobject, causing it not to transmit M IDI data. The word enablefollowed by any non-zero number enables theobject once again, even if theentire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port Theword port, followed by a letter a-zor the name of a M IDI output port or device, specifies the port used to transmit the M IDI messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on a pgmout object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port for transmitting MIDI program change messages. W hen a letter argument is present, channel numbers greater than 16 received in the right inlet will bewrapped around to stay within the 1-16 range. If there is no argument, pgmout initially transmits out port a, on M IDI channel 1.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to transmit program change messages. Channel numbers greater than 16 will bewrapped around to stay within the 1-16 range.
(MIDI name) Optional. Thename of a M IDI output devicemay beused as the first argument to specify the port.
int A number alonecan beused in place of a letter and number combination. The exact meaning of the channel number argument depends on thechannel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
(MIDI) Thereareno outlets. Theoutput isaMIDI program change messagetransmitted directly to theobject's M IDI output port.

\section*{Examples}


Letter argument transmits to only one port. O therwise, number specifies both port and channel

\section*{See Also}
midiout
pgmin
Tutorial 16
Using M IDI
Ports

Transmit raw M IDI data
Output received MIDI program change values
M oreM IDI ins and outs
Using M ax with M IDI
How M IDI ports are specified

Draw picturein a graphic window

\section*{Input}
bang Draws the picturestored in the pict object if its associated graphics window isvisible.
clear Erases the picturedrawn in the graphics window.
int In left inlet: A nonzero number draws the picture in its associated graphics window if that window isvisible. 0 erases the picture.

In middleinlet: Sets theleft edge of the picture, in pixels, relativeto theleft edge of the graphics window (effective thenext timethe picture is drawn).

In right inlet: Sets the top edge of the picture, in pixels, relative to the top edge of thegraphics window's drawing area (effective thenext time the picture is drawn).
priority The word priority, followed by a number greater than or equal to 0 , sets the object's sprite priority to that number. Refer to the Graphics section of the Tutorials and Topics manual for adiscussion of sprite priorities.

\section*{Arguments}
symbol Obligatory. The first argument to pict must be the name of a graphic object whose window will be used to draw the picture. Thesecond argument must bethename of aQuicktimePICT file which will beloaded when the object is created. PICT files have. pct filename extensions on W indows.
int Optional. Following the window name and file name, a number greater than or equal to 0 sets the initial sprite priority. The default priority is 0 , which means the picture will bedrawn behind all other objects. Following the priority number, the next two arguments specify the left and top offsets of theimage, in pixels, relative to the top left corner of the graphics window's drawing area.

\section*{Output}
(visual) When the pict object's associated graphics window isvisible, and abang message or a nonzero int is received in itsinlet, the stored pictureisdrawn in thewindow.

\section*{Examples}
\begin{tabular}{|l}
\begin{tabular}{|c|}
\hline Open \\
Graphiss window to \\
display the picture
\end{tabular} \\
\begin{tabular}{|c|}
\hline graphic Display \\
020640480 \\
\hline \hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Scroll the picture from left to right}


Picturecan bedisplayed or moved around in the graphics window

\section*{See Also}
\begin{tabular}{ll} 
frame & Draw framed rectanglein a graphic window \\
graphic & Window for drawing sprite-based graphics \\
Icd & Draw graphicsin a patcher window \\
oval & Draw solid oval in a graphic window \\
rect & Draw solid rectangle in a graphic window \\
ring & Draw framed oval in a graphic window \\
Graphics & Overview of Max graphics windows and objects \\
Tutorial 42 & Graphics
\end{tabular}

Picture-based
control

The pictctrl object is a user interface object for creating buttons, switches, knobs, and other controls. It can open PICT files and, if QuickTimeVersion 3.0 or later is installed, other picturefile formats that are listed in theQuickTime appendix. Sincethe pictctrl object uses images from a picture file for its appearance, you can create controls with whatever appearance you desire.

Note: The pictctrl object requires that QuickTime beinstalled on your system to open any files other than PICT files. If you are using M ax on W indows, we recommend that you install QuickTime and choose a completeinstall of all optional components.

\section*{Input}
int Setsthevalue of thebutton or knob set by the control, and sendsthecurrent value out the outlet. In button and toggle mode, the value must beeither 0 or 1. In dial mode, the range of values is determined by pictctrl object's R ange attribute.
set Theword set, followed by a number, sets the value of the button or knob to that number, without triggering output.
bang Sends the current value of the pictctrl to theoutlet.
clickincrement The word clickincrement, followed by a nonzero value, sets theoutput valueto increment by 1 each timetheobject isclicked (Click to Increment mode). Any movement of the mouse after clicking is ignored. W hen the uppermost value is reached, the value returnsto zero with the next click. All other mousetracking modes are disabled. clickincrement 0 disables Click to Increment mode.
clickedimage Theword dickedimage, followed by a nonzero value, tellsthe pictctrl object to use an alternate set of image frames in your picturefileto give the dial a different appearance when the user clicks on it and drags the mouse pointer. clickedimage 0 disablesthisfeature.
picture The word picture, followed by a symbol that specifies a filename, designates the picturefilethat the pictctrl object will usefor the control's button or dial file. The symbol used as a filenamemust either bethename of a filein M ax's current search path, or an absolute pathname for thefile (e.g."MyDisk:/Documents/UI Pictures/CoolKnob.pct"). The word picture by itself puts up a standard Open D ocument dialog box and displays the common graphics files supported by QuickTime.
active Theword active, followed by a 0 or 1, toggles mouse control of the pictctrl object. The default is 1 (enabled). If a separateset of inactive images is present in thepictctrl object's picturefile and if the inactive images attribute is set, theactive message will al so change the appearance of the control.
inactiveimage The word inactiveimage, followed by a nonzero value, tellsthe pictctrl object that your picturefile has an additional row of images for its inactive state. The default is 0 (no inactivestate).

Picture-based
control
imagemask Theword imagemask, followed by a nonzero value, tells the pictctrl object that your picturefile has an image mask. The default is 0 (no image mask).
tracking The word tracking, followed by a 0 or 1, toggles livetracking. If livetracking is on, the pictctrl object will changeits state if the mousemoves in and out of the rectangular border of theobject with themousebutton held down. tracking 0 disables live tracking
range The word range, followed by a number, sets the range of the pictctrl object when it is in dial mode. The default valueis 128 .
offset The word offset, followed by a number, sets an offset value. W hen pictctrl is in dial mode, the offset value is added to the object's value before being sent out the outlet. The default offset value is 0 .
multiplier Theword multiplier, followed by a number, specifies a multiplier value. W hen pictctrl is in dial mode, theobject's value is multiplied by this number beforebeing sent out the outlet. Themultiplication happensbefore the addition of the Offset value. The default multiplier value is 1.
frames Theword frames, followed by a number, specifies thenumber of images (columns) in the picturefile. Thenumber of frames does not haveto bethe sameastherange of the control; the pictctrl object will use the nearest image for any given value.
trackhorizontal The word trackhorizontal, followed by a nonzero value, sets the pictctrl object to respond when you click on it and drag the mouse horizontally; moving the mouse to the right increases the object's value, and moving it to the left decreases the value. Enabling this modeof operation disablestheCircular Tracking and Click to Increment modes (seetheclickincrement and trackcircular messages).
trackvertical The word trackvertical, followed by a nonzero value, sets the pictctrl object to respond when you click on it and drag the mouse vertically; moving the mouse up increases the object's value, and moving it down decreases the value. Enabling this mode of operation disables theCircular Tracking and Click to Increment modes (seethedickincrement and trackcircular messages).
trackcircular The word trackcircular, followed by a nonzero value, sets the pictctrl object to respond when you click on it and drag the mouse in a circular arc relative to the control's center (Circular Tracking mode). M oving the mouse clockwise increases the control's value, and moving it counterclockwise decreases its value. Enabling circular tracking disables all other tracking modes. trackcircular 0 disables circular tracking.
ratio Theword ratio, followed by a number, specifies how many pixelsthe mouse pointer must move before the value of the dial changes by oneincrement. If the pictctrl object is using Circular Tracking, the ratio message specifies how many

Picture-based control
degrees the cursor must move, relative to the center of theobject, to increase the valueby one.

\section*{Inspector}

Thebehavior of a pictctrl object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any pictctrl object displays the pictctrl Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaysthe Inspector.

Some of the pictctrl object's attributes are associated with one of thethree modes of this object— Button M ode, ToggleM ode, and Dial M ode. The pictctrl Inspector lets you set the following attributes:

Button mode imitates the behavior of simplebuttons in graphical user interfaces, such as the "OK" and "Cancel" buttons found in dialog boxes. In this mode, the pictctrl object outputs a 1 when the user clicks on theobject, and a0 when the user either moves the mouse off of theobject or releases the mouse button. Button mode is also useful for display objects, such as simulated LEDs and statusindicators.

Togglemodeissimilar to button mode, except that the object changes state from 0 to 1 (or 1 to 0 ) with every mouseclick. Togglemodeimitates the behavior of check boxes.

Checking Live Tracking can only bedoneif you'reusing the pictctrl object's button mode. If this checkbox is checked, pictctrl will change state if the mouse moves in and out of the rectangular border of theobject with themouse button held down.

Dial modecan beused to create controlsthat act likeknobs, or any other control that has more than two distinct values. (You could use dial modeto createsliders, but the pictslider object is better suited to this task.) Dial modelets you set a range, offset, and multiplier for its values, just as with Max'shslider, uslider, and dial objects. When you click on theobject and drag, its value changes. pictctrl can track either horizontal and/or vertical cursor motion, or circular motion. ignoring subsequent drag motions. W hen using dial mode you must specify thenumber of image frames that are in the picturefile you'reusing (seebelow). The number of images does not have to bethe same as the range of values. For example, a knob could havea range of 128 but only 30 distinct images. There islittle reason to create a control with more image frames than its range, since manipulating the control could changeits appearance without causing any output.

W hen using dial modeyou must specify the number of image frames that are in the picturefileyou'reusing(seebelow). The number of images does not have to bethe same as the range of values. For example, a knob could have a range of 128 but only 30 distinct images. There is little reason to create a control with more
imageframes than its range, sincemanipulating the control could change its appearance without causing any output.

When the pittctrl object is in dial mode, you can specify a Range for theobject which will automatically limit numbers received in the inlet to between 0 and the number 1 less than the specified range, aM ultiplier- a number by which all numbers will be multiplied before being sent out- and an Offset- which will be added to thenumber, after multiplication. Thedefault object has a range of 128, a multiplier of 1 , and an offset of 0 .

The Image Frames box lets you specify thenumber of distinct images (columns) in the picturefile. Thenumber of frames does not haveto bethesameastherange of the control; pictctrl will use the nearest image for any given value.

If H orizontal Tracking or Vertical Tracking is checked, the pittctrl object will respond when you click on it and drag the mousein the corresponding direction. Dragging the mouse to theright and/or up increases the pictctrl object's value; draggingit left and/or down decreases its value. Enabling either of theseattributes disables the Circular Tracking and Click to Increment modes(seebelow).

If Circular Tracking is checked, the control will respond when you click on it and drag the mouse in a circular arc relativeto the control's center. Dragging the mouse clockwise increases the control's value; dragging it counterclockwise decreases its value. Enabling Circular Tracking disables all other tracking modes.

If Click to Increment is checked, the control's value increases by one every timeit is clicked. Subsequent dragging motions areignored. When the uppermost value is reached, the value returnsto zero with thenext click. Enabling Click to Increment disables all other tracking modes.

If Clicked Images is checked, pictctrl uses an alternate set of image frames in your picturefileto givethedial a different appearance when the user clicks on it and drags the mouse pointer.

The Tracking Ratio attribute specifies how many pixels the mouse pointer must movebeforethe value of the dial changes by oneincrement. For the circular tracking mode, the tracking ratio specifies how many degrees the cursor must move, relative to the center of the object, to increasethe value by one.

TheH as InactiveI magesand ImageM askscheckboxes specify that your picturefile has additional rows of images for its inactive state, and whether it has image masks.

The PictureFile option lets you choose a picturefile for the pitctrrl object's knob by clicking on theO pen button. The current file's name appears in the text box to the left of the button. You can also choosea file by typingits namein this box, or by dragging thefile's icon from the Finder into this box.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Picture File Format}

W hen you create a new pictctrl object in a patcher window, it has no associated picturefile. Usethe O pen button in theinspector to choosea picturefilefor the control. It can open PICT files and, if QuickTimeVersion 3.0 or later is installed, other picturefileformats that arelisted in theQuickTimeappendix. Thelayout of the picturein thefile varies depending on which mode of operation thepictctrl uses. All three modes require that the pictures be madeup of a grid of images, in which all images have the same width and height.

Button modehas thesimplest layout:


Thefirst row of images is mandatory: these two images are used for theidle and clicked states (values zero and one, respectively) of thebutton. Thenext row of images, if present, is used for the control when it is in its inactive state. Thenext rows contain the masks for thetop row of images, and the inactive images if present.

Toggle modehas a similar layout:
\begin{tabular}{|c|c|}
\hline Not Clicked value \(=0\) & \[
\begin{aligned}
& \text { Clicked } \\
& \text { value }=0
\end{aligned}
\] \\
\hline Not Clicked value \(=1\) & Clicked value \(=1\) \\
\hline hactive value \(=0\) & hactive value \(=1\) \\
\hline Not-clicked Mask value \(=0\) & Clicked
Mask
\[
\text { value }=0
\] \\
\hline Not-clicked Mask value \(=1\) & Clicked Mask value \(=1\) \\
\hline hactive Mask value \(=0\) & hactive Mask value \(=1\) \\
\hline
\end{tabular}

In this mode, the top two rows are mandatory. Thefirst row of images are used when the control's value is zero, the next row when its value is one. Thethird row is optional; it is used for the control when it is in its inactive state. (Note that there are no "clicked" images for the inactive state, since when inactive, the control ignores mouse clicks.) Thenext rows contain masksfor theimages.

TheD ial mode layout varies in size depending on how many imageframes it has, which must be the same as the Image Frames parameter as set in the inspector:


The first row of images is mandatory: one image for each visually distinct state of the control. Dials need as many picts as you wish them to have visible states. N ote that dials can receive and send a larger range of values than are represented by picts (e.g. your dial can have a range of 128 even if you only useeight pict frames to represent the range of the dial). Thenext row of images is optional, and is used when the user isclicking and dragging on theobject to changeits value. Thenext row is also optional; (Notethat there are no "clicked" images for theinactive state, since when inactive, the control ignores mouse clicks.) Thefollowing rows contain masks for the images.

\section*{Output}
int Thecurrent value of the pictctrl object. In toggle and button modes this will bea 0 or a 1. In dial mode, this value is specified by the range, offset, and multiplier that you set in the Inspector window.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
dial & Output numbers by moving a dial onscreen \\
hslider & Output numbers by moving a slider onscreen \\
kslider & Output numbers from a keyboard onscreen \\
matrixctrl & M atrix-style switch control \\
pictslider & Picture-based slider \\
rslider & Display or change a range of numbers \\
slider & Output numbers by moving a slider onscreen \\
ubutton & Transparent button, sends a bang \\
uslider & Output numbers by moving a slider onscreen \\
Tutorial 14 & Sliders and dials
\end{tabular}

The pictslider object is aslider control that uses pictures in external files for its appearance. It uses two pictures- onefor the "knob" (the part that you move with the mouse, corresponding to the part of a physical slider that you move with your fingers) and onefor the background over which the knob moves. The pictslider object has default pictures that are used if you do not want to supply pictures of your own, but its intended use is creating controls with customized appearances.

You can use the pictslider object to create horizontal or vertical sliders, as well as two-dimensional controllers (virtual trackpads or joysticks).

Note: The pictslider object requires that QuickTimebeinstalled on your system to open any files other than PICT files. If you are using Max on W indows, we recommend that you install QuickTime and choose a completeinstall of all optional components.

\section*{Input}
bang In left inlet: Sends the current values of the pictslider to its outlets. The horizontal value is sent out the eft outlet; the vertical value out its right outlet.
int In left inlet: sets the pictslider object's horizontal value. The value is also sent out the left outlet, and the pictslider object's current vertical value is sent out the right outlet.

In right inlet: sets the pictslider object's vertical value. The value is also sent out the right outlet, and the control's current horizontal value is sent out the left outlet.
float Converted to int.
list In left inlet: A list of two numbers sent to the left inlet sets the pictslider object's horizontal valueto the first number and its vertical valueto the second. Thetwo values are sent out the left and right outlets.
active In left inlet:Theword active, followed by a0 or 1, toggles mouse control of the pictslider object. The default is 1 (enabled). If a separate set of inactive images is present in the pictslider object's graphics file and if the inactive images attribute is set, the active message will also changethe appearance of the control.
bkgnddrag In left inlet: Theword bkgnddrag, followed by a0 or 1, toggles background drag mode for the pictslider object. When this mode is enabled, clicking and dragging anywhere in the background area of theslider will move the knob; the knob will move relative to themotion of the mouse, just as if you had clicked in the knob itself. The messagebkgnddrag 0 disables this mode. You must also uncheck the KnobJumps to Click Location checkbox in the pictslider object's inspector or send theobject ajump 0 messageto enable this mode.
bkgndpicture The word bkgndpicture, followed by a symbol that specifies afilename, designates the graphicsfilethat the pictslider object will usefor the control's background image. The symbol used as afilenamemust either bethe name of a filein M ax's
current search path, or an absolutepathnamefor the file (e.g."MyDisk:/ Documents/UI Pictures/CoolBkgnd.pct").
bkgndsize In left inlet:Theword bkgndsize, followed by a nonzero value, tells the pictslider object to changethesize of theobject to match the size of thebackground picture. A fter receiving this message, the object's sizecannot bechanged. bkgndsize 0 allows the control to be resized in the usual manner by dragging its lower-right corner.
bottommargin In left inlet: Theword bottommargin, Followed by an int greater than or equal to zero, sets the bottom margin, in pixels, for thepictslider. The margin reduces the area in which the knob moves; if a margin is zero, the knob can move all the way to the bottom of the slider.
bottomvalue In left inlet:Theword bottomvalue, followed by an int, sets the values emitted by the pictslider object when the knob is moved as far as possibleto the bottom. The messagebottomvalue 100 will causethecontrol to send 100 out of its left outlet when the knob is moved all the way to the bottom.
dickedimage In left inlet: Theword clickedimage, followed by a nonzero value, specifies that the graphics file used by the pictslider object contains an additional image to bedisplayed when the control is clicked.
horizontaltracking In left inlet: The word horizontaltracking, followed by a float, sets the horizontal tracking ratio for movements of the pictslider object's knob. The default value is 1.0. Values greater than one cause the knob to move morequickly when dragged; values less than one cause it to move moreslowly.
imagemask In left inlet: The word imagemask, followed by a nonzero value, specifies that the graphics file used by the pictslider object contains image masks.
inactiveimage In left inlet: Theword inactiveimage, followed by a nonzero value, specifies that the graphics file used by the pictslider object contains additional images for the object's inactive state.
invisiblebkgnd In left inlet: Theword invisiblebkgnd, followed by a nonzero value, tells the pictslider object to not draw any background image. Theknob will appear to float above any objects underneath it.
jump In left inlet: The word jump, followed by a nonzero value, makes pictslider move theknob to theposition of thecursor if you click in theobject outsideof theknob. jump 0 disables this behavior; you must click in the knob itself to moveit.
knobpicture In left inlet: The word knobpicture, followed by a symbol that specifies a filename, designates the graphics filethat the pictslider object will use for the control's knob file. The symbol used as a filename must either bethename of a file in M ax's current search path, or an absolutepathnamefor thefile(e.g."MyDisk:/ Documents/UI Pictures/CoolKnob.pct"). The word knobpicture by itself puts up a standard 0 pen

D ocument dialog box and displays the common graphics files supported by QuickTime.
leftmargin In left inlet: Theword leftmargin, followed by an int greater than or equal to zero, sets the left margin, in pixels, for the pictslider. Themargin reduces the area in which the knob moves; if a margin is zero, the knob can move all the way to the left of theslider.
leftvalue Theword leftvalue, followed by an int, sets the values emitted by the pictslider object when the knob is moved as far as possibleto the left. The messageleftvalue 100 will cause the control to send 100 out of its left outlet when theknob is moved all the way to the left.
movehorizontal In left inlet: Theword movehorizontal, followed by a nonzero value, allows the knob to change when the mouse is moved horizontally.Themessagemovehorizontal 0 prevents the knob from moving when the mouse is moved horizontally.
movevertical In left inlet:The word movevertical, followed by a nonzero value, allows the knob to change when the mouse is moved vertically. The message movevertical 0 prevents theknob from moving when themouse is moved vertically.
rightmargin In left inlet: The word rightmargin, followed by an int greater than or equal to zero, sets the right margin, in pixels, for thepictslider. The margin reduces the area in which theknob moves; if a margin is zero, theknob can move all the way to the right of theslider.
rightvalue
In left inlet: The word rightvalue, followed by an int, sets the values emitted by the pictslider object when the knob is moved as far as possible to the right. The message rightvalue 100 will cause the control to send 100 out of its left outlet when the knob is moved all the way to theright.
scaleknob In left inlet: The word scaleknob, followed by a nonzero value, tells the pictslider object to stretch or shrink the knob when you changethesize of the entireobject. scaleknob 0 will result in the knob always being drawn at its original size.
set In left inlet: The word set, followed by a number, sets the pictcslider object's horizontal value but does not send the value out its left outlet. The word set, followed by two numbers, setsthe pictslider object's horizontal value to the first number and its vertical value to the to the second number, but does not send the values out its outlets.

In right inlet: The word set, followed by a number, sets the pictslider object's vertical value, but does not send the value out its right outlet.
topmargin In left inlet: The word topmargin, followed by an int greater than or equal to zero, sets the top margin, in pixels, for the pictslider. The margin reduces the area in
which the knob moves; if a margin is zero, the knob can move all the way to the top of theslider.
topvalue In left inlet: The word topvalue, followed by an int, sets the values emitted by the pictslider object when the knob is moved as far as possibleto thetop. Themessage topvalue 100 will cause the control to send 100 out of its left outlet when the knob is moved all the way to thetop.
track In left inlet: The word track, followed by a float, sets the tracking ratio for horizontal movements of the pictslider object'sknob.

In right inlet: The word track, followed by a float, sets the tracking ratio for vertical movements of the pictslider object's knob.
verticaltracking In left inlet: The word verticaltracking, followed by a float, sets the vertical tracking ratio for movements of the pictslider object's knob. The default valueis 1.0. Values greater than one cause the knob to move morequickly when dragged; values less than one cause it to movemoreslowly.

\section*{Inspector}

Thebehavior of a pictslider object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any pictslider object displaysthe pictslider Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

The pictslider Inspector lets you set thefollowing attributes:
TheM argin number boxes set the corresponding margin for thepictslider, in pixels. The margins reducethe area in which the knob moves. If a margin is zero, the knob can move all the way to the corresponding edge of theslider. If the left margin is five, for example, theknob can moveno closer than five pixels to the left edge of theslider.

TheValuenumber boxes set the values emitted by the control when the knob is moved as far as possiblein the corresponding direction. For example, setting the right-hand number box to 100 will causethecontrol to send 100 out of its left outlet when the knob is moved all the way to theright. (The value is sent out the left outlet because the left outlet emits values for horizontal movements of the knob.) Values for intermediate positions of the knob arecalculated by interpolating between the left and right or top and bottom values. Either one of each pair of numbers can belarger, so for example if thetop valueis-100 and thebottom is 50 , the vertical value will decrease from 50 to -100 as the knob is moved from the bottom to thetop.

If theM oveH orizontal or M oveVertical checkboxes arechecked, theknob can be moved in the corresponding direction by clicking and dragging it with the mouse. If you're creating a traditional slider that moves only horizontally or vertically, check the appropriate checkbox and leave the other unchecked.

Selecting theKnob Jumpsto Click Location option lets you click anywhere within the pictslider object's bounding rectangle and havetheknob jump to this location. If unchecked, you must click and drag the knob itself to moveit.

TheH as InactiveImages checkbox tells the pictslider object that your graphics files have additional images for the control's inactive state. Leave this box unchecked if the picture files used by the control do not have theseimages.

The Tracking Ratio values determine the responsiveness of the knob to mouse movements. The default value is 1.0. Values greater than one cause the knob to move morequickly when dragged; values less than one cause it to move more slowly.

Therearefour attributes listed in the Inspector that let you changethe appearance of the slider's knob. You can choose a graphics filefor the slider's knob by clicking on the O pen button. The current file's name appears in the text box to the left of the button. You can also choose a file by typing its namein this box, or by dragging the file'sicon from the Finder into this box.

Checking the Scale Knob W hen Control Size Changes option allows the knob's imageto be stretched or compressed when you resize the pitslider, in proportion to the relative sizes of the object's bounding box and the background picture. If unchecked, the knob's image will bedrawn at its original size. Since stretched images tend to look blocky and uneven, you will usually want to draw an image for your knob at thesizethat you want theknob to be. Thisknob-scaling attribute is useful for experimenting with the size and layout of thepictslider without having to redraw the knob's picturefile.

Checking the Clicked Imageoption will use an alternate set of imageframes in your picturefileto givetheknob adifferent appearancewhen the user clicks and dragsit.

If you want to use image masks in your knob's graphics fileto draw the knob, select the Image M ask option. M asks can be used to create knobs with a non-rectangular shape. If your knob picture has separate images for the clicked and/or inactive state, you must supply masks for those as well.

There are three attributes listed in the Inspector that let you change the appearance of the slider's background. You can choose a graphics file for the slider's background by clicking on the \(O\) pen button. The current file's name appears in thetext box to the left of the button. You can also choosea file by typing its name in this box, or by dragging thefiles icon from the Finder into this box.

If SizeC ontrol to Background Image is checked, the pictctrl object's size is adjusted to match the size of the image chosen for the background. When this attribute is enabled, you cannot changethe object's size in the usual manner by clicking and dragging its lower-right corner; its size is fixed. If unchecked, theimage is stretched or shrunk to fill the size of theslider. Since stretched imagestend to look blocky and uneven, you will usually want to draw an image for your slider at the sizethat you want the slider to be. Leaving this sizing attribute unchecked is useful for experimenting with the size and layout of the pictslider without having to redraw theslider's picturefile.

Checking the Invisible Background box tells the pictslider object not to draw anything for the slider's background. The knob will appear to "float" over any underlyingobjects.

TheRevert button undoes all changes you've madeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheI Inspector is open.

\section*{Arguments}

None.

\section*{Picture File Format}

The pictslider object uses the two picturefiles: one for the background, and one for the knob that is moved over the background with the mouse.

Background picturefiles can bein PICT format, or if QuickTimeVersion 3.0 or later is installed, one of the other graphics file formats listed in theQuickTime appendix. Background picturefiles must havethefollowing layout:

Nomal hactive
mage mage

Only one image is required; if only oneimage is supplied, it will beused for drawing all states of the background. Additional images are placed to the right of the first image. You can add images for the inactive state of the control. The inactive image will beused after the control has received an active 0 message.

Knob files must bein PICT format with the following layout:


The picture is made up of a grid of one or moreimages. All images have the same width and height.

Only oneimage is required; if only one image is supplied, it will be used for drawing all states of the knob. Additional images are placed to the right of thefirst image. You can add images for either or both the "clicked" or inactive states of the control. The "clicked" image will be shown when the user is dragging the control's knob. The inactiveimage will beused after the control has received an active 0 message.

Image masks can be used to create knobs with non-rectangular outlines. These masks are directly below their corresponding images in the picture file. If you wish to use masks for any of the knob images, you must providemasks for all of them - each image will have a corresponding row of masks. Black pixels in the mask image create areas of the corresponding imagethat will bedrawn, and white pixels createinvisible areas.

\section*{Output}
int Moving theslider's knob by clicking and dragging it with the mouse, or sending values to either of its inlets, causes its horizontal value to be emitted from the left outlet and its vertical value to beemitted from the right outlet. Incoming values are constrained to the ranges determined by thetop/bottom and left/right values set in the inspector.

\section*{Examples}

pictslider lets you create both one and two-dimensional UI elements

\section*{See Also}
\begin{tabular}{ll} 
dial & Output numbers by moving a dial onscreen \\
hslider & Output numbers by moving a slider onscreen \\
kslider & Output numbersfrom a keyboard onscreen \\
multislider & Multipleslider and scrolling display \\
pictctrl & Picture-based control \\
rslider & Display or change a range of numbers \\
slider & Output numbers by moving a slider onscreen \\
ubutton & Transparent button, sends a bang \\
uslider & Output numbers by moving a slider onscreen \\
Tutorial 14 & Sliders and dials
\end{tabular}

\section*{Input}
int In left inlet: Thenumber is delayed a certain number of milliseconds before it is sent out the left outlet. If there are middle inlets, the numbers in those inlets are al so delayed and sent out the corresponding outlets.
int or float In right inlets: Sets the time in milliseconds to delay numbers received in the other inlets.
bang In left inlet: Retriggers thenumbers currently stored in thepipe to beoutput again in the specified number of milliseconds(in addition to any numbers already being delayed).
float In left and middle inlets: Converted to int, unless the inlet was initialized with a float argument.
list In left inlet: Numbers are distributed to the pipe object's inlets to be delayed together. If there is a number for the right inlet, it sets the delay time for the other numbers.
clear In left inlet: H alts all numbers currently being delayed by pipe.
clock The word clock, followed by the name of an existing setclock object, sets pipe to be controlled by that setclock rather than by M ax's internal millisecond clock. The word clock by itself sets pipe back to using M ax's regular millisecond clock.
flush In left inlet: Immediately sends out all numbers currently being delayed by pipe, and clears the pipe object's memory. Numbers are sent out each outlet in reverse order from that in which they were received in the corresponding inlet.

\section*{Arguments}

Optional. Thelast argument sets an initial value for the delay time, in milliseconds. If there is no argument, the delay time is 0 . If there are two arguments, the first argument sets an initial value to bestored in pipe, and the second arguments sets the delay time. If more than two arguments are present, pipe creates additional inlets and outletsfor delaying additional numbers in parallel to theleftmost one.
float The last argument is converted to int. O ther float arguments cause the corresponding outlet to send a float.

\section*{Output}
int When a number is received in the pipe object's left inlet, it is delayed by the time specified, then sent out the left outlet. If there are middle inlets, the numbers in those inlets arealso delayed and sent out their corresponding outlet, in response
to a number is received in the left inlet. Unlike delay, morethan onenumber at a time can be delayed in a pipe. When a new delay time is received in the right inlet, it does not affect when the numbers al ready being delayed by pipe will comeout.

\section*{Examples}


\section*{See Also}
delay
Delay a bang before passing it on
Tutorial 22
Delay lines

Note: The playbar object requires that QuickTime be installed on your system. If you are using M ax on Windows, we recommend that you install QuickTime and choose a complete install of all optional components.

\section*{Input}
bang If the left outlet of a playbar object is connected to a movie or imovie object, bang links the two objects together so the playbar can control the QuickTimemovie. After playbar and movie arelinked, any messages sent to the movie object which changeits location or playing status are reflected in the playbar object. (Linking will happen automatically when a patcher file containing connected playbar and movie objects is loaded. Thus, sending the bang to playbar is only necessary when you're building a patch.)

\section*{Arguments}

None.

\section*{Output}
(internal) Out left outlet: Oncethe playbar and a movie object arelinked, the playbar controls theQuickTimemovie. playbar only supports being connected to onemovie object at atime. Theconnection must bemadewith a patch cord; it cannot takeplacevia a send-receive pair.
int Out right outlet: Each command processed by playbar is sent by number out its right outlet. A directory of command numbers and their meaning can befound in theQuickTimeStandard M oviePlay Controller documentation. By properly interpreting these commands, you can potentially use playbar for other purposes besides movie control. However, the"thumb" in the controller has no range until an associated QuickTimemoviewith a non-zero duration is linked to theplaybar.

\section*{Examples}


Using playbar with movie and imovie

\section*{See Also}
movie
Play a QuickTimemoviein a window
imovie
Play a QuickTimemoviein a patcher window

\section*{Input}
float In left inlet: Themagnitude(amplitude) portion of a polar coordinate pair to be converted into a cartesian (real/imaginary) coordinate pair.

In right inlet:Thephase portion of a polar coordinate pair to be converted into a cartesian (real/imaginary) coordinate pair.
int Converted to float.

\section*{Arguments}

None.

\section*{Output}
float Out left outlet: Thereal portion of a frequency domain coordinate pair.
Out right outlet:Theimaginary portion of a frequency domain coordinate pair.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
cos & Cosinefunction \\
cartopol & Cartesian to Polar coordinate conversion \\
Icd & Draw graphics in a Patcher window \\
sin & Sinefunction
\end{tabular}
list In left inlet: Thefirst number is treated as a pitch, and the second number is treated as a velocity value, of a pitch-velocity pair. If the velocity is not 0 , poly allocates that note-on to the first available voicenumber and sends it out. If the velocity is 0 , poly frees the voice that is holding that pitch and sends out the note-off.
int In left inlet:Thenumber is treated as the pitch value of pitch-velocity pair and the noteis sent out.

In right inlet: Thenumber is stored as the velocity to be paired with numbers received in the left inlet.
float Converted to int.
stop In left inlet: Immediately sends note-offs for all the notes currently being held by poly, freeing all voices.

\section*{Arguments}
int Optional. Thefirst argument sets the number of voices to which poly can allocate notes (thus limiting the number of notes poly can hold at onetime). If there is no argument present, poly can hold 16 notes.

If thereisno second argument, or if the second argument is0, poly sends any notes it cannot hold out the rightmost outlet. If there is a second argument not equal to 0 , poly steals voices: when poly receives more notes than it has voices, it turns off the note it has held the longest and puts the new note in its place.
float Converted to int.

\section*{Output}
int Out left outlet: Theoutput isthevoicenumber of thenote-on or note-off being sent out.

O ut 2nd outlet: Theoutput is the pitch of thenote-on or note-off.
Out 3rd outlet: Thenumber is the velocity of thenote-on or note-off.
list Out 4th outlet: The first number is the pitch, and the second number is the velocity, of any notes poly cannot hold. If there is a nonzero second argument, poly steal s voices rather than send out overflow, so the fourth outlet is not created.

\section*{Examples}


Send each voiceto a different place


Limit the number of notes held at a time

\section*{See Also}
borax Report current information about note-ons and note-offs
flush
makenote
Providenote-offs for held notes
Generate a note-off message following each note-on

\section*{Input}
(MID) polyin receives its input from M IDI polyphonic key pressure messages received from aMIDI input device.
enable The messageenable 0 disables the object, causing it to ignoresubsequent incoming MIDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which the object receives incoming polyphonic key pressure messages. The word port is optional and may beomitted.
(mouse) Double clicking on a polyin object shows a pop-up menu for choosing aM IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port from which to receive incoming MIDI messages. If there is no argument, polyin receives from all channels on all ports.
(MID name) Optional. Thename of a M IDI input devicemay be used as the first argument to specify theport.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific MIDI channel on which to receive polyphonic key pressure messages. Channel numbers greater than 16 will be wrapped around to stay within the \(1-16\) range.
int A number alone can beused in place of aletter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
int Out left outlet:Thenumber is the pressure value of the incoming polyphonic key pressuremessage.

Out 2nd outlet: Thenumber is the pitch value (key number) of the incoming message.

If a specific channel number is included in the argument, there are only two outlets. If there is no channel number specified by the argument, polyin will havea third outlet, on theright, which will output the channel number of the incoming note on message.

\section*{Examples}
\begin{tabular}{l} 
Receive from everywhere \\
\begin{tabular}{|l|l|}
\hline polyin \\
\hline 36 & 60 \\
\hline
\end{tabular} \\
\hline Rressure \\
\hline
\end{tabular}


M essages can be received from everywhere, a specific port, or a specific port and channel

\section*{See Also}
midiin
polyout
Tutorial 16
Using MIDI
Ports

Output received raw MIDI data
TransmitMIDI poly pressuremessages
MoreM IDI ins and outs
Using M ax with MIDI
How M IDI ports arespecified
int In left inlet:Thenumber is the pressure value of a M IDI polyphonic key pressure message transmitted on the specified channel and port. Numbers arelimited between 0 and 127.

In middle inlet: Thenumber is stored as the key number, to beused with pressure values received in the left inlet. Numbers arelimited between 0 and 127.

In right inlet: Thenumber is stored as the channel number on which to transmit the polyphonic key pressure messages.
float Converted to int.
list In left inlet: Thefirst number is the pressurevalue, the second number is the key number, and thethird number isthechannel, of a transmitted MIDI polyphonic key pressuremessage.
enable Themessageenable0 disablestheobject, causing it not to transmit M IDI data. The word enable followed by any non-zero number enables theobject once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port In left inlet:Theword port, followed by a letter a-z or the name of a M IDI output port or device, specifies the port used to transmit the polyphonic key pressure messages. The word port is optional and may beomitted.
(mouse) D oubleclicking on a polyout object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port for transmitting M IDI polyphonic key pressuremessages. C hannel numbers greater than 16 received in the right inlet will bewrapped around to stay within the \(1-16\) range. If there is no argument, polyout initially transmits out port a, on M IDI channel 1.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to transmit polyphonic key pressuremessages. Channel numbers greater than 16 will be wrapped around to stay within the 1-16 range.
(MIDI name) Optional. Thenameof a M IDI output devicemay beused as the first argument to specify the port.
int A number alonecan beused in place of a letter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in the MIDI Setup dialog.

\section*{Output}
(MIDI) Thereareno outlets. Theoutput is a M IDI polyphonic key pressure message transmitted directly to the object's M IDI output port.

\section*{Examples}


Letter argument transmits to only oneport.
Otherwise, number specifies both port and channed

\section*{See Also}
midiout
polyin
Tutorial 16
Using M IDI
Ports

Transmit raw M IDI data
Output received M IDI poly pressure values
M oreM IDI ins and outs
Using M ax with M IDI
How M IDI ports arespecified
pow raises the base value (set in the right inlet) to the power of the exponent ( set in the left inlet).

\section*{Input}
float or int In left inlet: Sets theexponent.
In right inlet: Sets the base value.

\section*{Arguments}
float or int Optional. Sets the base value. The default value is 0 .

\section*{Output}
float The basevalue(from theright inlet) raised to the exponent (from the left inlet).

\section*{Examples}

pow will give you a square deal (and other numbers, too)

\section*{See Also}
\begin{tabular}{ll} 
expr & Evaluate a mathematical expression \\
\(\gg\) & Shift all bits to theright \\
\(\ll\) & Shift all bits to theleft
\end{tabular}

\section*{Input}
set The word set, followed by any message, will replace the message stored in prepend, without triggering output.
anything else The messagestored in prepend is attached to the beginning of themessage received in the inlet, and the combined message is sent out its outlet.

\section*{Arguments}
anything Obligatory. Sets the message to be prepended at the beginning of incoming messages. The first argument must be asymbol.

\section*{Output}
anything Themessagereceived in the inlet is combined with the message stored in prepend, and then sent out theoutlet. The maximum allowed length of any constructed message is 256 items.

\section*{Examples}


Symbols can be combined into meaningful messages with prepend

\section*{See Also}
\begin{tabular}{ll} 
append & Append arguments at the end of a message \\
message & Send any message \\
route & Selectively pass the input out a specific outlet \\
Tutorial 25 & M anaging messages
\end{tabular}
int Thenumber indicates a preset, and the settings stored in that preset aresent out to the connected objects, or to all objects in the window if no patch cords are connected to the preset object's outlet. The settings in a preset can also be sent out by clicking on the preset with the mouse.
float Converted to int.
bang Sends out the settings of the preset that was most recently recalled with an int or a mouseclick.
dear Erases the contents of the most recently sent preset. The word clear, followed by a number, erases the contents of that numbered preset.
clearall Erases the contents of all presets.
list Sameasbang.
name Theword name, followed by a symbol, sets the ID Namefor the preset. TheID Name allows the preset to have a uniqueID so that files created for it will not read into other presets.
read Theword read, followed by no arguments or a number, displays an O pen D ocument dialog box for choosing a file of preset data to read. If the preset has been given a Preset NameCode, only files of thetypespecified by thecodewill bedisplayed. Thenumber argument specifies the preset number into which thefiledata should be read. If the number is 0 or -1, the data in thefile will be read into the number of presets contained in thefilestarting with thefirst one. If the word read is followed by a symbol or a number and a symbol, no dialog box is displayed. Instead, the symbol istaken as a filenamefrom which to read presets. Thenumber functions as already described.
store Theword store, followed by a number, it stores the current setting of all user interfaceobjects in the samewindow in the preset indicated by the number. If objects are connected to the preset object's left outlet with patch cords, only those connected objects will be affected.

Thepresets(storage locations in thepreset object) are numbered left-to-right, top-to-bottom. W hen settings arestored in a preset, a dot appears on it to indicate that it contains something. Settings can al so bestored in a preset by holding down the Shift key and clicking on the preset with the mouse.
write The word read, followed by no arguments or a number, displays a SaveAsdialog box for specifying a destination filename for writing the preset data. If the preset has been given a Preset NameCode, thefileisgiven this codeas its filetype. The number argument specifies the preset number from which the preset data should be written. If the number is 0 or -1 , all presets will be written. If the word write is

Store and recall the settings of other objects
followed by a symbol or a number and a symbol, no dialog box is displayed. Instead, the symbol is taken as a filenameto usefor writing the data; the file will be placed in the current default folder The number functions as al ready described.

\section*{Inspector}

Thebehavior of a preset object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any preset object displays the preset Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaysthe Inspector.

The preset Inspector lets you specify an ID Nameto the preset object, to distinguish it from other preset objects. Thefirst four characters of this name, if you enter one, are used as the M acintosh "filetype" for files of presets saved by this object. W hen you send theread message to a preset object that has an ID Name, only the files whose types match thefirst four characters of this name are shown in the standard filedialog. This allows you to createa"document type" for preset files so the user won't open a preset file designed for another preset object. A preset object can also be set to save its contents as part of the patch that contains it by checking the SaveP resets with Patcher check box.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
int or float Out left outlet:W hen a preset is recalled, either by a mouseclick or by a number in theinlet, the settings stored in that preset are sent out the outlet to all connected objects, or, if no objects are connected, to all user interface objects in the window.
int Out middleoutlet: When a preset is recalled, the number of the preset is sent out.
(internal) A ny user interface objects connected to the right outlet of preset will beexcluded from the effects of that preset. (This is particularly useful when there are many objects you want to affect with preset, and only a few you want to exclude.)

O bjects whose data is stored in a preset include: dial, Ggate, Gswitch, hslider, led, number box (both int and float), slider, toggle, and uslider. The contents of a table can also bestored and recalled by preset, but the table must be connected to the

Store and recall the settings of other objects
preset object's outlet with a patch cord. Theoutlet of preset can also beconnected to a send object, to communicate with objects connected to a receive object of the samename.

Thenumber of visible presets can be adjusted by resizing the preset object's box. Themaximum number of presets in a single preset object is 2048.

\section*{Examples}


Remember many past settings and recall them later

\section*{See Also}
grab
Intercept theoutput of another object
Tutorial 37
DataStructures
D ata structures
Ways of storing data in Max

Print any message in the M ax window

\section*{Input}
anything M essages arenot interpreted by theprint object. They aresimply printed verbatim in the \(M\) ax window.
(mouse) Double-clicking on any print object openstheM ax window or brings it to the front.

\section*{Arguments}
anything Optional. The argument is an identifier for the print object. Each message printed in the M ax window is preceded by thename of theprint object, and a colon (:). Thenamemust not contain spaces or special characters, but can beeither a number or a word. If there is no argument, the name of the print object is print. Using an argument to print can help distinguish theoutput of two or moreprint objects.

\section*{Output}
anything Thereare no outlets. The messagereceived in the inlet is printed in the M ax window.

\section*{Examples}


U sed for displaying output, or for notifying when an event takes place

\section*{See Also}

Tutorial 1
Debugging

Saying"H ello!"
Techniques for debugging patches

\section*{Input}
list Thenumbers makean entry in a probability matrix of transitions from onenumber to another (known as a first-order M arkov chain). Thelist should consist of three numbers: a current value, a next value, and a probability that current will be followed by next. Thefirst two numbers in the listidentify a possiblesuccession of output values: a possibility that the first number will befollowed by the second. The third number sets the relative likelihood that the sequence of numbers will occur. O nce thefirst number has been sent out, the next output is determined by therelative likelihood(s) assigned to each possible subsequent number.
bang Makes a weighted random choice of a number to besent out, based on theimmediately previous output and on the specified likelihoods of subsequent numbers.
int Sets (but does not send out) out the current number value. The subsequent output, in response to abang message, will bedetermined by the stored matrix of probabletransitions from that number.
reset The word reset, followed by a number, tells prob what number to revert to in the event that it gets "stuck" on a number that has no possible next number.
dump Prints out a completelist of the stored transition probabilities (M arkov chain) in the Max window.
embed The word embed, followed by a nonzero number, causes the contents of prob to be saved as part of the patch that containsit. The messageembed 0 causes prob to forget its contents when the patch is closed.
dear Erases the contents of prob.

\section*{Arguments}

None.

\section*{Output}
int Out left outle:: W hen bang is received in the inlet, prob sends out a number, which it chooses based on its knowledge of the last number chosen and the relative likelihood assigned to each possible subsequent number.
bang Out right outlet: If the current number (the last number chosen) has no possible transitions listed in thetransition probability matrix, bang is sent out (and nothing is sent out the left outlet) in responseto a bang in the inlet.

\section*{Examples}

0 has a \(75 \%\) chance of being followed by 1 , and a \(25 \%\) chance of being followed by 2
\begin{tabular}{|l|llll|}
\hline 0 & 1 & 75, & 0 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|llllll|}
\hline 1 & 0 & 50 & 1 & 2 & 50 \\
\hline 2 & 0 & 20 & 2 & 1 & 75 \\
\hline
\end{tabular}

In the (5\%) event that 2 is followed by 3, prob will get "stuck" because no transition has been specified for 3
Each bang selects the next number based on the previous number and
its probable successors


Likelihood of a certain output depends on the previous output

\section*{See Also}
anal
histo
mean

M akea histogram of number pairs received
M akea histogram of the numbers received
Find the running average of a stream of numbers
pv operates identically to the value object, with two exceptions. First, pv objects that sharethe same nameonly sharethe same value if they are in the same patcher, or one of its subpatches. Second, thepv object cannot be the receiver of a message sent remotely by a message box (the first symbol after a semicolon). So, pv means private value- a value that is shared between objects, but only within a single patcher.

\section*{Input}
any message Themessage is stored, to be shared by all other pv objects of the same namethat are inside the object's patcher or its subpatches (or, if in a subpatch, its parent patch).A message received in any other such pv object will change thestored message.
bang Sends out the stored message.

\section*{Arguments}
any symbol Obligatory. Thefirst argument provides an identifying name. All pv objects with that name within the patcher will sharethe same value.
any message Optional. A ny messagetyped in after the first argument initializes the stored contents of thepv object. Notethat when two or more pv objects in a patcher file that sharethe same name are initialized to different values, theone which is initialized last determines the value. Sincetheorder in which pv objects will beinitialized cannot be precisely determined, the best practice isto initializeonly one of the related pv objects.

\section*{Output}
any message When bang is received in theinlet, the stored message is sent out.

\section*{Examples}


\section*{See Also}
float
int
pvar
receive
send
value

Store a decimal number
Store an integer value
Connect to a named object in a patcher
Receive messages without patch cords
Send messages without patch cords
Share a stored message with other objects

The pvar object lets you build user interfaces in one part of your patcher that are associated with the "process" part in another part of the patcher. Unlikethesend and receive objects, pvar does not work globally; the pvar object and its associated object must be in the same patcher. You set an object's name by selecting theobject and choosing Name Object from the O bject menu. The name cannot bea number, although it can contain numbers.

\section*{Input}
any message The message is sent to the named object currently associated with pvar.
setname The word setname, followed by a symbol, specifies the name of the object to which pvar will be associated with. The named object must be in the same patcher as the pvar object.

\section*{Arguments}
symbol Optional. Thefirstargument specifies thename of theobject to which pvar will be associated with. If no name is supplied, the setname message can be used to connect later.
int Optional. The second argument specifies the number of outlets pvar will have. pvar connects to as many outlets as its associated object has, unless it is morethan thenumber you specify as an argument. Thedefault number of outlets is 1 .

\section*{Output}
any message Theoutlets of pvar correspond to theoutlets of its associated named object. When the named object sends anything out one of its outlets, the output also comes out of the corresponding outlets of the pvar object.

\section*{Examples}

pvar can be used to build a user interface without any messy patch cords

\section*{See Also}
\begin{tabular}{ll} 
receive & Receive messages without patch cords \\
send & Send messages without patch cords \\
thispatcher & Send messages to a patcher \\
value & Sharea stored message with other objects
\end{tabular}

The radiogroup object has two modes of operation: radio button and check box. In radio button mode, the radiogroup object provides a user-definable number of buttons in a group, only one of which may be selected at atime. In check box mode, the indicators in theradiogroup object function as a set of on/off indicators. Check box mode also supports a way to have the checkboxes act as indicators for the bit pattern of a binary representation of an integer (seetheflagmode message below).

Note: radiogroup can bere-sized horizontally so it will extend under comment boxes placed to the right of the buttons or boxes. this way, clicking on the text to theright of thebutton will also set the button selection or box state.

\section*{Input}
(mouse) In radio button mode, clicking on a radio button will set the radio button selection and output the corresponding button number (numbering starts from 0).

In check box mode, clicking on a check box will changeits state (from 1 to 0 or from 0 to 1) and output a list of zeros and ones corresponding to the on/off state of theboxes. if the entiregroup of buttons/boxes is inactive (greyed out) it will not respond to clicks. if an individual item is disabled (greyed out) it will not respond to clicks, although active items in the group will still respond to clicks as usual. TheFlagM ode variation on thecheck box modehas check boxes that correspond to bit positions for abinary value (i.e. thefirst checkbox corresponds to the 1 s , the second to 2 s , the third to 4 s , etc.) Clicking on a check box will select or deselect the check box and output the integer value which corresponds to the bit pattern.
bang In radio button mode: A bang outputs the currently selected radio button number.
In check box mode: A bang outputs alist of zeros and ones representing theon/off state of the check boxes.

In flag mode: A bang send the integer that corresponds to the bit pattern of the currently checked boxes (i.e., if boxes one, two, and three are checked, abang will output a value of 7 ) out the radiogroup object's output.
int In radio button mode: An integer sets the radio button selection and outputs the input value. Numbering starts with 0 , and a negative number indicates that no buttons will be selected.

In flag mode: An integer value received in theradiogroup object's inlet will set the buttons or checkboxes to reflect the bit pattern of the integer value(i.e., a value of 19 will select boxes one, two, and five, corresponding to the binary value10011) and send the integer value out theradiogroup object's output.
float In radio button and check box modes: Converted to int.
list In check box mode: list of zeros and ones sets the check box states and causes output of the input list. If you have specified check box mode and havetheflag mode
set using the flagmode 1 message, a list of zeros and ones sets the check box states and causes output of the input list.
disableitem In radio button and check box modes: disabletheitems whose numbers are indicated (they will bedrawn in grey and will not respond to clicks, although they will still respond to set messages, ints or lists).
enableitem In radio button and check box modes: Theword enableitem, followed by followed by a number or list of numbers, will enablethe items whose numbers are indicated if they have been disabled with the disableitem message.
flagmode In check box mode: The word flagmode, followed by a nonzero value, sets theflag mode of operation for the radiogroup object. In this mode, each check box corresponds to onebit in an integer value(i.e, the firstradio button or checkbox corresponds to the ones bit, the second button or checkbox to the twos bit, the third button or checkbox to the fours bit, etc.). Themessageflagmode 0 disables this mode (default).
itentype In radio button and check box modes: Theword itemtype, followed by azero or one, selects the mode of the radiogroup object. The message itemtype 0 selects radio button mode, and itemtype 1 selects check box mode.
inactive In radio button and check box modes: Theword inactive, followed by azero or one, toggles the active or inactive state of the entire group of radio buttons or check boxes. inactive 0 (default) means that the boxes are not inactive, and will respond to mouseclicks. Themessage inactive 1 will gray out the radio buttons or check box displays, and they will not respond to mouse clicks (although their state can still be set using set messages, ints or lists).
offset In radio button and check box modes: The word offset, followed by a number, changes the pixel offset between the tops of the buttons/boxes. the minimum offset is 14 pixels, the default offset is 16 pixels.
set In radio button mode: The word set, followed by a number, sets the currently selected radio button without triggering any output.

In check box mode: The word set, followed by a list of zeros and ones, sets the check box states without triggering any output.

If you are using check box mode and are also using Flag M ode, a number will set the state of thefirst 32 checkboxes in a pattern which corresponds to the bit pattern of the number without triggering output (seetheflagmode section for more information).

In radio button and check box modes: Theword size, foll owed by a number, changes the number of buttonsor boxes. Thedefault is 2 , and themaximum is 64 .

Note: If you careusing the radiogroup object in check box mode and have enabled Flag M ode, you will only be able to set 32 checkboxes.

\section*{Inspector}

Thebehavior of a radiogroup object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any radiogroup object displays the radiogroup Inspector in the floating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

The radiogroup Inspector lets you specify the Number of Buttons (default 2) and their Offset (default 16 pixels). TheButton Typeoption lets you choose between radio buttons (the default). If you choosetheCheck Boxes option, you can also specify theFlag M odeoption (default is unchecked).

TheRevert button undoes all changes you've madeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
int In radio button mode:Clicking on a radio button outputsan int corresponding to the radio button selected. Numbering begins with 0 .

In flag mode: Clicking on a check box outputs an int corresponding to the bit pattern represented by the checked boxes (i.e., if boxes one, two, and three are checked, a bang will output a value of 7).
list In check box mode: A bang will output a list of zeros and onewhich indicate the on/off state of thegroup of check boxes.

\section*{Examples}

Single outlet selection


Multiple outlet selection


Radio buttonsallow a single selection, and multiple selection check boxes can control several gates

\section*{See Also}
\begin{tabular}{ll} 
button & Flash on any message, send a bang \\
matrixcrtrl & M atrix-style switch control \\
pictctrl & Picture-based control \\
toggle & Switch between on and off (1 and 0) \\
ubutton & Transparent button, sends a bang
\end{tabular}
bang In left inlet: Sends out a randomly generated number between 0 and oneless than its maximum limit.
int In right inlet:Thenumber is stored as the maximum limit for therandom output. The output will always bebetween 0 and one less than this maximum limit.
seed In left inlet: The word seed, followed by a number, provides a"seed" value for the random generator, which causes a specific (reproducible) sequence of pseudorandom numbers to occur. Thenumber 0 uses thetime elapsed since system startup (an unpredictable value) as the seed, ensuring an unpredictable sequence of numbers. This unpredictable seed is used by default when the random object is created.

\section*{Arguments}
int Optional. Sets an initial limit to the random output. Theoutput will always be between 0 and oneless than this maximum limit. If there is no argument, thelimit is initially set to 1 , which causes random to output 0 whenever it receives a bang.
int Optional. A second argument is used to set a"seed" value for the random generator. If no argument is specified, thetime value will be used to initializetheseed.

\section*{Output}
int When abang is received in the left inlet, random generates a random number between 0 and one less than its maximum limit.

\section*{Examples}


Generate random events, or makedecisions based on probability

\section*{See Also}
\begin{tabular}{ll} 
decide & Choose randomly between on and off (1 and 0) \\
drunk & Output random numbers in a moving range \\
urn & Generate random numbers without duplicates \\
Tutorial 22 & Delay lines
\end{tabular}

\section*{Input}
anything Input is received from send or forward objects that have the samename, even if the sending object is in another loaded patch. The order in which multiplereceive objectswith the samenamewill sendout themessage received is undefined, so the order in which their output will be sent out is unpredictable.

M essages can also be sent remotely to a receive object from an int or float object (with the word send followed by thename of thereceive object), from a grab object ( with a symbol argument), or from a message box (with a semicolon followed by the name of the receive object.
(mouse) D oubleclicking on a receive object looks for and opens a loaded patcher window containing a send object with the same name. Repeatedly double clicking on the receive object looks for and opensmore such windows.
set If thereis no typed-in argument, receive has one inlet. The word set, followed by a symbol, provides a name for receive, as if that namehad been typed in as an argument.

\section*{Arguments}
any symbol
Optional. Gives a name to receive. If there is no argument, receive has one inlet, and a name must be provided by a set message before anything can be received.

\section*{Output}
anything Any message received in the inlet of any send or forward object with the same name, or sent explicitly from an int, float, grab, or message box, is passed out the outlet of receive, even if the sending object is in a different loaded patch.

\section*{Examples}


Virtual connections exist between all send and receive objects that share the samename

\section*{See Also}
\begin{tabular}{ll} 
float & Store a decimal number \\
forward & Send remotemessages to a variety of objects \\
int & Store an integer value \\
message & Send any message \\
pvar & Connect to a named object in a patcher \\
route & Selectively pass the input out a specific outlet \\
send & Send messages without patch cords \\
value & Shareastored message with other objects \\
Tutorial 24 & send and receive
\end{tabular}

\section*{Input}
bang In left inlet: D raws the rectangleusing the current screen coordinates, drawing mode, and color.
int In left inlet: Sets the left screen coordinate of the rectangle- relative to the upper left corner of the graphics window- and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the rectangle.
In 3rd inlet: Sets the right screen coordinate of the rectangle.
In 4th inlet: Sets the bottom screen coordinate of the rectangle.
In 5th inlet: Sets thedrawing mode of the rectangle. The following aredrawing mode constants; not all modes will be available on all operating systems.
\begin{tabular}{llll} 
Copy & 0 & blend & 32 \\
Or & 1 & addPin & 33 \\
Xor & 2 & addOver & 34 \\
Bic & 3 & subPin & 35 \\
NotCopy & 4 & transparent & 36 \\
NotOr & 5 & adMax & 37 \\
NotXor & 6 & subOver & 38 \\
NotBic & 7 & adMin & 39
\end{tabular}

In 6th (right) inlet: Sets the paletteindex (color) of the rectangle according to the graphics window's current palette. This setting has no effect when the monitor is in black and white mode.
frgb In left inlet: The word frgb, followed by three numbers between 0 and 255 , sets the RGB values for the color of the rectangle the next time it is drawn.
priority In left inlet: Theword prioity, followed by a number greater than 0 , sets a rect object's sprite priority in its graphics window. O bjects with lower priority will draw behind thosewith a higher priority.

\section*{Arguments}
any symbol Obligatory. The first argument to rect must bethe name of a graphics window into which the rectangle will be drawn. The window need not necessarily exist at thetimethe rect object is created, but the rectangle will not bedrawn unless the name matches that of a visible window.
int Optional. Sets theinitial sprite priority of therect. If no priority is specified, the default is 3.

\section*{Output}
(visual) W hen the rect object's associated graphics window is visible, and a bang message or number is received in its left inlet, a shapeisdrawn in thewindow, and the object's previously drawn rectangle(if any) is erased.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
frame & Draw framed rectangle in a graphic window \\
graphic & Window for drawing sprite based graphics \\
Icd & Draw graphics in a patcher window \\
oval & Draw solid oval in a graphic window \\
ring & Draw framed oval in a graphic window \\
Graphics & Overview of Max graphics windows and objects
\end{tabular}
symbol An absolutepathname of a folder or file as a symbol.An absolutepathnamelooks likethis:
'MyDisk:/Max Folder/extras/filename'

\section*{Arguments}

None.

\section*{Output}
symbol Thepathname of the folder or filerelative to the M ax application folder as a symbol. If the input pathname is within the M ax application folder, the path is changed to start with a dot-slash (./) followed by the folder names of the path. Otherwise, the input is repeated to the output.

\section*{Examples}
pick a folder

./max-help/
the mame of the folder relative to the max application folder.

\section*{See Also}
\begin{tabular}{ll} 
absolutepath & Convert a file nameto an absolute path \\
conformpath & Convert paths of one pathtypeand/or pathstyleto another \\
opendialog & Open a dialog to ask for a file or folder \\
strippath & Get afilename from an absolute pathname
\end{tabular}

\section*{Input}
bang In left inlet: Draws a framed oval using the current screen coordinates, drawing mode, and color.
int In left inlet: Sets theleft screen coordinate of the oval — relative to the upper left corner of the graphics window - and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the oval.
In 3rd inlet: Sets the right screen coordinate of the oval.
In 4th inlet: Sets the bottom screen coordinate of the oval.
In 5th inlet: Sets the drawing mode of theoval. Thefollowing are drawing mode constants; not all modes will be available on all operating systems.
\begin{tabular}{llll} 
Copy & 0 & blend & 32 \\
Or & 1 & addPin & 33 \\
Xor & 2 & addOver & 34 \\
Bic & 3 & subPin & 35 \\
NotCopy & 4 & transparent & 36 \\
NotOr & 5 & adMax & 37 \\
NotXor & 6 & subOver & 38 \\
NotBic & 7 & adMin & 39
\end{tabular}

In 6th (right) inlet: Sets the paletteindex (color) of theoval according to the graphics window's current palette. This setting has no effect when the monitor is in black and whitemode.
frgb In left inlet: The word frgb, followed by three numbers between 0 and 255 , sets the RGB values for the color of thering thenext time it is drawn.
priority In left inlet: Theword priority, followed by a number greater than 0, sets a ring object's sprite priority in its graphics window. Objects with lower priority will draw behind those with a higher priority.

\section*{Arguments}
any symbol Obligatory. Thefirst argument to ring must bethename of a graphics window into which theoval will bedrawn. Thewindow need not necessarily exist at the timethe ring object is created, but theoval will not be drawn unless the name matches that of a visible window.
int Optional. Sets the initial sprite priority of thering. If no priority is specified, the default is 3.

\section*{Output}
(visual) W hen the ring object's associated graphics window is visible, and abang message or number is received in its left inlet, a shape is drawn in the window, and the object's previously drawn oval (if any) is erased.

\section*{Examples}

See examples under oval or rect. ring can bedirectly substituted for oval, rect, or frame.

\section*{See Also}
\begin{tabular}{ll} 
frame & Draw framed rectanglein a graphic window \\
graphic & Window for drawing sprite based graphics \\
Icd & Draw graphicsin a patcher window \\
oval & Draw solid oval in a graphic window \\
rect & Draw solid rectanglein a graphic window \\
Graphics & Overview of Max graphicswindows and objects
\end{tabular}

\section*{Input}
anything If thefirstitem of themessage is the sameas one of thearguments of route, the rest of the message is sent out the outlet that corresponds to that argument. If the first item does not match any of the arguments, the entire message is passed out the rightmost outlet.

\section*{Arguments}
anything Optional. A rguments can bea mix of ints, floats, or symbols. Thenumber of arguments determines the number of outlets, in addition to the rightmost outlet. Each argument assigns a nameor a number to an outlet. If there is no argument, there is one other outlet, which is assigned the number 0.

\section*{Output}
anything Thefirst item of any message received in the inlet is compared with the arguments. If it matches one of the arguments, the rest of the message is sent out the specified outlet. Otherwise, the entire message is passed out the rightmost outlet.
bang If the firstitem of a message matches one of the arguments, but the message has no additional items, bang is sent out the specified outlet.

\section*{Examples}


A rguments assign names or numbers to the outlets, and route the input to the correct outlet

\section*{See Also}
\begin{tabular}{ll} 
bucket & Pass a number from outlet to outlet, out each one in turn \\
forward & Send remotemessages to a variety of objects \\
gate & Pass the input out a specific outlet \\
pack & Combinenumbers and symbols into a list \\
receive & Receive messages without patch cords \\
select & Select certain inputs, pass the rest on \\
send & Send messages without patch cords \\
sprintf & Format a message of words and numbers \\
zl & Multi- purposelist processor \\
Tutorial 17 & Gates and switches
\end{tabular}
int In left inlet:Thenumber sets the minimum limit of a range displayed as a colored region on therslider, and causes theminimum and maximum values of that range to be sent out. A number that exceeds the limits of therslider itself will belimited to stay within the rslider.

In right inlet:Thenumber is stored as the maximum limit of the rangedisplayed in color on the rslider. A number that exceeds thelimits of therslider itself will be limited to stay within the rslider.

Theminimum and maximum values can also beset (and sent out) by dragging with the mouse across a range in the rslider.
list In left inlet:Thefirst two numbers in the list are used to set theminimum and maximum values of the displayed range, and are sent out.
bang In left inlet: Sends out the minimum and maximum values of the currently displayed range.
color Theword color, followed by a number from 0 to 15 , specifies a color for the range being displayed in therslider- one of theobject colors which arealso available via the Color command in the O bject menu.
float Converted to int.
mult In left inlet: The word mult followed by a number, specifies a multiplier value. The rslider object's value will be multiplied by this number before it is sent out the outlet. Thedefault value is 1.
set In left inlet:The word set, followed by two numbers, sets the minimum and maximum values of the currently displayed range, without sending them out the outlets.
size In left inlet: The word size, followed by a positive number, determines the total range of therslider. Therslider will range from 0 to oneless than the specified size. A size message smaller than 1 will be automatically set to 2 . By default, the size of an rslider is 128 .

\section*{Inspector}

Thebehavior of an rslider object isdisplayed and can beedited usingits Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any rslider object displaystherslider Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaysthe Inspector.

Therslider Inspector lets you enter aM aximum value. Numbers received in the inlet are automatically limited between 0 and the number 1 less than the specified maximum value. Thedefault range valueis 128 . Therslider Inspector also lets you specify a M ultiplier. Therslider object's value will be multiplied by this number before it is sent out the outlet. The default multiplier value is 1.

TheRevert button undoes all changes you'vemadeto an object's settings since you opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu while the Inspector is open.

\section*{Arguments}

None.

\section*{Output}
int Themaximum value of the displayed range is sent out the right outlet, and the minimum value is sent out the left outlet. Output is triggered by a new minimum value (or a bang) received in the left inlet, or by clicking or dragging the mouse in therslider.

\section*{Examples}


Output minimum and maximum values, to set the range of another object

\section*{See Also}
\begin{tabular}{ll} 
hslider & Output numbers by moving a slider on screen \\
multisisider & Muttipleslider and scrolling display \\
pictcrl & Picture based control \\
pictsider & Picture- based slider \\
slider & Output numbers by moving a slider onscreen \\
split & Look for arangeof numbers \\
ulsider & Outpur numbers by moving a slider onscreen \\
Tutorial 14 & Sliders and dials
\end{tabular}

\section*{Input}
(MID) rtin receives M IDI real time messages received from a M IDI input device.
enable Themessageenable 0 disables the object, causing it to ignoresubsequent incoming M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which the object receives incoming M IDI messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on an rtin object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port from which to receive incoming M IDI real timemessages. If there is no argument, rtin receives from porta ( or the first input port listed in theMIDI Setup dialog.)

\section*{Output}
int MIDI real time messages (M IDI clock, start, stop, and continue) received from the specified port are sent out the outlet.

\section*{Examples}


M IDI real time messages can beused to synchronizeM ax with external events

\section*{See Also}
```

clocker Report elapsed time, at regular intervals
metro
midiin
seq
MIDI
Using M IDI
Tutorial 16
Report elapsed time, at regular intervals
Output a bang message at regular intervals
Output received raw M IDI data
Sequencer for recording and playing M IDI
MIDI overview and specification
Using M ax with M IDI
MoreMIDI ins and outs

```

\section*{Input}
bang Causes a standard SaveA sdialog box to appear, allowing the user to typein a file name and choose a folder location. The resulting location and filename are output as a symbol.
set The word set, followed by a four-letter symbol (e.g.,TEXT, MAXB) which specifies a file type, sets the savedialog object to display thedesired filetypewithout opening the dialog box. The chosen filetype is sent out the middle outlet when the user chooses Save in the dialog box.
anything Oneor morefour-letter type codes sets the list of types displayed in the dialog box. Exampletype codes for files areTEXT for text files, maxb for M ax binary format patcher files, and AIFF for AIFF format audio files. The symbol fold specifies that the dialog box should let the user choose only folders.

\section*{Arguments}
anything Optional. Sets oneor morefile types that will bedisplayed as choices for theuser. The symbol fold specifies that the dialog box should let the user choose only folders.

\section*{Output}
symbol Out left outlet:The absolute pathname of the file as a symbol. Theoutput pathnames contain slash separators.

Absolute pathnames look likethis:
"C:/MaxFolder/extras/mystuff/mypatch.pat"
The conformpath object can beused to convert paths of one pathtypeand/or pathstyle to another.
symbol Out middleoutlet:Thefour-letter symbol which specifies the filetype currently selected.
bang Out right outlet: If the user chooses C ancel in the dialog box, a bang is sent out.


Select a folder or a specific file typefor file saving

\section*{See Also}
conformpath
dialog
filedate
filein
filepath
opendialog

Convert paths of onepathtypeand/or pathstyle to another O pen a dialog box for text entry
Report themodification date of a file
Read in a file of binary data
Report information about the current search path
O pen a dialog to ask for a file or folder

\section*{This object is not available in Max 4.1 and earlier.}

\section*{Input}
int Converted to float.
float In left inlet:Theincoming value is scaled according to the mapping provided by the arguments, or values received in the other inlets.

In second inlet: Sets the low input value.
In third inlet: Sets thehigh input value.
In fourth inlet: Sets the low output value.
In fifth inlet: Sets the high output value.
In right inlet: Sets the base value for exponential scaling. Theminimum value is 1.0 which implies linear scaling. An appropriate value is 1.06 .
bang In left inlet: Performs the scaling operation on the previous input value. If the scaling ranges have changed since the previous input in the left inlet, thenew ranges will beused for the scaling.

\section*{Arguments}
int or float Optional. The firstargument is theminimum input value, the second argument is themaximum input value. Thethird and fourth arguments aretheminimum and maximum output values, respectively. An optional fifth argument specifies the nature of the scaling curve. The greater the value is from 1 the moresteeply exponential the curve is.A value of 1 (or less) indicates linear scaling. Only positive floating-point numbers greater than 1 are appropriatefor the fifth argument. Thesefive values can bechanged viatheobject's five inlets. If only four arguments are provided and all four are of typeint, scale will output integer values.

\section*{Output}
int If only four arguments are provided and all four are of typeint, scale will output scaled values as integers. Otherwise output is floating-point.
float When scale receives a value in its leftmost inlet, that value is scaled to the indicated output range of values.

\section*{Examples}


An exampleof how to scalean integer slider into a useful range of floating- point values

\section*{See Also}
zmap
expr

M aps input to output range
Evaluatea mathematical expression
bang Triggers the output of the main screen size and total multi-monitor screen bounding rectangle out the outlets.

\section*{Arguments}

None.

\section*{Output}
list Out left outlet: Thebounding coordinates of the main screen: left is first, followed by top, right, and bottom.

Out right outlet:The bounding coordinates of all monitors. If there is only one monitor, the output will bethe same as with the left outlet.

\section*{Examples}

screensize reports the coordinates of the main and total screen areas

\section*{See Also}
gestalt menubar thispatcher

Inquire about current system
Put up a custom menu bar
Send messages to a patcher

\section*{Input}
any message In left inlet: If the input matches one of thearguments, a bang is sent out the outlet that corresponds to that argument. Otherwise, theinput is passed out therightmost outlet.

Note: select never considers an int to bea match for a float argument, or vice versa, even if their values are equal. For example, 4.0 is not considered a match for the argument 4 , and 4 is not a match for 4.0.
int In right inlet: Replaces the value of the argument. Theright inlet exists only if there is a singleint argument.
bang In left inlet: Converted to symbol bang and treated as any other symbol.

\section*{Arguments}
anything
Optional. Thearguments can bea mix of ints, floats, or symbols. Thenumber of arguments determines the number of outlets in addition to the rightmost outlet. If there is no argument, there is only oneother outlet, which is assigned theinteger number 0 .
int If there is a singleint argument (or if there are no arguments) a second inlet is created on the right. Numbers received in that inlet arestored in place of the argument. If there is morethan oneargument, or if the only argument is not an int, the right inlet is not created.

\section*{Output}
bang If the number or symbol received in the left inlet is the same as one of the arguments, a bang is sent out the outlet that corresponds to that argument.
anything If the number or symbol received in the left inlet does not match any of the arguments, it is passed out the rightmost outlet.

\section*{Examples}


A rguments assign names or numbers to the outlets, and a bang is sent when the input matches them

\section*{See Also}
if
match
route
==
Tutorial 17

Conditional statement in if/then/else form
Look for a series of numbers, output it as a list
Selectively pass the input out a specific outlet
Comparetwo numbers, output 1 if they are equal
Gates and switches

\section*{Input}
anything A message received in the inlet is sent out the outlet of any receive object that has the same name, even if the receive is in another loaded patch.
(mouse) Doubleclicking on a send object opens all windows containing receive objects with the samename.

\section*{Arguments}
any symbol Obligatory. Gives a name to the send object.

\section*{Output}
anything Thereareno outlets. A message received in the inlet of send is sent out the outlet of any receive with the same name, even if the receive is in another loaded patch.

\section*{Examples}


Virtual connections exist between all send and receive objects that share the samename

\section*{See Also}
forward
message
pv
pvar
receive
value
Tutorial 24

Send remote messages to a variety of objects
Send any message
Share variables specific to a patch and its subpatches
Connect to a named object in a patcher
Receive messages without patch cords
Share a stored message with other objects
send and receive

\section*{Input}
bang Starts playing the sequencestored in seq.
start Theword start by itself has the same effect as bang. Theword start, followed by a number, plays the stored sequence at a tempo determined by the number. The message start 1024 indicates normal tempo. If the number is 512 , seq plays the sequence at half the original recorded speed, start 2048 plays it back at twicethe original speed, and so on.

The message start - 1 starts the sequencer, but rather than follow \(M\) ax's millisecond clock, seq waits for atick message to advanceits clock. See thetick message, below.
record Starts recording MIDI messages received in theinlet.
stop Stops the sequencer if it is recording or playing.A stop message need not be received when switching directly from playing to recording, or vice-versa.
append Starts recording at theend of thestored sequence, without erasing the existing sequence.
int When seq is recording, numbers received in its inlet are interpreted as bytes of M IDI messages (usually from midiformat or midiin). M IDI channel messages and system exclusive messages can be recorded by seq, but seq does not respond directly to MIDI real time messages such asstart, stop, M IDI clock, etc.
float Converted to int.
tick After seq has received astart - 1 message, it waits for tick messages to advance its clock. In order to play the sequence at its original recorded tempo, seq must receive 48 tick messages per second. This is equivalent to 24 ticks per quarter note (thestandard for a M IDI Clock message) at a tempo of 120M M . By using tick messages to advance the sequencer, you can vary thetempo of playback or synchronizeseq with another timing source(such as incoming M IDI Clock messages).
delay The word delay, followed by a number, sets the onset time, in milliseconds, of the first event in the recorded sequence. All events in the sequence are shifted so that thefirst event occurs at the specified onset time.
hook Theword hook, followed by a float, multiplies all the event times in the stored sequenceby that number. For example, if the number is 2.0 , all event times will be doubled, and the sequence will play back twice as slowly. M ultiplications can even beperformed whilethe sequenceis playing.
write Calls up the standard SaveAs dialog box, so that a recorded sequence can be saved as a separatefile. If you want to edit the sequence with thetext editor, check theSaveAsText option in thedialogbox.
read With no arguments, read calls up the standard Open Document dialog box, so that a previously recorded sequence can be read into seq, replacing the current sequence. With a symbol as an argument, read searches for afile with the specified nameto read into the seq object.

Note: The seq object reads and writes singletrack (format 0 ) standard MIDI files. It can also read and writetext files in which each line consists of a start timein milliseconds (thetime elapsed since the beginning of the sequence) followed by the (space-separated) bytes of a MIDI message recorded at that start time. For example,

014460112
1000144600
150019231
150014460112
2500144600
playsthe note middleC on channel 1 for one second, then half a second later changes to program number 31 and plays middleC again for onesecond.
print Prints the first sixteen events of the recorded sequence in the M ax window.
dump Opens a standard O pen Document dialog box, to select a saved sequence or standard MIDI file. The selected file is opened as text in anew Untitled text window, which can beedited and saved.

\section*{Arguments}
any symbol Optional. Specifies the name of a fileto be read into seq automatically when the patch isloaded.

\section*{Output}
int Out left outlet: W hen bang or start is received in the inlet, the sequencestored in seq is sent out theoutlet in the form of individual MIDI bytes, usually to be sent to midiparse or midiout.
bang Out right outlet: Indicates that seq has finished playing the current sequence. (The bang is sent out immediately before the final event of the sequencei is played.)

Sequencer for recording and playingMIDI

\section*{Examples}


Record and play back live performance, or play a pre-recorded sequence

\section*{See Also}
coll
follow
mtr
Tutorial 35
Detonate
Sequencing

Store and edit a collection of different messages
Comparealiveperformanceto a recorded performance
Multi-track sequencer
seq and follow
Graphic editing of a M IDI sequence
Recording and playing performances with M IDI

The serial object works only with ports and devices supported by thestandard serial driver. It does not work with USB ports and devices, unless aU SB to Serial adaptor is connected.

\section*{Input}
int Sends the number out the serial port accessed by the serial object. Numbers out-sidetherange0-255 are wrapped to that range using a modulo operator. A fter the data is sent, the message write, followed by a number specifying the number of bytes sent is sent out the right outlet of the serial object.
list Sends each number in the list out the serial port, in order. Numbers outside the range \(0-255\) are wrapped to that range using a modulo operator. A fter thedata is sent, the message write, followed by a number specifying the number of bytes sent is sent out the right outlet of the serial object.
bang Sends each character received on the serial port sincethelast bang message out the serial object's left outlet as an integer in theorder that thecharacters were received. Before output data is sent, the message read, followed by a number specifying the number of bytes received is sent out the right outlet of theserial object.
bufsize Sets the input buffer size used by the serial object to the valuefollowing the word bufsize. The message bufsize0 restores the serial port's default buffer size(2048 bytes).
print Sends a list of available serial ports to the M ax window, along with their alphabetic shortcuts. Themessage port [portname] [portname]... is al so sent from the object's right outlet, with a list of available ports.
port Theword port, followed by a symbol, specifies the serial port to beused by the object. If alphabetic shortcuts are used, a specifies thefirst logical serial port in the computer. b-z specify additional ports. If actual portnames are used, thesymbol is the name given by theoperating system to your port. Seethe print message, above, for a way to list available portnames and alphabetic shortcuts. If the port chosen is currently in useor unavailable when the port message is sent, an error message will bedisplayed and theobject will revert to its previously chosen port, or won't function if therewas none.
chunk The word chunk, followed by a number that specifies list length, will cause the serial object to attempt to collect data into lists of that length for output. Data chunking only works if the amount of data received is greater than thechunk size - otherwise, theobject will output a list as long as the availabledata. W hile chunking, the last list output may be shorter than theothers if there isn't enough availabledata to completethefull list length.
break Sends a break command to theserial port used by theserial object.A fter thebreak has completed, the message break is sent out theobject's right outlet.
baud The word baud, followed by a number that specifies a baud rate, causes the serial object to try to changetheserial port baud rate. Although any integer rate is valid, the common baud rates areSome common rates are 300, 600, 1200, 1800, 2400, \(3600,4800,7200,9600,19200,38400\) and 57600.The default is 4800 baud.
getbaud The word getbaud will cause the serial object to send the message baud followed by a number that specifies the current baud rateout theserial object's right outlet
parity Theword parity, followed by the numbers 0,1, or 2 , or the symbols no, odd or even, causes the serial object to changethe parity setting of the serial port used by the serial object. If integers are used to specify parity, 0 corresponds to no parity, 1 to odd parity, and 2 to even parity. Thedefault is no parity (0).
getparity The word getparity will cause the serial object to send the message parity, followed by a symbol that indicates the current parity (no, even, or odd) out theobject's right outlet,
databits The word databits, followed by an integer in the range \(5-8\), causes the serial object to change the number of valid data bits used whilecommunicating with the serial port. The default value is 8 .
getdatabits The word getdatabits will causethe serial object to send the messagedatabits, followed by a number in the range \(5-8\) that indicates the current number of databits used out the object's right outlet,
stopbits Theword stopbits, followed by the numbers 1 or 2 ( or 1.5 on Windows only), causes the serial object to change the number of stop bits used when communicating with the serial port. The default value is 1.
getstopbits The word getstopbits will cause the serial object to send the message stopbits followed by a number that specifies the current stopbits setting of the serial port ( 0, 1, or 1.5 on W indows only) out theobject's right outlet.
dtr The word dtr, followed by an integer, enables or disables theDTR (data terminal ready) function of the serial port used by the serial object. Non-zero integers enablethefunction, and 0 disables it.
getdtr The word getdtr will causethe serial object to send the messagedtr, followed by a number that specifies the current DTR setting of the serial port ( \(0=\) disabled, 1=enabled) out theobject's right outlet.

\section*{Arguments}
symbol a-z or Optional. Specifies the serial port to be used by the serial object. If alphabetic symbol portname shortcuts are used, a specifies the first logical serial port in the computer, and b-z are used to specify additional ports. If actual portnames are used, the symbol is thename given by the 0 perating System to your port. Theprint to the serial object
(see above) can be used to create a list of available portnames and alphabetic shortcuts. If the port chosen is currently in use or unavailable when the serial object is instantiated, an error message will bedisplayed and theobject will not function. If no port is specified, the default port isa.
int Optional. An optional argument may beused after the port nameor alphabetic shortcut to specify the baud rate of the serial port (the default rate is 4800 baud). A ny value is allowable(although not all ports can be set to all baud rates). Some common rates are \(300,600,1200,1800,2400,3600,7200,9600,19200,38400\) and 57600 .
int Optional. After the baud rate, thenext arguments specifies the number of data bits for theserial port (thedefault is 8 data bits). Other possible values are5, 6 and 7.
int Optional. Thenext argument specifies the number of stop bits for the serial port. Thedefault is 1. Other possible values are 1.5 (W indows only) and 2.
int or symbol Optional. Thenext argument specifies the parity for the serial port (the default is no parity, specified by 0 or no).Other possible values areodd, 1 (odd), even, and 2 (odd).

\section*{Output}
(serial output) W hen a number or list is received in its inlet, serial sends thedata out the specified serial port at the current baud rate.
int When serial receives a bang message and characters havebeen received in the serial port, the received characters are sent as numbers in the order they were received.
list When serial receives a bang message, characters have been received in the serial port, and chunking is enabled, the received charactersare sent as alist in theorder the characters were received. Thelength of the list is determined by theargument to the chunk message (seethe message listing for chunk for more information).

Out right outlet: Reports error and status messages.

\section*{Examples}


W hen the button is clicked, this patch resets the modem, begins
polling for a response, and stops polling when a response has been received

\section*{See Also}
\begin{tabular}{ll} 
match & Look for a series of numbers, output it as a list \\
spell & Convert input to ASCII codes \\
\(v d p\) & Control avideodisc player through the serial port
\end{tabular}
bang In left inlet: Sends out the current time value, according to thesetclock object's own clock. Timing objects such asclocker, line, metro, pipe, tempo, and timeline can use setclock as their clock source instead of Max's regular millisecond clock.
int or float In left inlet:The meaning of the number depends on the second typed-in argument, which identifies the setclock object's mode of operation. If the mode is pass[ive] (thedefault mode), thenumber sets an absoluteclock timewhich timing objects may use by comparing it to their initial time value. If the mode is add[itive], the number is added to the setclock object's current clock time. If the mode is interp[ olate], setclock will change its clock time incrementally by that amount, over a time period determined by thetimeelapsed sincethe previous number was received. (H owever, negative numbers cause an immediate decrease in the clock time.) If themode is ext[ernal] or mul[tiplicative], the number is simply ignored. If the mode is mul[tiplicative], the number is used as a multiplier for associated timing objects. For instance the number 0.5 halves the rate of increase (speed) of the associated timing objects. If the mode isext[ernal], thenumber is ignored.

In right inlet: Sets thetime interval, in milliseconds, at which thesetclock will report its clock information to associated timing objects. The default is 5 milliseconds.
set If the setclock is in pass[ive] or add[ itive] mode, the word set followed by a number sets its clock time to that number. If setclock is in any other mode, theset message isignored.
reset If setclock is in interp[olate] mode, the word reset followed by a number sets its clock time to that number, then repeats the last interpolation it performed.

\section*{Arguments}
any symbol Obligatory. Thefirst argument is thename of the setclock object, by which timing objects such as clocker, line, metro, pipe, tempo, and timeline can refer to the setclock. Thosetiming objects- oncethey have received the messageclock followed by thenameof a setclock object- usethat setclock as their timing sourceinstead of M ax's regular millisecond clock. The setclock object need not bein the same patcher as thetiming objects that refer to it. M orethan one setclock object may exist with the same name; setclock objects with the same name share the same clock timeinformation. (Note: Different setclock objects that sharethe samename argument can have different mode arguments typed in, but they will in fact operate with the mode of whichever setclock was first loaded with that name. Thus, setclock objects with the same name but different modes may behave unpredictably, since the order in which they areloaded by M ax is often unknown.)

The second (optional) argument describes themode of clock operation this setclock object will have. The possible modes for the second argument are:
pass Specifies passivemode. In this mode, the setclock object'scurrent clock time is set by a number received in the left inlet, and associated timing objects will follow that clock timejust as if it were a regularly progressing millisecond clock. If no second argument is present, the mode is pass by default.
add Specifies additive mode. A number received in the left inlet is added to the current clock timeto determinethenew clock time.
mul Specifies multiplicativemode. The number received in theleft inlet is used as a factor by which all associated timing objects will modify their time settings. For example, a factor of 2.0 will cause all timing objects that are using the setclock as their clock source to double their time values (that is, to halve their speed). An alternative (and perhaps moretruthful) way to conceptualizethebehavior of mul mode is to think of theincoming float as a divisor by which setclock divides the speed at which its own clock time progresses. Thus, when it receives the number 2.0 it divides its own clock speed by 2.0 , causing the objects which arefollowing that clock to progress twice as slowly.
interp Specifies interpolatemode. The number received in the left inlet is gradually added to the current time of setclock, over atime period determined by the amount of timeelapsed since the previous number was received. During that time period, setclock linearly interpolates to set its clock to the intermediate values.
float If thesecond argument ismul, an optional third argument specifies a multiplier for thetime of all associated timing objects. If no third argument is present, themultiplier is 1.0 by default.

Additional possiblemodes for the second argument are:

\section*{Output}
int When bang is received in the left inlet, setclock sends its current time reading out theoutlet.

\section*{Examples}

setclock becomes the clock for metro

setclock modifies thetime for clocker

\section*{See Also}
\begin{tabular}{ll} 
clocker & Report elapsed time, at regular intervals \\
metro & Output a bang message at regular intervals \\
timeline & Time-based scoreof \(M\) ax messages \\
timer & Report elapsed time between two events \\
Timeline & Creating a graphic score of \(M\) ax messages
\end{tabular}

\section*{Input}
float or int Input to a sinefunction in radians.

\section*{Arguments}
float or int Optional. Sets the initial valuefor thesinefunction.

\section*{Output}
float or int Thesine of the input in radians.

\section*{Examples}
- floating point input

- sine of the input.

\section*{See Also}
```

acos
acosh
asin
asinh
atan
atan2
atanh
cos
cosh
sinh
tan
tanh
Arc-cosinefunction
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Hyperbolic cosinefunction
Hyperbolic sinefunction
Tangent function
Hyperbolic tangent function

```

\section*{Input}
float or int Input to a hyperbolic sinefunction.
bang In left inlet: Calculates thehyperbolic sine of thenumber currently stored. If there is no argument, sinh initially holds0.

\section*{Arguments}
float or int Optional. Sets the initial valuefor the hyperbolic sinefunction.

\section*{Output}
float or int Thehyperbolic sine of theinput.

\section*{Examples}
- flosting-point input.

- hyperbolic sine of the input.

\section*{See Also}
acos
acosh
asin
asinh
atan
atan2
atanh
cos
cosh
sin
tan
tanh

Arc-cosinefunction Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Hyperbolic cosinefunction
Sinefunction
Tangent function
Hyperbolic tangent function

\section*{Input}
int Thenumber received in the inlet is displayed graphically by slider, and is passed out the outlet. Optionally, slider can multiply the number by some amount and add an offset to it, before sending it out the outlet.
(mouse) The slider will also send out numbers in response to dragging on it directly with themouse.
float Converted to int.
bang Sends out thenumber currently stored in theslider.
\(\min\) The word min, followed by a number, sets a value that will be added to theslider object's value before it is sent out the outlet. The default is 0 .
mult The word mult foll owed by a number, specifies a multiplier value. Theslider object's value will be multiplied by this number before it is sent out the outlet. The multiplication happens before the addition of the \(O\) ffset value. The default value is 1 .
set The word set, followed by a number, resets the value displayed by theslider, without triggering output.
size The word size, followed by a number, sets the range of the slider object. Thedefault valueis 128 .

\section*{Inspector}

Thebehavior of aslider object is displayed and can beedited using its Inspector. If you haveenabled the floating inspector by choosingShow Floating Inspector from theW indows menu, selecting any slider object displays the slider Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaysthe Inspector.

The slider Inspector lets you enter a Slider Range value. Numbers received in the inlet are automatically limited between 0 and the number 1 less than the specified range value. The default range value is 128 . You can specify an 0 ffset value which will beadded to the number, after multiplication. Thedefault offset value is 0 . The slider Inspector also lets you specify a M ultiplier. The slider object's value will be multiplied by this number before it is sent out the outlet. Themultiplication happens before the addition of the Offset value. The default multiplier value is 1.

\section*{Arguments}

The range of slider is set by selecting it (when the patcher window is unlocked) and choosing Get Info... from the 0 bject menu. Theslider automatically resizes itself to accommodate the new range.

TheInspector also provides a M ultiplier - by which all numbers will be multiplied before being sent out, and an 0 ffset - which will be added to the number, after multiplication.A newly created slider has a range of 128 , a multiplier of 1 , and an offset of 0 .

The Revert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector C hanges from the Edit menu whiletheInspector is open.

\section*{Output}
int Numbers received in the inlet, or produced by dragging on slider with the mouse, arefirst multiplied by the multiplier, then have the offset added to them, then are sent out the outlet.

Although the numbers that can beoutput by dragging arelimited by the range of theslider, numbers received in theinlet are not limited before they are sent out the outlet.

\section*{Examples}


Produce output by dragging onscreen...

or display numbers passing through

\section*{See Also}
\begin{tabular}{ll} 
dial & Output numbers by moving a dial onscreen \\
hslider & Output numbers by moving aslider onscreen \\
kslider & Output numbers from a keyboard onscreen \\
multislider & Multipleslider and scrolling display \\
pictctrl & Picture-based control \\
pictslider & Picture-based slider \\
rslider & Display or change range of numbers \\
uslider & Output numbers by moving aslider onscreen \\
Tutorial 9 & Using the slider \\
Tutorial 14 & Sliders and dials
\end{tabular}

\section*{Input}
anything In left inlet: The message is passed out the outlet, provided that a certain minimum timehas elapsed since the previous output. O therwise, the message is held until that amount of time has passed (or until it is overwritten by another incoming message).
int In right inlet: Thenumber is stored as the minimum amount of time, in milliseconds, between successive outputs.
clock In left inlet: Theword clock, followed by the name of an existing setclock object, causes thetime interval of speedlim to becontrolled by that setclock rather than by M ax's internal millisecond clock. The word clock by itself sets speedlim back to using M ax's regular millisecond clock.

\section*{Arguments}

Optional. Sets an initial minimum timebetween outputs, in milliseconds. If there is no argument, the minimum time is 0 .

\section*{Output}
anything A message received in the left inlet is sent out the outlet, provided the specified minimum amount of time has elapsed sincethe previous output. O therwise, speedlim waits until that amount of timehas passed, then sends out the last message it has received since the previous output.

\section*{Examples}


Used to reduce a heavy flow of numbers, or to turn a continuous flow into discrete steps

\section*{See Also}
\begin{tabular}{ll} 
delay & \begin{tabular}{l} 
Delay a bang before passing it on \\
mousefilter \\
thresh
\end{tabular} \\
Pass numbers only when the mouse button is up \\
timer & Combinenumbers into a list, when received close together \\
Tutorial 16 & Report elapsed timebetween two events \\
& MoreM IDI ins and outs
\end{tabular}

\section*{Input}
any symbol TheASCII value of each letter, digit, or other character in the symbol is sent out theoutlet, one character at a time.
int TheASCII value of each of the digits of thenumber issent out theoutlet, onedigit atatime.
list Each int in the list is converted to ASCII as described above, and a space character (32) is sent out between items in the list. A ny float or symbol items in thelist are ignored.
any message If the message begins with a symbol, all int and symbol items in the message are converted to ASCII one character at a time, and a space character (32) is placed between them. A ny float items in the list areignored. If the message begins with a float, both floats and symbols are ignored.

\section*{Arguments}
int Optional. Thefirst argument sets the minimum output size. A ny input that doesn't "spel" to the minimum length isfollowed by enough fill characters (the default is the space character, 32 in ASCII) to satisfy the minimum requirement. A second optional argument specifies the fill character to use instead of 32 . If you want to use'0' as a fill character, useany negativenumber as a second argument to spell.

\section*{Outputs}
int TheASCII representation of the input is sent out one character at atime.

\section*{Examples}
<retwrin


Using the spell object, a modem command string or a synthesizer patch name can betranslated from human termsinto computer terms, and sent out the serial port in ASCII representation

\section*{See Also}
keyup
message
sprintf
key Report key presses on the computer keyboard Report key releases on the computer keyboard Send any message
Format a message of words and numbers

\section*{Input}
int or float In left inlet: If the number is within a specified range, it is sent out the left outlet. Otherwise, it is sent out the right outlet.

In middleinlet: The number is stored as the minimum valuein the range of numbers looked for by split. If the number is an int, then the split object will convert all float valuesto ints.

In right inlet: The number is stored as the maximum value in the range of numbers looked for by split.
list In left inlet: The second number is stored as theminimum value of the range, and thethird number isstored as themaximum value of therange. Thefirst number is then compared to the range, and is sent out one of the two outlets.

\section*{Arguments}
int or float Optional. Thefirst argument setstheminimum valueto be sent out the left outlet. If the first argument is an int, then the split object will convert all float values to ints. The second argument sets the maximum valueto besent out the left outlet. If the first argument to split is an int, the output is int. If it is float, the output isfloat. This is true regardless of thetype of theinput.

\section*{Output}
int If the number received in the left inlet is greater than or equal to the specified minimum, and it is less than or equal to the specified maximum, it is sent out the left outlet. Otherwise, it is sent out the right outlet.

\section*{Examples}


Within range Not within range


U sed to divert a certain range of numbers to a different destination

Look for a

\section*{See Also}
\begin{tabular}{ll} 
route & Selectively pass the input out a specific outlet \\
select & Select certain inputs, pass the rest on \\
\(<=\) & Is less than or equal to, comparison of two numbers \\
\(>=\) & Is greater than or equal to, comparison of two numbers \\
Tutorial 20 & Using the computer keyboard
\end{tabular}
list Thefirst number in the list specifies theoutlet number; the second is the number to send out that outlet. If there are additional numbers in the list, they are sent out the subsequent outlets to theright of the one specified by thefirst number in the list. Thelist may contain only ints; floats (or symbols) will beignored.

\section*{Arguments}
int Optional. Thefirst argument sets the number of outlets. If there is no argument present, the object has two outlets. The second argument sets an offset for the numbering of the outlets. If the second argument is not present, the outlets are numbered beginning with 0 .

\section*{Output}
int When a list of ints is received by spray, thefirst number is used to specify an outlet, and the second number is sent out that outlet. Any additional numbers in the list aresent out subsequent outlets to theright. You can connect theoutlet of an env or envi object to the inlet of a spray object to distributetheenvelope's values to separateoutlets.

\section*{Examples}
\begin{tabular}{|lll}
\hline 3 & \(967578 \quad 35\) & Begin at owtet 3
\end{tabular}


Used to break up a list and send theitems out specific outlets

\section*{See Also}
\begin{tabular}{ll} 
cycle & \begin{tabular}{l} 
Send a stream of datato individual outlets \\
env
\end{tabular} \\
Script-configurableenvivelopeeditor \\
envi & Script-configurable envelopein apatcher window \\
funnel & Map a number to a list which identifies its inlet \\
gate & Pass theinput out a specific outlet \\
route & Selectively pass she input outa specific outlet \\
unpack & Break alistup into individual messages
\end{tabular}
int May be received in any inlet that correspondsto a\%ld or \%c argument. Thenumber will bestored in place of that argument. A \%c argument will convert the int to its ASCII character equivalent.
float May be received in any inlet that corresponds to a\%f argument. Thenumber will bestored in place of that argument.
symbol May be received in any inlet that correspondsto a\%s argument. Thenumber will bestored in place of that argument.
list In left inlet: Each item in the list is treated as if it had been received in a separate inlet, up to the number of inlets.
bang In left inlet: Formats the message using the values currently stored.
A ny of the abovemessages in the left inlet will format the message and send it out. If no value has been received for a changeable number argument (\%/ld or \(\% \mathrm{f}), 0\) will be substituted for that argument. If no value has been received for \(\mathrm{a} \% \mathrm{~s}\) or \(\% \mathrm{c}\) argument, that argument will be left blank.

\section*{Arguments}
symout Optional. If the first argument is the word symout, the sprintf object outputs the string it generates as a single symbol. O therwise the output is a list of symbols and/or numbers. The word symout itself is not included in theoutput of sprintf.

Obligatory. The arguments form a message to be sent out, in a format resembling theC programminglanguage. The arguments may be words, numbers, or changeable argumentsfor incoming symbols (\%s), ints (\%/d), floats (\% f ), and ints that areto be formatted as ASCII characters (\%c). Thenumber of inlets is determined by thenumber of changeablearguments, with each inlet corresponding to a changeableargument, in order.

\section*{Output}
anything Themessage specified by the typed-in argument(s) isformatted and sent out with substitutions madefor the changeable arguments.

Format a message of words and numbers

\section*{Examples}


Changeablearguments arereplaced by values received in the inlets.

\section*{See Also}
\begin{tabular}{ll} 
fromsymbol & Transform a symbol into individual numbersor messages \\
key & Report key presses on the computer keyboard \\
keyup & Report key releases on the computer keyboard \\
message & Send any message \\
spell & Convert input to ASCII codes \\
tosymbol & Convert messages, numbers, or lists to a single symbol
\end{tabular}

\section*{Input}
int or float sqrt outputs the square root of the input value. A negative input has no real solution, so it causes an output of NaN (Not a Number).
bang Outputs the currently stored square root value.

\section*{Arguments}
int or float Optional. An optional argument specifies the value whose square root is to be output.

\section*{Output}
float The square root of theinput.

\section*{Examples}


\section*{See Also}
expr
Evaluate a mathematical expression

Note: Building standalone applications is not currently supported on W indows. Thestandalone object and its Inspector are included with theW indows release of M ax, but will have no function until support for standalone applications is added to theW indows version.

The standalone object lets you set options for creating a standalone application from a M ax/M SP patch, and is used in conjunction with theBuild Application/Collective... item found in theEdit menu. You should only have onestandalone object in your top-level patch.

\section*{Input}

All parameters for standalone applications are set using the standalone object's Inspector.

\section*{Inspector}

Thebehavior of a standalone object is displayed and can beedited using its Inspector. If you have enabled the floating inspector by choosing Show Floating Inspector from theW indows menu, selecting thestandalone object displaysthe standalone Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displays the Inspector.

The standalone Inspector lets you set the following attributes:
TheA pplication Creator C ode is a four-letter filetypecode that will endow your standalone application with a personal identity in the computer's file system.

The FileO ptions section lets your application have its own "plist" resource if you check the

Checking the Use O wn Property List (plist) Resource option lets your application have its own "plist" resource and makesit possiblefor you to customize your standalone application'sicons (analogous to the BNDL resourceon OS9).

If some of the supporting filesused by Max/M SP objects in your patch will not be included in the collectiveitself, check theSearch for Files Not in the Application's Collectiveoption.

Checking the Utilize Search Path in Preferences Fileoption lets you use the search path stored in the Preferences file instead of using the default search path.

If you want to use your own preferences file to save default settings for your standalone application instead of the default M ax Preferences file, you can specify the filename in theP referenceFileNamebox.

The O ptions section lets you set thebehavior and appearance of the standalone application.

Checking theStatusW indow Visibleat Startup option will display aStatuswindow (similar to the M ax window) when you launch theStandalone application.

To assure that users of your standalone application can't abort theloadbang message sent to all objects when the top-level patch is loaded, check thePrevent Loadbang D efeating with Cmd-Shift option.

You can enablethe standard \(\mathrm{M} \mathrm{ax} / \mathrm{M}\) SP O verdrive and All W indowsA ctivebehavior in your standalone application by checking the 0 verdrive Enabled and All W indows Active Enabled options.

You can keep usersfrom being ableto closethetop-level patcher in your standalone application by checking theU ser C an't Close top-level Patcher W indows option.

\section*{Arguments}

None.

\section*{Output}

None.

\section*{See Also}

Collectives Grouping files to create a singleapplication.
list In left inlet: The second number is stored as a velocity, and thefirst number is treated as the pitch, of aM IDI note-on message. If the second number is not 0 , it is sent out the right outlet, and the first number is sent out the left outlet. If the second number is 0 , nothing is sent out.
int In left inlet: Thenumber is treated as a pitch value. If the velocity value currently held by stripnote is not 0 , then the velocity is sent out theright outlet and the pitch is sent out the left outlet.

In right inlet:Thenumber is stored as a velocity to be paired with pitch numbers received in the left inlet.
float Converted to int.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet: Thepitch value received in theleft inlet is sent out, provided the velocity is not 0 .

Out right outlet: The velocity value of a note-on pair is sent out, provided it is not 0.

\section*{Examples}


Repeated pitch values and 0 velocities caused by note off messages can befiltered out

\section*{See Also}
makenote
sustain
Tutorial 13

Generate a note-off message, following each note-on
H old note-off messages, output them on command
M anaging notedata

\section*{Input}
symbol An absolute pathname as a symbol. An absolutepathname looks likethis:
"MyDisk:/Max Folderlextras/filename"

\section*{Arguments}

None.

\section*{Output}
symbol Out left outlet: Thefile name, with all path information preceding it removed.
int Out right outlet: If thefile was found within the current \(M\) ax search path al is sent out the right outlet. A 0 i s sent otherwise.

\section*{Examples}

the game of the file you picked without any path information.
strippath removes path information from a file pathname, and leaves you the name of thefile

\section*{See Also}
\begin{tabular}{ll} 
absolutepath & Convert a filenameto an absolutepath \\
conformpath & Convert paths of one pathtypeand/or pathstyle to another \\
dropfile & Definea region for dragging and dropping a file \\
opendialog & Open a dialog to ask for a file or folder \\
relativepath & Convert an absoluteto a relative path \\
savedialog & Open adialog to ask for a filenamefor saving
\end{tabular}

\section*{Input}
anything In left inlet: The input is echoed to the output, but if the message received contains an element matching the match symbol or number, the element is replaced by the replacement symbol or number when the message is repeated to the output.
anything In right inlet:The substitute object accepts a message of two numbers or symbols in its right inlet. Thefirst number or symbol specifies the match, which identifies what should be replaced in an incoming message.

In right inlet: Same as anything, except that the word set isignored.

\section*{Arguments}
anything Optional. Thefirst number or symbol specifies the match, which identifies what should be replaced in an incoming message. Thedefault match value is 0 .
anything Optional. Thesecond number or symbol specifies the replacement for the match. The default replacement value is 0 .
anything Optional. Thesecond number or symbol specifies the replacement for the match. The default replacement value is 0 .
anything Optional. A ny third number or symbol sets the"replace message only" mode of the substitute object. Only thefirst instance of the specified match will be replaced.

\section*{Output}
anything Out left outlet: Theinput message is echoed to theoutput with elements matching the match symbol or number replaced by the replacement number or symbol.
bang Out right outlet: If no substitution occurred when sending out the incoming message, abang is sent.

\section*{Examples}

substitute can translate messages output by oneobject to what's expected by another object

\section*{See Also}
route
sprintf
z|
Selectively pass the input out a specific outlet
Format a message of words and numbers
Multi-purposelist processor

\section*{Input}

None.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet When the application is suspended (made to go into the background), al is output. When the application is resumed (restored to being in the foreground), a 0 is output.

\section*{Examples}

suspend lets you activate/deactivate processes if M ax is the foreground application

\section*{See Also}
active
gestalt
Send 1 when patcher window is active, 0 when inactive Inquire about current system
list In left inlet:The second number isstored as the velocity, and thefirst number is treated as the pitch, of aM IDI note on message. If the pair is a note on (the velocity is not 0 ), the velocity is sent out the right outlet and the pitch is sent out the left outlet. N ote offs ( note ons with a velocity of 0 ) are either passed on immediately or held by sustain.
int In left inlet: Thenumber is the pitch value of a pitch-velocity pair. If the velocity value currently held by sustain is not 0 , then the pair is sent out immediately. If the velocity is 0 , the note -off is either sent out or held, depending on whether sustain is turned on.

In middle inlet:Thenumber is stored as a velocity to be paired with pitch numbers received in the left inlet.

In right inlet: If the number is not 0 , sustain is turned on, and all note offs are held. If the number is 0 , sustain is turned off, and all note offs are sent out immediately.
float Converted to int.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet: The pitch value of a pitch-velocity pair.
Out right outlet: The velocity value of a pitch-velocity pair.
Note-on pairs are always sent out immediately. If sustain is turned on, note offs are held until it is turned off. Otherwise, note- offs are sent out immediately.

\section*{Examples}


MIDI switch used to sustain notes in Max


Likethesustain pedal of a piano, sustain releases all held notes at onetime

H old note off messages, output them on command

\section*{See Also}
flush
makenote
stripnote

Providenote-offsfor held notes
Generate a note-off message, following each note-on
Filter out note-off messages, pass only note-on messages

\section*{Input}
int In left inlet: Thenumber is sent out the right outlet, then the number in the right inlet is sent out the left outlet.

In right inlet: Thenumber is stored to be sent out the left outlet when a number is received in the left inlet.
float Thenumbers are converted to int, unless there is a float argument, in which case the number received in the right inlet is stored as afloat.
list In left inlet:Thenumbers arestored in swap. Thefirst number is sent out theright outlet, then the second number is sent out the left outlet.
bang In left inlet: Swaps and sends out the numbers currently stored in swap.

\section*{Arguments}
int or float Optional. Sets an initial value for thenumber that is to be sent out the left outlet. Float argument will cause a float to be sent out the left outlet. (The number sent out the right outlet is always an int.) If there is no argument, the initial value is 0 .

\section*{Output}
int When a number is received in theleft inlet, thenumber in each inlet is sent out the opposite outlet.
float If there is a float argument, the number sent out the left outlet is a float.

\section*{Examples}


Numbers are sent out in reverse order from that in which they were received

\section*{See Also}
\begin{tabular}{ll} 
buddy & Synchronize arriving data, output them together \\
fswap & Reversethe sequential order of two decimal numbers \\
pack & Combinenumbers and symbolsinto a list \\
unpack & Break alist up into individual numbers \\
Tutorial 30 & Number groups
\end{tabular}

The 2-dimensional colorspace of the swatch object represents hue along the horizontal axis, and luminance along the vertical axis. a third color dimension, saturation, may beset by means of the saturation message.

\section*{Input}
int In left inlet: A number between 0 and 255 sets the red color component and causes output.

In middleinlet:A number between 0 and 255 sets the green color component and causes output.

In right inlet: A number between 0 and 255 setstheblue color component and causes output.

Note: Unlike most M ax objects, input to any one of the threeinlets will re calculatethe current color location on theswatch, and trigger output).
float Converted to int.
(mouse) Clicking and dragging on the swatch will calculate and output the RGB color at theselected ( \(x, y\) ) position on the 2-dimensional (hue luminance) colorspace, taking into account the current saturation value.
bang causes output of the RGB values of the current color at the selected ( \(\mathrm{x}, \mathrm{y}\) ) position on the 2-dimensional colorspace, taking into account the current saturation value.
hsl Theword hsl, followed by a list of threenumbers between 0 and 255 , sets the color based on the given hue ( \(x\)-axis), saturation, and luminance ( \(y\)-axis) values, The swatch object converts these values to RGB color values, refreshes the display and causes output of the RGB values.
list alist of threenumbers between 0 and 255 sets the three RGB color components (red, green, blue), refreshes the display and causes output.
saturation theword saturation, followed by a number between 0 and 255 will changethe color saturation of the displayed 2-dimensional (hue, lightness) colorspace It will also re calculatethenew RGB color at the selected ( \(x, y\) ) position and cause output.
set The word set, followed by a list of threenumbers between 0 and 255 sets the three RGB color components (red, green, blue) and refreshes the display without causing output.
sethsl The word sethsl, followed by a list of three numbers between 0 and 255 , sets the color based on the given hue ( \(x\)-axis), saturation, and luminance ( \(y\)-axis) values and the refreshes the display. Unlike thehsl message the sethsl message does not output the corresponding RGB values.
(preset) You can save and restore the swatch object's RGB color using a preset object.

\section*{Arguments}

> None.

\section*{Output}
list Out left outlet: a list of three RGB (red, green, blue) color values
int Out right outlet: the current saturation value (calculated from an RGB list input, or output directly after asaturation message)

\section*{Examples}


\section*{See Also}
colorpicker panel

Select a color using a modal dialog
Colored background area

\section*{Input}
int In left inlet:Thenumber specifies an open inlet for receiving subsequent messages to be sent out the outlet. All inlets other than the designated open one are closed. If the number is 0 , all inlets are closed.
anything In any other inlet:Any message received in an open inlet is passed out the outlet. Messages received in closed inlets areignored.
float In left inlet: Converted to int.
bang In left inlet: Sends out the number of the open inlet, or 0 if all inlets are closed.

\section*{Arguments}
int Optional. Specifies the number of inlets, up to 10 , in addition to the leftmost inlet. If there is no argument, there aretwo additional inlets.

\section*{Output}
anything If the number in the left inlet is less than 0 , its absolute value is used to determine which inlet to open. (-1 opens inlet \(1,-2\) opens inlet 2 , etc.) If the absolute value of the number is greater than thenumber of existing inlets, messages are received in therightmost inlet.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
forward & Send remote messages to a variety of objects \\
funnel & Tag data with a number that identifies its inlet \\
gate & Pass the input out a specific outlet \\
Ggate & Pass the input out one of two outlets \\
Gswitch & Receivethe input in one of two inlets \\
receive & Receive messages without patch cords \\
send & Send messages without patch cords \\
Tutorial 17 & Gates and switches
\end{tabular}
int In left inlet: Thenumber replaces any \(\$ 11\) arguments in the object box, and the entire list of arguments is evaluated and sent out the outlet, one-by-one.

In other inlets: Thenumber is stored in place of the \(\$\) argument that corresponds to that inlet, until a number is received in the left inlet.
list In left inlet: Thenumbers in the list are used to replace the corresponding\$i arguments in the object box, then the list of arguments is evaluated and the numbers aresent out one by-one.
bang In left inlet: Sends out the bytes of the formatted message, using the mostrecently received numbers.

\section*{Arguments}
list Obligatory. Thearguments are a list of numbers which represent the values of individual bytes of a MIDI system exclusive message. Thefirst number should be 240 (or 0xF0), the system exclusive status byte and thelast number should be247 (or 0xF7), the end byte. There can beany number of values for data bytes in between.

Arguments for data bytes can also bein the form of a mathematical expression (likethe expressions in expr and if objects) to be evaluated beforenumbers are sent out the outlet. The expressions can contain changeable arguments in the form \(\$ 1\), followed immediately by an inlet number (for example, \(\$ \mathbf{i} 2\) ). The changeablearguments are replaced by numbers received in the specified inlet. Expressions used in place of numbers should bepreceded by the word is, and should be separated from other arguments with a slash (/) on either side of the expression (see example).

If the value of an evaluated expression is less than 0 , no number is sent out in place of that expression. This allows you to send variable length system exclusivemessages.

\section*{Output}
int When a number is received in the left inlet, any expressions in the argument are evaluated and the numbers in the list are sent out oneatatime, as bytes of a M IDI system exclusive message, for transmission by midiout.

\section*{Examples}
\$i arguments are replaced by incoming values, and some computation can be done in expressions before numbers are sent out

sxformat can send a complete M IDI system exclusive message, byte-by-byte, to midiout

\section*{See Also}
expr
midiout
sysexin
Tutorial 34
MIDI

Evaluate a mathematical expression
Transmit raw M IDI data
O utput received M IDI system exclusive messages
M anaging raw MIDI data
MIDI overview and specification

\section*{Input}
(MIDI) The sysexin object receives M IDI system exclusive messages from a M IDI input device.
enable The messageenable 0 disables theobject, causing it to ignoresubsequent incoming M IDI data. The word enable followed by any non-zero number enables theobject once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port Theword port, followed by a letter a-zor the name of a M IDI input port or device, setsthe port from which theobject receives incoming MIDI messages. The word port is optional and may be omitted.
(mouse) Doubleclicking on a sysexin object shows apop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies theport from which to receiveincoming M IDI system exclusive messages. If there is no argument, sysexin receives from porta (or thefirst input port listed in the MIDI Setup dialog.)

\section*{Output}
int MIDI system exclusive messages received from the specified port are sent out the outlet, byte-by-byte.

\section*{Examples}


Examineincoming System Exclusive messages

\section*{See Also}
midiin
sxformat
Tutorial 34
MIDI
Using M IDI
Ports

Output received raw MIDI data
PrepareMIDI system exclusive messages
M anaging raw MIDI data
MIDI overview and specification
Using M ax with MIDI
How MIDI ports arespecified
list In left inlet:Thesecond number is stored in table, at the address(index) specified by the first number.
int In left inlet: Thenumber specifies an address in thetable. The value stored at that address is sent out the left outlet. H owever, if a value has been received in the right inlet, table stores that valuein the specified address, rather than sending out a number.

In right inlet: Thenumber specifies a value to be stored in table. The next address number received in the left inlet causes the value to be stored at that address.
float Converted to int.
bang In left inlet: Same as a quantile message with a random number between 0 and 32,768 as an argument.
cancel In left inlet: Causes table to forget a number received in the right inlet, \(s 0\) that the next number received in the left inlet will send out a number, rather than storinga number at that address.
clear In left inlet: Sets all values in the table to 0 .
const In left inlet: The word const, followed by a number, stores that number at all addresses in the table.
dump In left inlet: Sends all the numbers stored in the table out the left outlet in immediate succession, beginning with address 0 .
flags In left inlet: Changes thetable object's saving options, which can befound in the Inspector (seeabove). The word flags is followed by two number arguments. The first argument affects the Savewith patcher option, and the second argument affects the D on't Saveoption. If the argument is non-zero the option is checked; if the argument is 0 the option is unchecked. For example, the messageflags 11 will cause the table object's contentsto be saved as part of the patch that contains it, and M ax will not ask to save any changes that are made to the table.
fquantile In left inlet: The word fquantile, followed by a number between 0 and 1 , multiplies thenumber by the sum of all the numbers in the table. Then, table sends out the address at which the sum of the all values up to that address is greater than or equal to the result.
getbits In left inlet: Gets the value of oneor more specific bits of a number stored in the table, and sends that value out the left outlet. The word getbits is foll owed by three number arguments. Thefirst argument is the address being referred to; the second argument is the starting bit location in the number stored at that address (the bit locations are numbered 0 to 31 , from the least significant bit to themost signif-
icant bit); and the third argument specifies how many bits to the right of the starting bit location should be sent out. The specified bits are sent out the outlet as a single decimal integer.

For example, the message getbits 6143 will look at address 61 in the table, start at bit location 4 (thefifth bit from the right), and send out the decimal number that corresponds to the 3 bits starting at that location. So, suppose that address 61 of the tablestores thenumber 87 . The binary form of 87 is 1010111 . The 3 bits starting at bit location 4 are 101 , which is the binary form of the decimal integer 5,505 is the number that is sent out the outlet.
goto In left inlet: The word goto, followed by a number, sets a pointer to the address specified by thenumber. The pointer is set at the beginning of thetable initially.
inv In left inlet: The word inv, followed by a number, finds the first value which is greater than or equal to that number, and sends the address of that value out the left outlet.
length In left inlet: Sends the length (size) of thetable out the left outlet.
load In left inlet: Puts the table in load mode. In load mode, every number received in the left inlet gets stored in thetable, beginning at address 0 and continuing until thetable is filled (or until the table is taken out of load modeby a normal message). If morenumbers are received than will fit in the size of thetable, excess numbers areignored.
\(\max\) Sends the maximum value stored in the table out the left outlet.
\(\min\) Sends the minimum value stored in the table out the left outlet.
next In left inlet: Sends the valuestored in theaddress pointed at by thegoto pointer out the left outlet, then sets the pointer to the next address. If the pointer is currently at the last address in the table, it wraps around to the first address.
normal In left inlet: Undoes a prior load message; takes the table out of load mode and reverts it to normal operation.
open In left inlet: O pens the table object's graphic editor window and bringsit to the foreground. Double-clicking on thetable object in alocked patcher has the same effect.
prev In left inlet: Causes the same output as the word next, but the pointer is then decremented rather than incremented. If the pointer is currently at the first address in the table, it wraps around to the last address.
quantile In left inlet: The word quantile, followed by a number, multiplies the number by thesum of all thenumbers in thetable. This result is then divided by \(2^{25}(32,768)\).

Then, table sends out theaddress at which the sum of all values up to that address is greater than or equal to the result.
read In left inlet: The word read, followed by a name, opens and reads data values from a filein Text or M ax binary format. Without an argument, read opens a standard Open Document dialog for choosing a file to read values from. If the file contains valid data, the entire contents of the existing table are replaced with the data.

In left inlet: The word refer, followed by the name of another table, sets the receiving table object to read its data values from the named table.
send The word send, followed by the name of a receive object, followed by an address number, sends the value stored at that address to all receive objects with that name, without sending the value out the table object's outlet.

In left inlet: Theword set, followed by a list of numbers, stores values in certain addresses. Thefirst number after theword set specifies an address. Thenext number is the valueto bestored in that address, and each number after that isstored in a successive address.
setbits In left inlet: Changes the value of oneor more specific bits of a number stored in the table. Theword setbits is followed by four number arguments. Thefirst argument is the address being referred to; the second argument isthestarting bit location in the number stored at that address (thebit locations are numbered 0 to 31, from the least significant bit to themost significant bit); the third argument specifieshow many bits to theright of thestarting bit location should bemodified, and the fourth argument is the value(stated in decimal or hexadecimal form) to which those bits should be set.

For example, the message setbits 47536 will look at address 47 in thetable, start at bit location 5 (thesixth bit from theright), and replace the 3 bits starting at that location with thebits 110 (the binary equivalent of the decimal integer 6). Supposethat address 47 of thetablestores thenumber 87 . Thebinary form of 87 is 1010111, so replacing the 3 bits starting at bit location 5 with 110 would change thenumber to 1110111, which is the binary form of the decimal integer 119. Thenew number stored at address 47 in thetable will thereforebe 119.
size In left inlet: The word size, followed by a number, sets the size of the table to that number.
sum In left inlet: Sendsthe sum of all the values in the table out the left outlet.

In left inlet: O pens a standard savefile dialog for choosing a name to write data values from the table. Thefile can be saved in Text or M ax binary format.
(mouse) Thevalues stored in table can beentered and edited graphically with the mouse. W hen a table object is first created in a patcher window, the table object's graphic editing window is opened, in which values can beentered by drawing with the mouse. Theediting window provides a palette of graphic editing tools.


W hen the patcher window is locked, thegraphic editing window can beopened by double-clicking with the mouse on the table object.

A table can be created in a separatefile by opening a new Tablewindow and choosing the Save command from the Filemenu. A table can also becreated in a separatefile by opening a new Text file, and simply beginning the file with the word table. The word table should befollowed by alist of space-separated numbers, specifying values to bestored in thetable.

A table which has been saved asa filecan beviewed and edited as text by choosing Open asText... from theFilemenu. Numbers in theform of text can bepasted in from other sources such as theediting window of a capture object, or even from another program such as a word processor. Text from a capture object can also be pasted directly into a table object's graphic editing window.

\section*{Inspector}

Thebehavior of atable object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosingShow Floating Inspector from theW indows menu, selecting any table object displays thetable Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaysthe Inspector.

TableSize determines the number of values stored in the table. A newly created table has 128 values, indexed with numbers from 0 to 127.

TableRange determines therange of values which can bedisplayed on they axis of theediting window. A newly created table has a range of 128, from 0 to 127.

If SaveTablewith Patcher ischecked, the values in thetable aresaved as part of the patch that containsit. Otherwise, the table has to be saved in a separate file to retain its values.

If D on't Save is checked, M ax will not ask if you want to save changes madeto the table, when the patch containing that table is closed.

If Use N oteName Legend is checked, values areshown on they axis as M IDI note names, rather than numbers.

If Signed Values is checked, table displays negative numbers as well as positive. In effect, the range of displayed values specified by Rangeis doubled when theSigned option is checked, sincetherangegoes in both directions from 0.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector C hanges from the Edit menu whiletheInspector is open.

\section*{Arguments}
any symbol
O ptional. The argument gives a nameto the table. M ax looks for a table of the same name which has been saved as a separate file. If two or moretable objects sharethesamenames, they also sharethe samevalues, even if \(M\) ax couldn't find a file with the name.

\section*{Output}
int All numbers sent out by table are sent out the left outlet.
bang When the contents of a table have been changed by an edit in thegraphic editing window, bang is sent out theright outlet.

\section*{Examples}


An array of any size and range can bestored, recalled, and modified

\section*{See Also}
\begin{tabular}{ll} 
capture & Storenumbers to view or edit \\
coll & Storeand edit a collection of different messages \\
funbuff & Storex,y pairs of numbers together \\
histo & M akeahistogram of thenumbers received \\
multislider & Multipleslider and scrolling display \\
text & Format numbers as a text file \\
Tutorial 32 & Thetable object \\
Timeline & Creating a graphic score of M ax messages \\
DataStructures & Ways of storing data in M ax \\
Quantile & Using table for probability distribution \\
Tables & Using thetable graphic editing window
\end{tabular}

\section*{Input}
float or int Input to a tangent function.
bang In left inlet: Calculates the tangent of the number currently stored. If there is no argument, tan initially holds 0 .

\section*{Arguments}
float or int Optional. Sets the initial valuefor the tangent function.

\section*{Output}
float or int Thetangent of the input.

\section*{Examples}
- floating point input

- tangent of the input.

\section*{See Also}
\begin{tabular}{ll} 
acos & Arc-cosinefunction \\
acosh & Hyperbolic arc-cosinefunction \\
asin & Arc-sinefunction \\
asinh & HyperbolicArc-sinefunction \\
atan & Arc-tangent function \\
atan2 & Arc-tangent function (two variables) \\
\(\operatorname{atanh}\) & Hyperbolic arc-tangent function \\
\(\cos\) & Cosinefunction \\
\(\cosh\) & Hyperbolic cosinefunction \\
\(\sin\) & Sinefunction \\
\(\sinh\) & Hyperbolicsinefunction \\
\(\tanh\) & Hyperbolic tangent function
\end{tabular}

\section*{Input}
float or int Input to a hyperbolic tangent function.
bang In left inlet: Calculates the hyperbolic tangent of the number currently stored. If there is no argument, tanh initially holds 0 .

\section*{Arguments}
float or int Optional. Sets the initial value for thehyperbolic tangent function.

\section*{Output}
float or int Thehyperbolic tangent of the input.

\section*{Examples}
- tloating point input

- hyperbolic tangent of the input.

\section*{See Also}
```

acos
acosh
asin
asinh
atan
atan2
atanh
cOS
cosh
sin
sinh
tan
Arc-cosinefunction
Hyperbolic arc-cosinefunction
Arc-sinefunction
HyperbolicArc-sinefunction
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosinefunction
Hyperbolic cosinefunction
Sinefunction
Hyperbolic sinefunction
Tangent function

```

\section*{Input}
bang In left inlet: Startsthetempo object's metronome process, or restarts it if tempo is already on.
stop In left inlet: Stopstempo.
int In left inlet:If thenumber is not 0 , it has the same effect as bang. If thenumber is 0 , it has the same effect as stop.
int or float In 2nd inlet: Thenumber is stored as the tempo, in beats per minute(quarter notes per minute). Thetempo is limited between 5 and 300 beats per minute.

In 3rd inlet: Thenumber is abeat multiplier, which can lengthen the amount of timetaken for one beat. It slows thetempo down by a factor. For example, a multiplier of 2 will maketempo send out its output half as fast.

In right inlet: Thenumber is the rhythmic value sent out by tempo, specified as a fraction of a whole note. For example, the number 8 causestempo to output eighth notes, relative to the specified (quarter note) tempo. The numbers sent out the outlet cycle continuously between 0 and the number 1 less than therhythmic value. The divisions of a whole note must bebetween 1 and 96 .
tempo In left inlet: The word tempo, followed by afloat, sets the current tempo to the number.
clock The word dock, followed by the name of an existing setdock object, setstempo to becontrolled by that setclock rather than by Max's internal millisecond clock. The word dock by itself setstempo back to using M ax's regular millisecond clock.

\section*{Arguments}

O ptional. Thefirst argument sets an initial tempo, from 5 to 300 beats per minute. If there is no argument, the initial tempo is 120 beats per minute. The second argument is the beat multiplier and is set to 1 by default. Thethird argument sets an initial rhythmic value of theoutput, from a wholenote(1) to a 64th note triplet (96). If the argument is not present, the initial valueis 16.

\section*{Output}
int When tempo is started it outputs numbers in a continuous cycle from 0 to the number 1 lessthan the specified rhythmic value. The speed at which thenumbers are sent out is determined by the tempo (quarter notebeats per minute) and the rhythmic value of the output (fraction of a whole note).

\section*{Examples}


Thetempo (60) definesthespeed of a quarter note, division defines the pulse to be sent out

\section*{See Also}
```

clocker Report elapsed time, at regular intervals
metro Output a bang message at regular intervals
setclock Control theclock speed of timing objects remotely
Tutorial 31 Usingtimers

```
clear Erases the contents of text.
cr Puts a carriage return at the end of the contents of text, to start a new line. If the last character in text is a space, the carriage return replaces that space.
line Theword line, followed by a number, causes text to send out the contents of that line number (up to 256 characters) with the word set prepended (for setting the contents of a message box). Lines are numbered beginning with 1 ; any linenumber message less than 1 is converted to line 1 . If a nonexistent line number is requested, nothing is sent out.
open Openstheobject'stext window for editing. Double-clicking on thetext object in a locked patcher has the same effect. Thetext object ignores messages to change its text whiletheediting window is open. Unlikethecapture object, changes made in theediting window of text actually alter the contents of the object.
read The word read, followed by a symbol that specifies a filename, will read the contents of a text file of up to 32,000 characters into thetext object. If no filename or pathname is specified, the read messagewill call up thestandard O pen Document dialog box, so that a text filecan be specified.
settitle The word settitle, followed by any word, sets thetitle of the text window. If you want morethan one word to appear as the default text, you must enclose the words in doublequotes or precedethe spaces with a backslash (\\).
symbol The word symbol, followed by any word, stores that word at theend of thecontents of text. Thisis useful if you want to store a word that would otherwise be understood as a specific message by text. For example, symbol clear stores the word clear, followed by a space, at theend of the contents of text, rather than erasing the contents.
tab Puts a tab stop at the end of the contents of text. If the last character in text is a space, the tab stop replaces that space.
wclose Closes the window associated with thetext object.
write The word write, followed by a symbol that specifies a filename, will save the contents of text asatext file in thecurrent default folder unless thefileis specified with an absolute pathname. If no filenameor pathname is specified, thewrite message will open up a standard SaveAs dialog box, so that the contents of text can be saved in a separatetext file.
anything else Themessage is stored in thetext object, placed after any previously stored messages, and is followed by a space.
(mouse) Doubleclicking with the mouse on thetext object (when the patcher window is locked) opens an editing window in which thecontents of text can be viewed and edited. Thetext object ignores messages to changeits text whilethe editing window is open. Unlikethecapture object, changes madein theediting window of text actually alter the contents of the object.

\section*{Arguments}
symbol Names a text file to be read in when theobject is loaded.

\section*{Output}
set When aline message is received, thetext of the specified line number is sent out preceded by the word set. Themessage can beused to set the contents of a message box (or can be sent to any other object for which that particular set message is appropriate).

\section*{Examples}


Capture pitchbend data to paste into a table

\section*{open}
text
table


Collect messages as text, to paste elsewhere or to save as a separatefile

\section*{See Also}
\begin{tabular}{ll} 
capture & Store numbers to view or edit \\
filein & Read in a file of binary data \\
spell & Convert input to ASCII codes \\
sprintf & Format a message of words and numbers \\
table & Storeand graphically edit an array of numbers \\
textedit & Object for user-entered text in a patcher
\end{tabular}

\section*{Input}
(typing) W hen the textedit object is highlighted, typing enters text into thetext display area and modifies its buffer, unless the object is set to read-only mode(seethereadonly message). TheASCII value of the character typed is sent out the middleoutlet.
(mouse) Clicking with the mouse on the textedit object (when the patcher window is locked) will cause the textedit object to send either the letter or word selected out its right outlet depending on the setting of theclick mode(seethedickmode message).
bang Outputsthetyped or stored contents of thetextedit object's buffer.
append The word append, followed by a message, will append the message to thetextedit object's buffer without causing any output.
autoscroll The word autoscroll, followed by a 0 or 1, toggles autoscrolling in thetext display area. Themessageautoscroll 1 lets you scroll past theamount of text displayed in the textedit window when the number of lines is set to 1 and the word wrapping is disabled (seethewordwrap message) using either thecursor or by clicking and dragging in the textedit window. The default is 0 (autoscroll disabled).
brgb Theword brgb, followed by threenumbers between 0 and 255 , sets the RGB values for the background color of thetextedit object. Thedefault value is white (brgb 255 255 255).
clear Erases the contents of thetextedit object's buffer.
clickmode The word clickmode, followed by a0 or 1, sets the way that the textedit object responds to mouse clicks in thetext display area. Themessageclickmode 0 will send an individual character clicked on out the right outlet of thetextedit object. Setting theobject with the message dickmode 1 will send theword theuser clicks on. The default is 0 (select characters).
frgb Theword frgb, followed by threenumbers between 0 and 255 , sets the RGB values for thetext displayed by thetextedit object. Thedefault value is black (frgb 000 ).
keymode Theword keymode, followed by a0 or 1, sets the way that thetextedit object responds to carriage returns whiletyping characters into its text display area. The message clickmode 0 allows for text input, and displays carriage returns normally. Setting the object with the message keymode 1 causes the carriage return to output theentirecontents of the current buffer. Thedefault is0.
lines Theword lines, followed by a number, sets the maximum number of lines of text that textedit will display. lines 0 removes any limit on the number of text lines. You'd want to uselines 1 on atextedit object that isbeing used to enter a number or word in a"dialog box" context. The default is that thereis no linelimit.
\begin{tabular}{|c|c|}
\hline outp & Theword outputmode, followed by a0 or 1 , sets whether the textedit object outputs its contents as a message or as a single symbol. The messageoutputmode 0 causes the output of the object to be sent out as messages. Setting the object with the message outputmode 1 will output the buffer contents as a single symbol. The default is 0 (output as messages). \\
\hline readonly & The word readonly, followed by a0 or 1, toggles the read only mode of thetextedit object. The message readonly 1 disables any user entry into the text box. M essages which operateon the current contents of thetextedit buffer such asclear, append, or separator are not affected by the readonly message. The default is 0 (readonly mode off). \\
\hline set & Theword set, followed by any message, sets the contents of thetextedit object's buffer while causing no output. \\
\hline select & Causes the text (if any) to behighlighted, and if the object is not in read-only mode, sets theobject to bethetarget of keyboard events. \\
\hline separator & Theword separator, followed by any symbol, sets that symbol as a line separator. and treats it as a carriage return when the contents of the buffer are output. If the buffer contains the text" "red green blue" and theobject receives the messageseparator green, the next bang received by textedit will output red ( carriage return) blue. \\
\hline wordwrap & The word wordw rap, followed by a0 or 1, sets the way that the textedit object displays messages which arelonger than thetextedit display area. The message wordwrap 0 (default) will enabletext wrapping on word boundaries in the display area. The message clickmode 1 disables word-wrap. \\
\hline (Font menu) & Thesize and font used in thetextedit object can bealtered by choosing a different font or sizefrom the Font menu. \\
\hline
\end{tabular}

\section*{Inspector}

Thebehavior of atextedit object is displayed and can beedited using its Inspector. If you have enabled the floating inspector by choosing Show Floating Inspector from theW indows menu, selecting any textedit object displays thetextedit Inspector in thefloating window. Selecting an object and choosing Get Info... from the O bject menu also displays the I nspector.

Typing numbers into the \(M\) aximum Lines number box sets the maximum lines displayed in the text area. The default is 0 . Options contains three checkboxes which set thebehavior and output of thetextedit object. By default, none of these options are selected. Checking Read-only sets theobject to display text only. Checking theReturn Enters Text checkbox causes the carriage return to output the entire contents of the current buffer on a carriage return. If O utput as O neSymbol is checked, the textedit object will output its contents as a single symbol rather than as a message. Text wrapping on word boundaries can beenabled by check-
ing theWord Wraparound option, and theAutomatic Scrolling option (default on) allows the scrolling of selected text. Theoutput behavior of thetextedit object is also set using theW hen Clicked.... checkboxes. You can choose to output characters (the default) or wordswhen you click on thetext.

The Revert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to thestate of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
symbol Out left outlet: The currently stored contents of thetextedit object's buffer are output when theobject receives abang message. If thetextedit messagehas been set to enter text on a carriage return using the keymode 1 message, a carriage return will also output thetyped text and the buffer contents.
symbol Out middleoutlet: TheASCII value of the typed key.
symbol Out right outlet: Theword or letter in thetextedit object's text box that the user has clicked on.

\section*{Examples}


Collect text to store in a coll object

User-entered text
in a patcher

\section*{See Also}
\(\begin{array}{ll}\text { dialog } & \text { Open adialog box for text entry } \\ \text { text } & \text { Format messages as a text file }\end{array}\) text Format messages as a text file

Thethispatcher object is placed inside the patcher you want to control. It sends messages to the patcher that containsit.

\section*{Input}
loadbang Sending the loadbang message to thispatcher causes any loadbang objects in the same patcher to send out a bang. A ny other objects which use aloadbang message internally for initialization (such as the preset object) will receive this message, too.
front Bringsthe patcher window to the front, or opens the window and brings it to the front if it's loaded as a subpatch but is not visible.
wclose Closes the patcher window. If the patcher has been edited, you will be asked if you want to savethe changes.
clean Resets the patcher window's"dirty" flag, so theuser won't beasked to save changes when the window isclosed.
dirty Sets the patcher window's "dirty" flag, so the user will be asked to save changes when the window is closed.
dispose Permanently closes the patcher window and frees its memory. You can use this in conjunction with the load message to the pcontrol object to open and close patchers automatically. If the patcher has been edited, you will be asked if you want to save the changes.
offset For patchers contained insideboxes (using the bpatcher object), theoffset message sets the upper left corner of the visible portion of the patcher in thebox. Theword offset should befollowed by two numbers; the first number specifies the left offset (in pixels) and the second specifies the top offset. By default, patchers in bpatcher boxes are displayed with an offset of 0,0 . When you hold down the Command and Shift keys on M acintosh or the Control and Shift keys on Windows and drag in a bpatcher object's box, the offset changes as you move, and the current offset is di splayed in theA ssistance area of the window that contains the bpatcher. You can use thesenumbers to help you determine appropriate arguments to theoffset message.
path If the patcher window is saved as a file, the word path sends the full pathname of folder containing the patcher's file out the thispatcher object's right outlet.
write
Saves the patcher's file if it has a name; otherwise, brings up a SaveA sdialog.
(others) thispatcher will respond to messages to createnew objects. The format of these messages is cryptic and subject to change, but you can get some idea of what might be worth trying by examining a patcher file astext, and trying any of the
patcher The word patcher, followed by any text, replaces the window name shown in the title bar. Thenew window name is shown enclosed in brackets, to indicate that it is not the actual file name, which is left unaltered.
window window notitle hides the title bar of the patcher window. window title shows the title bar. window flags noclose hides the close box that normally appears in the title bar of thepatcher window. window flags close shows the closebox. window flags nozoom hides thezoom box that normally appears in theright corner of thetitle bar. window flags zoom shows the zoom box. window flags nogrow hides the scroll bars and the grow box that normally appears in the lower right portion of the window. window flags grow shows the scroll bars and the grow box. window size, followed by four numbers, sets the precise screen coordinates (in pixels from thetop left corner of the screen) of the left, top, right, and bottom limits of the window, respectively. The left and top coordinates refer to the upper left corner of the content portion of the window, not thetitle bar.
window fullscreen 1 hides the menu bar and resizes the patcher window to fill the entire screen, with no title bar and no scroll bars. window full screen 0 shows the menu bar and restores the previous size and appearance of the patcher window.

The abovewindow messages do not take effect until you send the messagewindow еxec.

The messages window getsize, window getflags, and window gettitle, cause thispatcher to send a window message out the left outlet reporting the current characteristics of thewindow.
savewindow The word savewindow, followed by a non-zero number, means that any unusual window settings caused by window flags messages to thispatcher will be saved as part of the patch the next time the patch is saved. The messagesavewindow 0 means that changes to the window caused by window flags messages to thispatcher will not beretained when the patch is saved; the prior patcher window settings are saved. If no savewindow message has been received, the patcher will be saved with a normal window appearance.

\section*{Scripting Messages}

Thescript messageto thispatcher permits dynamic control over object creation, deletion, sizing and positioning, and patching. The word script is followed by a keyword that indicates a function. Following the keyword arearguments that specify what objects are to be affected by the message.

In the discussion of each script message that follows, the syntax indicates required arguments for the message after the keyword in angle brackets. An example of each message is also provided.

A variable-nameis a symbol that names either a new or existing object. You can set variablenames by choosing Name... from the O bject menu, or with certain scripting messages such as new and select.

\section*{Instantiating and Deleting Objects}
new Creates a new object in a patcher window and gives it a name.
Syntax:script new <variable-name> <creation message>
Example:script new footog toggle 10193150
Creates a new toggle object 15 pixels square at 10193 and assign it to the variable footog.

Since the save formats of M ax objects are not documented, in order to determine the appropriatecreation message for the desired object, you'll have to examine M ax patchers as text. M ost objects are saved with one of the following basic styles:
\#P classname arguments; (internal UI object)
\#P newex classname arguments; ( normal internal or external object)
\#P user classname arguments; ( external UI object)
Removethe\#\# and thesemicolon and put therest of themessage after the variable namethat will be assigned to the new object.
delete Deletes an object in a patcher window.
Syntax:script delete < variable-name>

\section*{Example:script delete footog}

Deletes theobject associated with the variable namefootog.
hidden Specifies that an object (or connection) will behidden when created.
Example:script hidden new footog toggle 10193150
Creates a hidden object associated with the variablenamefootog. Thehidden keyword can also beused when specifying connections between objects.

\section*{Assigning Variable Names to Objects}
class Assigns a variablename to the first instance of a specified class with matching arguments

Syntax:script class <variable-name> <class-name> <arguments (optional)>
Example:script class rubadub +4
Assigns the name rubadub to the first instancefound of + with argument 4 in the patcher.

Assigns a variable nameto thenth instance of a specified class
Syntax: script nth <variable-name> <class-name> <index>
Example:script nth yoyo toggle 1
Assigns the name yoyo to the first toggle found in the patcher.
Theorder of objects in a patcher is determined by the front-to-back ordering. Objects in back of the patcher that draw behind other objects arefirst in the search order.
selected Assigns a variablename to the first object found that is selected
Syntax:script selected < variable-name>

\section*{Example:script selected impo}

Assigns the name impo to the first object found that is selected. Obviously this script message only works when the patcher is unlocked, since no object can be selected in a locked patcher.

\section*{Connecting and Disconnecting Objects}

For all three connection messages described below, inlets and outlets are specified by index, with 0 denoting the leftmost inlet or outlet. Thefirst variable specified istheobject whose outlet you are connecting or disconnecting and the second variable is theonewhose inlet you are connecting. M essages can then flow from outlet to inlet.
connect Connects two objects together with a patch cord
Syntax:script connect <outlet-variable-name> <outlet-index> <inlet-variable-name> <inlet-index>

Examplescript connect fooboo 0 bobo 0
Connects the left outlet of theobject with the variablenamefooboo to the left inlet of theobject with the variablenamebobo.

Note: Adding the keyword hidden (e.g., script hidden connect fooboo 0 bobo 0) creates hidden connections.
disconnect Disconnect two objects connected by a patch cord
Syntax:script disconnect <outlet-variable-name> <outlet-index> <inlet-variable-name> <inlet-index>

Example'script disconnect fooboo 0 bobo 0

This message undoes the connection between the left outlet of fooboo and the left inlet of bobo.
connectcolor Modify the color of an existing patch cord, setting it to one of \(M\) ax's 16 standard colors.

Syntax:script connectcolor <outlet-variable-name> <outlet-index> <inlet-variable-name> <inlet-index> <color>

Example:script connectcolor rover 0 dover 212
Changes the color of the connection between theleft outlet of therover object with the 3rd inlet of thedover object to the color stored at index 12.

\section*{Changing Object Properties}
hide Hideavisibleobject.
Syntax:script hide < variable-name>
Example'script hide visigoth
Hides theobject named visigoth
show Show a hidden object.
Syntax:script show <variable-name>
Example:script show visigoth
\(M\) akes theobject named visigoth visible.
ignoredick Set an object not to respond to mouseclicks.
Syntax:script ignoreclick < variable-name>
Example:script ignoredick visigoth
M akes theobject named visigoth ignoremouseclicks.
respondtoclick Set an object to respond to mouseclicks.
Syntax:script respondtoclick < variable-name>
Example'script respondtoclick visigoth
M akes theobject named visigoth respond to mouse clicks.
bringtofront Bring an object to the front of the layer it's currently in.

\section*{Syntax:script bringtofront <variable-name>}

Example:script bringtofront visigoth
If visigoth is in the foreground layer, this message movesit to the front of theforeground layer. Otherwise it moves it to the front of the background layer.
sendtoback M ove an object to the back of the layer it's currently in.
Syntax:script sendtoback <variable-name>
Example:script sendtoback visigoth
If visigoth is in the foreground layer, this message moves it to the back of the fore ground layer. Otherwise it moves it to the back of the background layer. Notethat objectsthat are"in the back" arethefirst objectsto be found by the variable assignment messages nth and class.
size Change an object's size. Thereare someobjectsthat haverestrictions on their size, but they generally do not protect themselves against sizes they don't expect, so use this message with some caution. For instancethetoggle object expects to bea square. It may not draw properly if it's made into a rectangle.

Syntax:script size < variable-name> <width> < height>
Example'script size togipoo 3030
Changes the object named togipoo to be 30 by 30 pixels.

\section*{Sending Messages to Objects}
send Send a messageto an object. This message is the sameas using a message box with a semicolon or a send object, but you use the object variable namefeature of scripting to specify theobject that will receivethe message-using script send to communicate with a named receive object does not work. The message can only be sent to an object within the patcher as thethispatcher object receiving the script send message.

Syntax:script send <variable-name> <message>
Example:script send foobert 666
Theobject with the variablenamefoobert receives an int 666 message. If foobert were a number box, its displayed value would change to 666.
sendbox Send a message to an object box. This message is identical to send except that it sends the message to an object's box rather than the object referred to by thebox. There is currently only oneobject, bpatcher, in which theobject and box aredif-
ferent objects. The box is a bpatcher, and the object is a patcher. W hat can you tell a bpatcher to do? O ne example is theboxborder message, which is equivalent to sending the border message to a thispatcher object in a patcher inside a bpatcher. Peek insidetheI nspector patch for bpatcher for other ideas.

Syntax: script sendbox < variable-name> <message>
Example:script sendbox bpbp boxborder 0
If bpbp names a bpatcher object, this script message would tell it not to draw its border.

\section*{Moving Objects}
move Movean object to an absolute position relative to the current top-left corner of a patcher window. Note that the 0,0 point is underneath the icon bar.

Syntax:script move <variable-name> <top> <left>
Example:script move molly 0100
M oves the object named molly to the left edge of the window, 100 pixels down from thetop.
offset M ove an object a distancefrom its current position. Positive distances move the object down and to the right, negative distances move it up and to the left.

Syntax:script offset <variable-name> <delta-x> <delta-y>
Example:script offset molly \(30-40\)
M oves the object named molly 30 pixels to the right and 40 pixelsup.
offsetfrom M ove an object a set distance from another object.
Syntax:script offsetfrom <variable-name-to-move> <target-variable-name> <delta-x> <delta-y> <top-left-flag>

The top-left-flag is 1 if the distance is relative to thetop-left corner of theobject, and 0 if it is relative to the bottom-right corner.

Examplesscript offsetfrom molly panther-100-1201
M oves the object named molly 100 pixels to the left of the left side of the object named panther, and 120 pixels above thetop of the object named panther.

\section*{Arguments}

None.

\section*{Output}
window Out left outlet: W hen the messagewindow getsize is received, thispatcher sends out the words window size followed by the screen coordinates (in pixels from the top left corner of the screen) of the left, top, right, and bottom limits of the window. W hen the message window gettitle is received, the messagewindow title or window notitle is sent out, depending on whether the window has a title bar. When the message window getflags is received, thispatcher sends out the words window flags followed by the visibility of the scroll bars and grow box (grow or nogrow), the close box (close or noclose), and thezoom box (zoom or nozoom).
symbol Out right outlet: The full pathname of the folder or volumecontaining the patcher's filein response to thepath message. If the patcher has not been saved, there is no output.

\section*{Examples}

woit 1 minute, then bring the window to the foreground

Automatic window control, file saving, or patcher reset are possible with thispatcher

Make a small window in the upper left corner of the sereen, with no title bar or scroll bars

thispatcher

Windows can have any size, location, and appearance, set within the patch itself

\title{
thispatcher
}

\section*{See Also}
\begin{tabular}{ll} 
bpatcher & Embed a visible subpatch insidea box \\
pack & Combine numbers and symbols into a list \\
patcher & Create subpatch within a patch \\
pcontrol & Open and close subwindows within a patcher \\
pvar & Connect to a named object in a patcher \\
sprintf & Format a message of words and numbers \\
Tutorial 46 & Basic Scripting \\
Tutorial 47 & Advanced Scripting
\end{tabular}

\section*{Input}
any message If thistimeline is in an action patch, and the action is currently being used in a timeline, then any message that would normally be acceptable to a timeline object can be received by thistimeline, and will betransmitted to thetimelinethat containstheaction.
bang Sends out the current time of the timeline that contains the thistimeline object in an action.

\section*{Arguments}

None.

\section*{Output}
(to timeline) Themessages received in the inlet are conveyed to the timeline that contains the action in which thethistimeline object is located.
int When bang is received in the inlet, thistimeline sends out its outlet the current time, in milliseconds, of thetimelinethat containsitin an action.

\section*{Examples}


A timeline can actually control itself via a thistimeline object in an action

\section*{See Also}
thistrack
ticmd
timeline
Tutorial 41
Timeline

Send messages to a timeline track
Receive messages from a timeline
Time-based score of \(M\) ax messages
Timeline of \(M\) ax messages
Creating a graphic score of \(M\) ax messages

\section*{Input}
any message If thistrack is in an action patch, and the action is currently being used in atimeline, then a message received by thistrack will betransmitted to thetimelinetrack that is calling the action.
mute Theword mute, followed by a nonzero number, mutes the timelinetrack of the action that containsthistrack. The message mute 0 unmutes the track.
name Theword name, followed by any other symbol, sets the name of the action'stimelinetrack (in thegraphic timelineeditor window) to that symbol.
height The word height, followed by a number greater than 0 , sets the height, in pixels, of thetimelinetrack's visual display in thegraphic timelineeditor window.

\section*{Arguments}

None.

\section*{Output}
(to timeline) Themessages received in the inlet are applied to thetimelinetrack that is using the action containing thethistrack object.

\section*{Examples}


A timeline action can mute its own track with a thistrack object

\section*{See Also}
thistimeline
ticmd
timeline
Timeline
Tutorial 41
Send messages to a timeline
Receive messages from a timeline
Time-based score of \(M\) ax messages
Creating a graphic score of \(M\) ax messages
Timeline of \(M\) ax messages

\section*{Input}
int or float a time In left inlet: Numbers are combined into a list if received within a certain time of each other. When thetime between incoming numbers is greater than the specified threshold, the list is sent out the outlet, and a new list is started.

In right inlet: Thenumber is stored as thetime, in milliseconds, to wait before sending out the compiled list of numbers. If no new number is received in the left inlet within that time, thelist is sent out and a new list is started.
list In left inlet: Theentirelist is appended to the list stored in thresh.

\section*{Arguments}
int Optional. Sets an initial value for the threshold time. If no argument is present, the initial value is 10 milliseconds.
float Converted to int.

\section*{Output}
list Each number received in the left inlet is appended to a list stored by thresh. If a certain time passes without a new number being received, thresh sends out the list and starts a new list.

\section*{Examples}


If threshold time is exceeded without a new number being received, thresh sends out what it holds

\section*{See Also}
\begin{tabular}{ll} 
bondo & Synchronize a group of messages \\
buddy & Synchronize arriving data, output them together \\
iter & Break alist up into a series of numbers \\
pack & Combinenumbers and symbols into a list \\
zl & Multi-purposelist processor \\
Tutorial 37 & Data structures
\end{tabular}

Receive messages from a timeline object

Theticmd object is intended to be placed in an action patch, which is loaded as a track in a timeline. ticmd gets its input from an event editor of the samename in thetimelinetrack. Thetype(s) of message(s) it can receivedepends on thetypedin argument(s) i,f,l, b, s, or a.
int If the second (and last) typed-in argument isi, then ticmd receives an int value from atimeline event editor, and passes the number out its middle outlet. There are threetypes of event editor that can be placed in a track of a timelinefor sending int values: int, etable, and efunc.

Theint event editor in a timelinelookslike, and functions much like, a number box object in a patcher. When thetimeline is being played and reaches theint event editor, it sends the value in thenumber box to the appropriate ticmd object, to be passed out theticmd object's middleoutlet.

The etable event editor is similar to the table object. It is an array of intswhich can beedited graphically. W hen thetimeline is being played and it reaches an etable event editor, it sends out all the numbers in theetable one-by-one at a rate proportional to the space that the etable occupies on the timeline. For example if an etable containing 128 values occupies the space from time 1000 to time 9000 (in milliseconds) on a timelinetrack, then ticmd will receive ints at the rate of 16 per second as the timeline progresses through those eight seconds.

The efunc event editor is a two-dimensional array containing pairs of \(x, y\) values which can be edited graphically. When thetimeline is being played and it reaches an efunc event editor, it sends they values in the efunc to ticmd at a time determined by the \(x\) value (relativeto themaximum range of \(x\) values), proportional to the spacethat theetable occupies on thetimeline. For example, if the maximum range of \(x\) values in an efunc is 1000, and the efunc covers atime period from 1000 to 9000 (in milliseconds), then thex, y pair 500,127 would cause thenumber 127 (they value) to be sent to ticmd at time \(5000(500 / 1000\) of the way from 1000 to 9000).
float If the second (and last) typed-in argument isf, then ticmd receives a float value from atimeline event editor, and passes thenumber out its middleoutlet. The float event editor looks and functions like a float number box in a patcher window.
list If the second argument isl, or if therearemorethan two arguments, then ticmd receives a list from a messenger event editor in thetimeline. A messenger looks just like a message box object except that the name of the event (the name of theticmd object it will send to) is printed at thebeginning of thebox. (Thenamewill not be sent out as part of the message, however. It's just there to remind you where the message will be sent.)

Receive messages from a timeline object
bang If the second (and last) argument isb, then ticmd receives a bang message from a messenger in thetimeline, regardless of what message is typed into themessenger.
symbol If the second (and last) argument iss, then ticmd receives a symbol from a messenger in thetimeline. If morethan one word istyped into the messenger, only the first word gets sent to ticmd. To include morethan one word in a messenger, and havethem all sent out as a single symbol to ticmd, precedethe spacecharacter(s) with a backslash (\\).

If the second (and last) argument isa, then ticmd can receive any message from a messenger in the timeline, and will send it out the middle outlet unchanged.

\section*{Arguments}
symbol
Obligatory. Thefirst argument is the name of the ticmd object, which will appear as a possible event in a timelinetrack that uses the action containing theticmd. M orethan oneticmd in an action may havethe samename, and each onewill receive the same message from thetimeline event, although theorder in which they will receive the message is undefined. ticmd objects in the same action with thesamenamecan even havedifferent typearguments (can expect different types of message), but the event editor that appears in thetimeline will depend on the typeargument of the ticmd object that is loaded first (which cannot always be reliably predicted).
i, f, \(s, l, b\), or a Optional. A fter the first argument, each additional argument creates a new outlet (in addition to the left and right outlets, which always exist) and specifies thetype of message to be sent out of that outlet: i for int, f for float, I for list, b for bang, s for symbol, and a for any message. If there is no type argument present, no middle outlet will becreated; the event can still be placed in thetimelinetrack, however, as a messenger, and ticmd will still send a bang message out its left and right outlets.

If theonly type argument isf, the event editor in thetimelinetrack will bea float number box. If theonly type argument isi, theevent editor in thetimelinetrack can be a number box, an etable, or an efunc. (Seeinput messageint, above.) If the typeargument is anything else, or if there is morethan onetypeargument, the event editor in thetimelinetrack will be a messenger. (Seeinput message list, above.)

\section*{Output}
bang
O ut left outlet: W hen an event with the samename as the ticmd is reached in a timeline, a bang is sent out ticmd object's left outlet.

O ut middleoutlet(s): If the outlet has been specified as ab outlet, bang is sent out when the event is reached in thetimeline(immediately after the left outlet sends its bang). The word bang sent out of an s outlet has the same effect.

Receive messages from a timeline object

O ut right outlet: When thetimeline reaches theend of a messenger event with the same name as the ticmd, a bang is sent out ticmd object's right outlet.
int Out middle outlet(s): If the outlet has been specified as an i outlet, an int is sent out when the event is reached in the timeline(immediately after the left outlet sends its bang). A symbol that is actually an integer number (sent out of an soutlet) has the same effect.
float Out middle outlet(s): If the outlet has been specified as an \(f\) outlet, a float is sent out when theevent is reached in the timeline(immediately after the left outlet sends its bang).A symbol that is actually a decimal number (sent out of an soutlet) has the same effect.
list Out middleoutlet(s): If theoutlet has been specified as an l outlet, a list is sent out when the messenger event is reached in the timeline (immediately after the left outlet sendsits bang).

If therearemorethan two arguments (two or morein addition to thename argument) then a list received from thetimelinewill bebroken up and each item in the list will be sent out a different middle outlet, in order from left to right.
symbol Out middleoutlet(s): If the outlet has been specified as an soutlet, a symbol is sent out when the messenger event is reached in thetimeline (immediately after the left outlet sends its bang). H owever, if the symbol to be sent out the outlet is a number or is bang, then it is sent out as an int, a float, or a bang.
any message Out middle outlet: If the outlet has been specified as an a outlet, the message is sent out when the messenger event is reached in thetimeline(immediately after the left outlet sends its bang).

\section*{Examples}


A timeline communicates with an action patch via the ticmd object

Receive messages

\section*{See Also}
thistimeline timeline
Tutorial 41
Timeline

Send messages to a timeline
Time-based score of \(M\) ax messages
Timeline of \(M\) ax messages
Creating a graphic score of M ax messages

\section*{Input}
clock Theword clock, followed by the name of an existing setclock object, sets the timelineto be controlled by that setclock rather than by M ax'sinternal millisecond clock. The word clock by itself sets thetimeline object back to using M ax's regular millisecond clock.
locate Theword locate, followed by a number, specifies a time on the timeline- in milliseconds - and moves thetimeline object's current time pointer to that time. If the timeline is already playing when a locate message is received, it will continue playing after relocating its current time pointer.
markers The word markers, followed by an outlet number, causes the first word of each marker event in thetimelineto besent out the specified outlet, as the argument to an append message to be sent to a umenu object. (If the specified outlet does not exist, an error message is printed in the M ax window and nothing is sent out of thetimeline object.) Because themarkers messageis intended for storing the beginning of each marker in a umenu object, it first causes the message clear to be sent out the outlet to clear the umenu object's previous contents. Immediately after that, a series of append messages is sent out, to add the first word of each marker to the umenu. (Thetext output of the umenu object can then beattached to a prepend search object, which is in turn umenu back to the inlet of thetimeline object, to locate the current time pointer at a marker location. Seethe example.)
mute Theword mute, followed by the number of a timelinetrack, mutes that track, pre venting its events from being sent to the action patch.
open Causes the window associated with thetimeline object to become visible. The window is also brought to thefront. D ouble-clicking on thetimeline object in a locked patcher has the same effect.
play Plays thetimeline contained in the timeline object.
read The word read, followed by thename of atimelinefile, loads that file into thetimeline object. The word read by itself calls up a standard Open D ocument dialog box, so that a timelinefile can be read in.
search The word search, followed by a symbol, searches in thetimelinefor a marker event in which the first word is an exact match of that symbol. If an exact match is found, the current time pointer of thetimelinemoves to the location of the matching marker.

Stops the timeline.
timeFormat The word timeFormat, followed by an integer from 0 to 4 , sets the way in which time is displayed in the graphic timeline editor window. The number 0 means milliseconds, 1 means M IDI Clock, 2 means 24 fps (frames per second), 3 means 25 fps, and 4 means 30 fps . Any other number will belimited to within the 0 to 4 range.

Time-based score of M ax messages
unmute Theword unmute, followed by thenumber of atimelinetrack, unmutes thetrack, allowing its events once again to be sent to the action patch.
wclose Closes the window associated with thetimeline object.
write Calls up the standard SaveAs dialog box, so that the contents of timeline can be saved in a separatefile.
zoomLevel The word zoomLevel, foll owed by an integer from 0 to 10 , will set the magnification of the view of the timelinedisplayed in the graphic editor window. 0 means maximum zoom out ( 1 inch \(=40\) seconds) and 10 means maximum zoom in ( 1 inch \(=.04\) seconds). The default zoom level of thetimeline window is 4 ( 1 inch \(=4\) seconds). A ny number that exceeds the 0 to 10 range will belimited to stay within therange.

When a timeline object is created, it opens a timeline editor window, a time- based graphical score of \(M\) ax messages. Other patches can beloaded into this timeline as individual tracks (analogousto tracks of a multi-track sequencer, or staves of a musical score), and messages can be placed in the tracks to be sent to those patches at specific times. A patch that is loaded into atimelinetrack should generally contain at least oneticmd object, to receive messages from thetimeline. Such a patch is known as an action. The messages in the timelinetracks are known as events, and are entered by placing special event editor objects in thetracks.


W hen thetimeline is played, the events in the tracks are sent to specific ticmd objects in the action patch, and the event's message goes out theticmd object's outlet.

\section*{Arguments}
symbol Optional. Thefirst argument specifies the name of a timelinefileto read into the timeline object. If no file of that name is found, the name will still appear in the title bar of theempty timelineediting window that is opened when thetimeline object is created.
int Thesecond argument (or theonly argument, if no nameargument is present) sets thenumber of outlets thetimeline object will have. A ny number less than 1 will be set to 0 .

\section*{Output}
any message If the timeline has a positive integer argument, it will have that number of outlets. If any of its action patches (or the patch that contains thetimeline object itself) contains a tiout object, then any message received in theinlet of thetiout is sent out the specified outlet of thetimeline object. If thetimeline object has no outlets, an error message will beprinted in the M ax window when thetiout object is loaded, because no message can be sent out of thetimeline object.
(to actions) W hen timeline receives a play message, it progresses along the timeline of events placed in its graphic editing window. When it encounters an event on thetimeline, it sends that event to a specific ticmd object (in another patch, which has been loaded into thetimeline as an action), which in turn passes the message out its own outlet.

\section*{Examples}


Control a timeline's speed with setclock
Usemarkers to go to specific spots on the timeline

\section*{See Also}
\begin{tabular}{ll} 
mtr & Multi-track sequencer \\
setclock & Control theclock speed of timing objects remotely \\
thistimeline & Send messages to a timeline \\
thistrack & Send messages to a timeline track \\
ticmd & Receive messages from atimeline \\
tiout & Send messages out of a timeline object \\
Tutorial 41 & Timelineof Max messages \\
Timeline & Creating a graphic scoreof M ax messages
\end{tabular}

\section*{Input}
bang In left inlet: Starts—or restarts— thetimer.
In right inlet: Sends out the timeelapsed sincethetimer was started.
clock In left inlet: Theword clock, followed by the name of an existing setclock object, causes thetimer object's clock to be controlled by that setclock rather than by M ax's internal millisecond clock. Theword clock by itself setstimer back to using M ax's regular millisecond clock.

\section*{Arguments}

None.

\section*{Output}
float When abang is received in theright inlet, thetimeelapsed - in millisecondssince the timer was started, is sent out the outlet.

\section*{Examples}


Report time between bang messages


A single event can report time, then restart timer

\section*{See Also}
\begin{tabular}{ll} 
docker & Report elapsed time, at regular intervals \\
delay & Delay a bang before passing it on \\
setclock & Control theclock speed of timing objects remotely \\
Tutorial 20 & Using the computer keyboard
\end{tabular}

\section*{Input}
any message Thetiout object isdesigned to beused in an action patch. Any message received by tiout in an action patch is sent out an outlet of thetimeline object that is using that action.

\section*{Arguments}

Optional. Specifies the outlet of thetimeline object, out of which to send messages. If no argument is present, thetiout object's messages are sent out outlet 1 of the timeline (the left outlet).

\section*{Output}
(to timeline) Any message received in the inlet is sent out the specified outlet of thetimeline object that contains thetiout in one of its actions. If thetimeline object has no outlets, an error message will beprinted in the \(M\) ax window when thetiout object is loaded, and no message will be sent from tiout to the timeline object.

\section*{Examples}

\(M\) essages going into tiout come out the specified outlet of the timeline that contains it

\section*{See Also}
\(\left.\begin{array}{ll}\text { ticmd } & \begin{array}{l}\text { Receive messages from a timeline } \\
\text { timeline }\end{array} \\
\text { Time-based score of } M \text { ax messages }\end{array}\right]\)\begin{tabular}{ll} 
Timeline & Creating a graphic score of \(M\) ax messages \\
Tutorial 41 & Timelineof \(M\) ax messages
\end{tabular}

\section*{Input}
int Thenumber isstored in togedge. If it is not 0 , and the previously stored number was 0 , togedge sends a bang out the left outlet. If the number is 0 , and the previously stored number was not 0 , togedge sends a bang out the right outlet. O therwise, togedge sends no output.
float Ignored by togedge.
bang Switches the valuestored in togedge from 0 to non-zero, or viceversa, and reports the changeby sending a bang out one of theoutlets.

\section*{Arguments}

None.

\section*{Output}
bang Out left outlet: If thestored value is changed from 0 to not 0 .
Out right outlet: If thestored value ischanged from not 0 to 0 .

\section*{Examples}


Used as a detector of on/off status, or to switch back and forth between two triggers

\section*{See Also}
\begin{tabular}{ll} 
change & Filter out repetitions of a number \\
led & Display on/off status in color \\
toggle & Switch between on and off (1 and 0)
\end{tabular}

\section*{Input}
int Thenumber is sent out the outlet. If thenumber is not 0 , toggle displays an \(X\), showing it is on. If it is 0 , toggle is blank, showing it is off.
float Converted to int.
bang Switches toggle on if it is off; switches it off if it is on.
A mouse click on toggle has the same effect as a bang in its inlet.
set Switches the toggle on or off without sending anything out the outlet. The word set, followed by any non-zero number, sets toggle to on; set 0 sets it to off.
(mouse) Clicking on a toggle is the same as sending it a bang message.

\section*{Arguments}

None.

\section*{Output}
int A number received in the inlet is sent out theoutlet. A bang or a mouse click sends 1 or 0 out the outlet, depending on whether toggle is being turned on or off.

\section*{Examples}


Used as an onscreen controller, or to display the on/off status of numbers passing through

\section*{See Also}
\begin{tabular}{ll} 
led & Display on/off status in color \\
matrixcrtrl & M atrix-styleswitch control \\
pictctrl & Picture-based control \\
radiogroup & Radio button/check box user interfaceobject \\
togedge & Report zero/non-zero transitions \\
Tutorial 5 & toggle and comment
\end{tabular}

\section*{Input}
anymessage The tosymbol object accepts any message, number, or list for an input, and sends a singlesymbol out its output. Thesymbol can have a maximum length of 2048 characters.
separator The word separator specifies the separator character to be used when concatenating. The message separator with no arguments removes all spaces when creating a symbol (e.g., 1234 becomes 1234). When used with slash or colon separators, the separator message can be used to construct pathnames (e.g., ./patches myjunk myfile becomes./patches/myjunk/myfile). The default separator is a space.

\section*{Arguments}

None.

\section*{Output}
symbol A singlesymbol consisting of the concatenated messages, numbers, or lists. If the output symbol contains any spaces or special characters, it will be surrounded by doublequotes.

\section*{Examples}


Convert any input into a symbol

\section*{See Also}
conformpath Convert paths of onepathtypeand/or pathstyleto another
fromsymbol
zl

Transform a symbol into individual numbers or messages Multi-purpose list processor

\section*{Input}
(MID) touchin receives its input from M IDI aftertouch (channel pressure) messages received from a MIDI input device.
enable Themessageenable 0 d isables the object, causing it to ignore subsequent incoming M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its M IDI disabled by an enable message to a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which the object receives incoming pitch bend messages. The word port is optional and may beomitted.
int Thenumber is treated asif it werean incoming M IDI aftertouch value. If thereis a right outlet, 0 is sent out in lieu of a M IDI channel number. The received number is sent out the left outlet, and is not limited in the range 0 to 127.
(mouse) Doubleclicking on atouchin object shows a pop-up menu for choosing a M IDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port from which to receiveincoming aftertouch messages. If there is no argument, touchin receives on all channels from all ports.
(MID name) Optional. Thename of a M IDI input device may be used as the first argument to specify the port.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific MIDI channel on which to receive aftertouch messages. Channel numbers greater than 16 will be wrapped around to stay within the 1-16 range.
int A number alone can beused in place of a letter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
int If a specific channel number is included in the argument, there is only one outlet. Theoutput is the incoming aftertouch value, from \(0-127\), on the specified channel and port.

If there is no channel number specified by the argument, touchin will have a second outlet, on the right, which will output the channel number of the incoming aftertouch message.

\section*{Examples}

Receive from everywhere


Receive only fromport b


Only from port b, channel 13
touchin b 13
895
Aftertowh

Aftertouch messages can be received from everywhere, a specific port, or a specific port and channel

\section*{See Also}
\begin{tabular}{ll} 
touchout & Transmit M IDI aftertouch messages \\
midiin & Output received raw M IDI data \\
Using M IDI & Using M ax with M IDI \\
Ports & How M IDI ports are specified \\
Tutorial 16 & More M IDI ins and outs
\end{tabular}

\section*{Input}
int In left inlet:Thenumber is transmitted as an aftertouch value on the specified channel and port. Numbers are limited between 0 and 127.

In right inlet: Thenumber is stored as the channel number on which to transmit the aftertouch messages.
float Converted to int.
list In left inlet: Thefirst number is the aftertouch value, and the second number is the channel, of a M IDI aftertouch message, transmitted on the specified channel and port.
enable Themessage enable 0 disables the object, causing it not to transmit M IDI data. The word enable followed by any non-zero number enables the object once again, even if the entire patcher window has had its MIDI disabled by an enable messageto a pcontrol object.
port The word port, followed by a letter a-zor the name of a M IDI input port or device, sets the port from which the object receives incoming pitch bend messages. The word port is optional and may beomitted.
(mouse) Doubleclicking on a touchout object shows a pop-up menu for choosing a MIDI port or device.

\section*{Arguments}
a-z Optional. Specifies the port for transmitting MIDI aftertouch messages. Channel numbers greater than 16 received in the right inlet will bewrapped around to stay within the \(1-16\) range. If there is no argument, touchout initially transmits out porta, on MIDI channel 1.
a-z and int A letter and number combination (separated by a space) indicates a port and a specific M IDI channel on which to transmit aftertouch messages. Channel numbers greater than 16 will be wrapped around to stay within the 1-16 range.
(MID name) Optional. Thename of a M IDI output devicemay beused as thefirst argument to specify theport.
int A number alone can beused in place of a letter and number combination. The exact meaning of the channel number argument depends on the channel offset specified for each port in theMIDI Setup dialog.

\section*{Output}
(MIDI) There are no outlets. Theoutput isaM IDI aftertouch messagetransmitted directly to the object's M IDI output port.

\section*{Examples}

towchout a

towchout

Letter argument transmits to only one port Otherwise, number specifies both port and channel

\section*{See Also}
\begin{tabular}{ll} 
touchin & Output received M IDI aftertouch values \\
midiout & Transmit raw M IDI data \\
Using M IDI & Using M ax with M IDI \\
Ports & How M IDI ports are specified \\
Tutorial 16 & MoreM IDI ins and outs
\end{tabular}

\section*{trigger/t}

\section*{Input}
int or float Thenumber is sent out each outlet in the form designated by thetyped-in arguments: either an int, a float, a list, a symbol (although empty), or abang.
bang Causes either abang, an integer 0 , a float 0 ., a list 0 , or an empty symbol to besent out of each outlet.
list The list is sent out any outlet with the eetter I assigned to it. O ut other outlets, the list is converted and sent out as integer 0 , float 0 ., the empty symbol "", or bang.
symbol The word will be sent out any outlet with the eetter s assigned to it. Out other outlets, the symbol is converted and sent out as integer 0 , float 0 ., list 0 , or bang.

\section*{Arguments}
\(i, f, b, l\), ors Optional. Thenumber of arguments determines the number of outlets. Each outlet sends out either int, float, bang, list, or symbol, depending on the arguments. If there are no arguments, there aretwo outlets, both of which send an int.
any message Optional. When an int, float, or symbol is specified, the value is output as a constant.

\section*{Output}
int or float A number received in the inlet is sent out each outlet, in order from right to left. Thenumber will be converted to int, float, list, symbol, or bang before being sent out, depending on the argument that corresponds to each outlet. A symbol, list, or bang received in the inlet will be converted to integer 0 by an i outlet, and to float 0 . by an \(f\) argument.
bang A nything received in the inlet will be converted to bang before being sent out ab outlet.
list A list received in the inlet will be sent out unchanged by an I outlet. A nything else will be converted to the single item list 0 before being sent out.
symbol A symbol received in the inlet will be sent out unchanged by an soutlet. A nything else will be converted to thenull symbol "'" before being sent out. Note: The only object that recognizes this null symbol is print, which valiantly prints the empty message in the Max window. O ther objects will either ignore this null symbol or print an error message in theM ax window.

\section*{Examples}


Order is normally right-to-left
A ny other order can bespecified by trigger

\section*{See Also}
bangbang message
Tutorial 7

Send a bang to many places, in order
Send any message
Right-to-left order

If a number is less than previous numbers, output it

\section*{Input}
int In left inlet: If the input is less than the value currently stored in trough, it is stored as the new minimum value and is sent out.

In right inlet: Thenumber is stored in trough as thenew minimum value, and is sent out.
float In left inlet: Is not understood by trough.
In right inlet: Converted to int.
list In left inlet: Thesecond number is stored as thenew minimum value and is sent out, then thefirst number is received in the left inlet.
bang In left inlet: Sends the currently stored minimum value out the left outlet.

\section*{Arguments}

None. Theinitial valuestored in trough is 128.

\section*{Output}
int Out left outlet: New minimum values are sent out. (Numbers received in theright inlet are alwaysthenew minimum value.)

Out middle outlet: If the number received is a new minimum value, the output is 1. If thenumber received in theleft inlet isnot anew minimum value, theoutput is 0.

Out right outlet: If the number received is a new minimum value, the output is0. If thenumber received in the left inlet is not anew minimum value, the output is 1.

\section*{Examples}


Find the smallest in a series of numbers


Number in right inlet always sets a new trough

\section*{See Also}

\author{
minimum \\ peak \\ <
}

Output the smallest in a list of numbers
If a number is greater than previous numbers, output it Islessthan, comparison of two numbers
bang The ubutton object can operate in one of two modes. When the ubutton is in button mode (the default mode), it responds to a bang in its inlet by becoming highlighted briefly and sending a bang out its left outlet. When ubutton is in toggle mode, abang in its inlet causesitto become(and stay) highlighted and send abang out its right outlet; or, if it is already highlighted, it becomes unhighlighted and sends a bang out its left outlet.
any symbol Converted to bang.
(mouse) In button mode, a mouse click on ubutton highlights it for as long as the mouse is held down, sending abang out the right outlet when the mouse button is pressed down, and another bang out the left outlet when the mouse button is released. In toggle mode, a mouseclick behaves the same as a bang. When themouse is clicked, ubutton will send a 1 out the right outlet if the cursor is inside of the ubutton object's rectangle, and 0 if it is not. It will also send these messages when the mousebutton is released. When the object is in "Track M ouseW hileD ragging" mode, these messages are sent continuously whilethe mousebutton is held down after aclick.
stay Theword stay, followed by a nonzero number, puts ubutton into button mode and setsitto wait for that particular number. W hen that number is received in the inlet, no output is sent, but ubutton stays highlighted until someother message (or a mouse click) is received. A message of stay 0 puts the ubutton into normal button mode; it no longer looks for any particular number.
int If ubutton is waiting for a particular number (itsStay-on Value) and theincoming number matches it, thebutton is highlighted but nothing is sent out. If the incoming number does not match the number that ubutton is waiting for, the button is unhighlighted (or remains that way). If ubutton has a Stay-on Value of 0, int is the same as bang.
float Converted to int.
dragtrack Theword dragtrack, followed by a nonzero number, enables"Track M ouseW hile Dragging" mode. In this mode, positional and inside/outside messages (described abovefor mouse clicks) are sent continuously whilethe mouse button is held down after a click. dragtrack 0 di sables this behavior, which is off by default. Dragging the mouse will continueto generate these message pairs until the mouse button is released. Drag tracking is off by default. It can also be enabled in theubutton object's Inspector.

If ubutton is in togglemode, set 1 sets the ubutton object's toggle(highlights it) and set 0 clears the ubutton object's toggle (unhighlights it). Other integer arguments for set will send thenumber to ubutton, for comparison to itsStay-on Value, without causing any output.
toggle Theword toggle, followed by a non-zero number, puts theubutton in toggle mode. Themessagetoggle 0 puts theubutton in button mode.

\section*{Inspector}

The behavior of aubutton object is displayed and can beedited using its Inspector. If you have enabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any ubutton object displays the ubutton Inspector in the floating window. Selecting an object and choosing Get Info... from the O bject menu also displays the Inspector.

The ubutton Inspector lets you specify the Button M ode (thedefault) or Toggle M ode. TheHighlightW hen Clicked check box sets the mouse behavior of the ubutton object. TheTrack M ouseW hileD ragging" checkbox enables cursor position reporting (seethedragtrack message). Typing a nonzero number into theStay-on Value box specifies thenumber the ubutton will wait for in Button M ode. To choose ToggleM ode, you must set theStay-on Valueto 0.

The Revert button undoes all changes you'vemadeto an object's settings since you opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector C hanges from the Edit menu whiletheInspector is open.

\section*{Arguments}

None.

\section*{Output}
bang Out 1st outlet: In button mode (with aStay-on Value of 0), any input causes ubutton to flash and send abang out the left outlet. A bang is also sent out the left outlet when the mouse button is released.

If the ubutton object is in toggle mode and isalready highlighted, any input causes ubutton to become unhighlighted and send abang out its left outlet.
bang Out 2nd outlet:In button mode (with a Stay-on Value of 0), a mouse click sends a bang when the mouse button is pressed.

If the object is in toggle mode, any input causes ubutton to become highlighted and send abang out the outlet. If it is al ready highlighted, it becomes unhighlighted and no bang is sent.
list Out 3rd outlet:W hen themouse button isclicked and released, theubutton object sends out a list composed of two numbers which specify the coordinates for the cursor position expressed as an offset, in pixels, from the upper left-hand corner of theubutton object rectangle. If the"Track M ouseW hile Dragging" option is
enabled using the Inspector or thedragtrack message, new coordinates will be reported as the mouse is moved until the mouse button is released.
int Out right outlet:W hen the mousebutton is clicked and released, al is sent out this outlet if the cursor is inside of the ubutton object's rectangular area. If the "Track M ouseW hileDragging" option is enabled using the Inspector or the dragtrack message, a0 will beoutput if the cursor moves outside of the ubutton object's rectangular area while the mouse button is pressed.

\section*{Examples}


W hen ubutton is placed on comments or pictures, they can "respond" to a mouseclick

\section*{See Also}
\begin{tabular}{ll} 
bangbang & Send a bang to many places, in order \\
button & Flash on any message, send a bang \\
fpic & Display a picturefrom a graphics file \\
led & Display on/off status in color \\
matrixcrtrl & M atrix-style switch control \\
pictctrl & Picture-based control \\
radiogroup & Radio button/check box user interfaceobject \\
Tutorial 19 & Screen aesthetics
\end{tabular}
int Thenumber specifies a menu item to be sent out, and causes umenu to display that item. Theitems are numbered starting at 0 .

A menu item can also bechosen from a umenu with the mouse, as with any popup menu.
append The word append, followed by any message, appends that message as the new last item in the menu.
autosize The word autosize, followed by al or 0 , turns sizing the pop-up menu to the width of thelongest item on or off. If autosizeis off, the width of themenu is the width of theobject's rectangle.
bang Sends out the currently displayed menu item.
brgb The word brgb, followed by threenumbers between 0 and 255 , sets the color of the umenu object in RGB format. Thedefault is 221221221.
checkitem The word checkitem, followed by an item number and 1 or 0 , places (1) or removes \((0)\) acheck mark next to the item number.
clearchecks Theword clearchecks removes check marks for all items.
clear Removes all items from the umenu.
color The word color, followed by a number between 0 and 15 , sets the foreground (text) color to the standard preset color specified by thenumber.
delete Followed by a number of an item, deletes that item from theumenu.
evalitemtext The word evalitemtext, followed by al or 0 , turns Evaluate Item Text mode on or off. W hen on, the message represented by the current item's text is sent out the right outlet when the menu's value is changed either by message or the user clicking on it.
frgb Theword rgb, followed by threenumbers between 0 and 255 , sets the text color of the umenu object in RGB format. The default is 000 .
labeldick The word labeldick, followed by a 1 or 0 , turns Label Click mode on or off. In this mode, when theobject is in Label mode, you can click in the object's rectangle and the current value of the menu is sent out the left outlet. In addition, thetext of the current item is shown underlined.
maxitems Theword maxitems, followed by the number, sets the maximum number of menu items of the umenu, in the same way as the aximum number of items setting in
the umenu object's Inspector (seeInspector, below). The default is 64, and the maximum is 2000.
mode Theword mode, followed by the number 1,2, or 3, sets the appearance and behavior of the umenu, in the same way as theM ode setting in the umenu object's Inspector (see Inspector, below). mode 1 is thenormal pop-up menu style, mode 2 is a scrolling menu style, and mode 3 is a label instead of a menu.
rgb2 Theword rgb2, followed by threenumbers between 0 and 255 , sets the upper framelight color (i.e., the"lit" part of a 3D menu item) of the umenu object's menu item in RGB format. The default is 255255255.
rgb3 Theword rgb3, followed by three numbers between 0 and 255, sets the upper framedark color (i.e., the "shaded" part of a 3D menu item) of the umenu object's menu item in RGB format. Thedefault is 221221221.
rgb4 Theword rgb4, followed by threenumbers between 0 and 255, setsthelower frame light color (i.e., the"lit" part of a 3D menu item) of the rectangle that outlines the umenu object's menu item in RGB format. The default is 170170170.
rgb5 Theword rgb5, followed by three numbers between 0 and 255 , setsthe lower frame dark color (i.e., the "shaded" part of a 3D menu item) of the umenu object's menu item in RGB format. The default is 119119119.
rgb6 The word rgb6, followed by three numbers between 0 and 255 , sets thecolor of the "corner dots" of the umenu display area in RGB format. If you are using a umenu object on a colored background or in front of a panel, you should set this color to match the background object color. Thedefault is 187187187.
set Theword set, followed by a number or symbol, specifies a menu item to be displayed by umenu, but does not send it out the outlet. If theset argument is a symbol, set searches for a menu item which begins with the symbol.
setcheck (M acintosh only) The word setcheck, followed by a number between 0 and 255, sets the character used to bethecheck mark. setcheck 0 uses the default character.
setitem The word setitem, followed by an item number and any message, sets the specified menu item to that message.
setrgb The word setrgb, followed by six numbers between 0 and 255 that specify RGB values, uses the first three numbers to set the foreground (text) color and the second three numbers to set thebackground (fill) color.
showchecked This message operates as follows. If the currently displayed item is checked, do nothing. Otherwise, starting at the first item in themenu, find onethat is checked and set the menu to display that item. If there isn't one, do nothing.
symbol Identical to the set message with a symbol argument, except that the found item number is sent out (and thetext of theitem is sent out the right outlet, if the Evaluateltem Text feature is enabled).

\section*{Inspector}

Thebehavior of aumenu object is displayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any umenu object displays the umenu Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also displaystheInspector.

Enter the items which you want to appear on the menu in theM enu Text box, separated by commas. The the M aximum Items box lets you specify the maximum number of menu items. You nay have any number of menu items from 32 to 2000 (thedefault is64). The pop-up M ode menu lets you specify the appearance and behavior of the umenu object's user interface. Normal (the default) is the standard pop-up menu, allowing you to seeall the menu items at onceby clicking and holding the mouse button. Scrolling mode lets you scroll through the individual menu items by dragging the mouse up or down, displaying one item at a time; "Label" shows the text of the selected menu item with no border around it, and does not respond to the mouse. If Auto Size is checked, the width of the umenu object's pop-up menu will be adjusted to fit the width of thelongest item. If Evaluateltem Text is checked, thetext of themenu item will besent as a message out the right outlet when the item is selected.

TheC olor option lets you use a swatch color picker or RGB values used to display the umenu text and its background. Text sets the color for the message di splayed (default 000 ), and Background sets the color for the message area in which the hint appears (default 221221 221). TheU pper FrameLight, Upper FrameD ark, Lower Framelight, and Lower FrameD ark attributes are used to set the "lit" and "shaded" edges of the menu item. Thedefault settings are 255255255 for upper framelight, 221221221 for upper framedark, 170170170 for lower frame light, and 119119119 for lower framedark. Corner D ots is used to set the color of the corner area of the umenu item's display area. Thedefault is 187187187.

The Revert button undoes all changes you'vemadeto an object's settings since you opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

The font and size of a umenu can bechanged with the Font menu.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet: Thenumber of theselected menu item is sent out. M enu items are numbered beginning with 0 .
anything Out right outlet: If Evaluate Item Text has been checked in the Inspector, thetext of the selected menu item is sent out as a message.

\section*{Examples}


Used to send commands
... or to display text associated with numbers received

\section*{See Also}
coll Store and edit a collection of different messages
Tutorial 37
D ata structures

\section*{Input}
class symbol Theuniversal objects expects as input a symbol that names an object class (for example, table or dspstate~), followed by a message selector and any number of arguments for that message. The message and its arguments (if any) are sent to all instances of the class within the same patcher (and possibly its subpatchers).
sendmessage To send messages to certain objects whose class names are also reserved Max message names (such as int and float), you need to start the message with the sendmessage message. sendmessage can beused with any class.

\section*{Arguments}
int Optional. If a 1 is present as an argument, universal will send messages it receives to objects of the specified class in subpatchers of its patcher as well as in the patcher containing the universal object.

\section*{Output}

None.Theobject has no outlets, but objects receiving themessage(s) it sends may have some form of output from their outlets. H owever, the order in which the message is sent to various objects is not guaranteed. This is also true when using the send and receive objects.

\section*{Examples}


Send a message to all objects of the sameclass at once

\section*{See Also}
forward
receive
send
value

Send remote messages to a variety of objects
Receive messages without patch cords
Send messages without patch cords
Share a stored message with other objects

Break a list up into individual messages

\section*{Input}
list Each item in the list (up to the number of outlets) is sent out the outlet corresponding to its position in the list.
int Thenumber is isent out the left outlet.
float Converted to int, unless the left outlet was initialized with a float argument. The number is sent out the left outlet.
symbol The symbol is sent out the left outlet. If the left outlet was not initialized with a symbol argument, 0 is sent out the outlet. Symbol arguments allow symbols to pass through, and changenumbers to the empty symbol ("").
bang Causes each stored item of a list received in theinlet to sent out the corresponding outlet.

\section*{Arguments}
anything
Optional. Thenumber of outlets is determined by thenumber of arguments. The arguments can beany combination of ints, floats, and symbols. The argument specifies the output of the unpack object's outlet; the input type is forced to the outlet type (e.g., outlets that correspond to int or float arguments will always output that type of number, converting the input items as necessary). If no argument is typed in, unpack will havetwo int outlets. Symbol arguments allow symbols to passthrough, and changenumbers to the empty symbol ("").

\section*{Output}
int Each item of thelist received in the inlet is sent out the corresponding outlet. The first item in the list is sent out the leftmost outlet, and so on. If an outlet has been initialized with an int argument, then a float or a symbol will be converted to int before being sent out that outlet. (A symbol is converted to 0 .)
float If the outlet has been initialized with a float argument, then an int or a symbol from the input list will be converted to float before being sent out that outlet. (A symbol is converted to 0.0.)
symbol A symbol in the input list will be sent out the corresponding outlet if that outlet has been initialized with a symbol argument. If theoutlet has been initialized with an int or a float, the symbol will be converted to 0 or 0.0 .

\section*{Examples}


Each item in a list can besent to a different place

\section*{See Also}
\begin{tabular}{ll} 
iter & Break alist up into a series of numbers \\
pack & Combinenumbers into a list \\
spray & Distribute an integer to a numbered outlet \\
zl & Multi-purposelist processor \\
Tutorial 30 & Number groups
\end{tabular}
bang In left inlet: Sends out a previously unchosen random number from 0 to one less than the specified maximum limit.
dear In left inlet: Clears the list of already chosen numbers.
int In right inlet: Clears the list of already chosen numbers, and specifies the number of possible valuesfor the random number generator. The random numbers will rangefrom 0 to oneless than this maximum limit.
seed In left inlet: The word seed, followed by a number, provides a"seed" value for the random generator, which causes a specific (reproducible) sequence of pseudorandom numbers to occur. The number 0 uses thetime elapsed since system startup (an unpredictable value) as the seed, ensuring an unpredictable sequence of numbers. This unpredictableseed is used by default when the urn object is cre ated. However, once all numbers have been chosen, the sequence will repeat. Therefore, in order to achieve a non-repeating sequence of numbers, you will need to send theurn object the seed 0 message each time you send it the clear message.

\section*{Arguments}
int Optional. Thenumber of possible values for the random number generator. If no argument is typed in, there will be only 1 possible number.

\section*{Output}
int Out left outlet: If there are numbers within the current range that have not been sent out since the last clear message was received, urn generates a random number between 0 and one less than the maximum.
bang Out right outlet: W hen all numbers in the current range have been generated, urn sends a bang out the right outlet instead of a number out the left outlet.

\section*{Examples}


Chooserandom numbers without repeating a choice

\section*{See Also}
\begin{tabular}{ll} 
decide & Choose randomly between on and off (1 and 0) \\
drunk & Output random numbers in a moving range \\
random & Generate a random number
\end{tabular}
int Thenumber received in the inlet is displayed graphically by uslider, and is passed out theoutlet. O ptionally, uslider can multiply thenumber by some amount and add an offset to it, before sending it out the outlet.
(mouse) The uslider will also send out numbers in responseto mouseclicking or dragging.
float Converted to int.
bang Sends out the number currently stored in uslider.
color Theword color, followed by a number from 0 to 15 , setsthe color of the center portion of the uslider to oneof theobject colors which arealso available via theColor command in the \(O\) bject menu.
local Theword local, followed by a non-zero number, enables object response to mouse clicks (the default). The messagelocal 0 disables the object's response to the mouse; the uslider object will respond only to input in its inlet and ignoreall mouseclicks.
min Theword min, followed by a number, sets valuethat will be added to theuslider object's value before it is sent out the outlet. The default is 0 .
mult Theword mult followed by a number, specifies a multiplier value. Theuslider object's valuewill bemultiplied by this number before it is sent out theoutlet. The multiplication happens beforetheaddition of the \(O\) ffset value. The default value is 1 .
resolution Theword resolution, followed by a number, sets the sampling interval in milliseconds. This controls the rate at which the display is updated as well as the ratethat numbers are sent out the uslider object's outlet.
set Theword set, followed by a number, resets the value displayed by uslider, without triggering output.
size Theword size, followed by a number, sets the range of the uslider object. The default value is 128 . Setting the size to 1 disables the uslider visually (since it can only display one value). A ny specified size less than 1 will be set to 2 .

\section*{Inspector}

Thebehavior of a uslider object is isplayed and can beedited using its Inspector. If you haveenabled thefloating inspector by choosing Show Floating Inspector from theW indows menu, selecting any uslider object displays the uslider Inspector in thefloating window. Selecting an object and choosing Get Info... from the Object menu also di splays the Inspector.

The uslider Inspector lets you enter a Slider Range value. Numbers received in the inlet are automatically limited between 0 and the number 1 less than the specified range value. The default range value is 128 . You can specify an 0 ffset value which will be added to thenumber, after multiplication. Thedefault offset value is 0 . The uslider Inspector also lets you specify aM ultiplier. The uslider object's value will be multiplied by this number before it is sent out theoutlet. Themultiplication happens beforethe addition of the Offset value. The default multiplier value is 1.

TheRevert button undoes all changes you'vemadeto an object's settings sinceyou opened the Inspector. You can also revert to the state of an object before you opened the Inspector window by choosing Undo Inspector Changes from the Edit menu whiletheInspector is open.

\section*{Arguments}

Therange of uslider is set by selecting it (when the patcher window is unlocked) and choosing Get Info... from the Object menu. Numbers received in the inlet are automatically limited between 0 and the number 1 less than the specified range.

The Inspector also provides a M ultiplier- by which all numbers will be multiplied before being sent out, and an Offset- which will beadded to the number, after multiplication.A newly created uslider has a range of 128, a multiplier of 1 , and an offset of 0 .

\section*{Output}
int Numbersreceived in theinlet, or produced by clicking or dragging on uslider with the mouse, arefirst multiplied by the multiplier, then havetheoffset added to them, then are sent out the outlet.

\section*{Examples}

pgmout

Produceoutput by dragging onscreen...

or use to display
numbers passing through

\section*{See Also}
\begin{tabular}{ll} 
dial & Output numbers by moving a dial onscreen \\
hslider & Output numbers by moving aslider onscreen \\
kslider & Output numbersfrom a keyboard onscreen \\
pictctrl & Picture-based control \\
pictslider & Picture-based slider \\
rslider & Display or change a range of numbers \\
slider & Output numbers by moving aslider onscreen \\
Tutorial 14 & Sliders and dials \\
Tutorial 14 & Sliders and dials
\end{tabular}

\section*{Input}
bang In left inlet: Begins sending out bang messages as fast as possible, one after another. The number of bang messages to send isdetermined by the last number received in either inlet.
int In left inlet: Sets thenumber of bang messages to send, then begins sending them out as fast as possible, one after another.

In right inlet: Sets the number of bang messages to send, without causing output.
pause In left inlet: Causes uzi to stop in the midst of sending its output. (Sinceuzi sends its output as fast as possible, this message must betriggered in some way by the output of uzi itself.) uzi keepstrack of how many bang messages it has sent, and if it receives the pause message before sending out all its bang messages, it can then be caused to send out the rest of its bang messages with a resume or continue message.
break Sameaspause.
resume In left inlet: If uzi has been stopped by a pause message in the midst of sending its output, resume causes it to send out the rest of its output.
continue Sameas resume.

\section*{Arguments}
int Optional. Sets an initial number of bang messages to be sent out in response to a bang in the left inlet. If no argument is present, uzi is initially set to send out one bang.

\section*{Output}
bang Out left outlet: W hen uzi receives a bang or int in its left inlet, a certain number of bang messages are sent out as fast as possible, one after another. Thenumber of bang messages is determined by the most recent number received in either inlet.

Out middle outlet:After the last bang is sent out its left outlet, uzi sends onebang out its middle outlet. This can be used as a signal that all thebang messages have been sent, much likethe "carry" outlet on the counter object.
int Out right outlet: Thenumber of each bang is sent out. Numbering begins from 1 each timean int or bang is received in the left inlet. If uzi is being restarted with a resume or continue message, numbering begins wherever it left off.

\section*{Examples}


Count asfast as possibleusinguzi


Count at a specific rate, not using uzi


Use uzi to perform many calculations quickly

\section*{See Also}
counter Count thebang messages received, output the count
line O utput numbers in a ramp from one valueto another Output a bang message at regular intervals

\section*{Input}
any message Themessage is stored, to be shared by all other value objects with the samename, even if they arein another patch. A message received in any other value object that has the same name will changethestored value.
bang Sends out the stored message.
(mouse) Double clicking on a value object opens all windows containing value objects with the samename.
send The word send, followed by the name of a receive object, sets the value object to send its stored messageto all receive objects with that namein responseto abang message.

\section*{Arguments}
symbol Obligatory. Gives a nameto value.
any message Optional.Additional arguments after thenamingsymbol initializethecontents of value. If no additional arguments are present, value contains nothing.

\section*{Output}
any message A bang in the inlet causes thestored message to be sent out.

\section*{Examples}


Onevalue(or any type of message) is shared between all value objects that sharethe same name

\section*{See Also}
float
int
pv
pvar
send
receive
Tutorial 24

Store a decimal number
Store an integer value
Share variables specific to a patch and its subpatches
Connect to a named object in a patcher
Send messages without patch cords
Receive messages without patch cords
send and receive

Thevdp object works with serially-controlled videodisk players(remember them?) that arecompatible with thePioneer 4200 or 8000 standard. Each command received by thevdp object sends a stream of numbers out the object's left outlet, intended to be connected to the serial object. The description of each command below discusses what effect the command has on the player, not the exact character stream sent by vdp.

Because videodisc players have relatively buffer-less serial interfaces, vdp places each command it receives in a queue, and sends it out only when the player has finished executing its most recent command. This"feature" may cause a delay between thetime a command is sent to thevdp object and the time it is actually sent out the serial port.

A ny message received in theright inlet will behaveexactly as if it had been received in theleft inlet, except that it will be put at the front of thequeue, to bethe very next command sent out to the player.

\section*{Input}
clear In left inlet: Removes any pending commandsfrom thequeue and resets the object.
control In left inlet: The word control, followed by a number, tells the videodisc player to perform one of thefollowing operations:

NumberO peration
\(0 \quad\) Initialize and reset player
1 Eject disk
2 Audio off
3 Audio 1 on
4 Audio 2 on
5 Stereo on
6 Pictureon
7 Pictureoff
8 Display framenumberson
9 Display framenumbers off
11 Frameaccess mode
12 Timeaccess mode
13 Chapter access mode
fps In left inlet: Sets the playing speed. Thefps message is followed by a number (frames per second) or an adjective. The following adjectives and numbers are equivalent (at least for the Pioneer 4200):
\begin{tabular}{lr} 
slowest & 1 \\
slower & 10 \\
slow & 15 \\
normal & 30 \\
fast & 60 \\
faster & 90 \\
fastest & 120
\end{tabular}
frame In left inlet:Asks the player what its current framenumber is and sends the response (received in the middle inlet) out the middle-right outlet.
play In left inlet: With no arguments, play starts playing at the current speed from the current location to the end of thedisk (or until the player receives another command). With oneargument ( a framenumber), play searches to the specified framenumber and beginsplaying to theend of thedisk. With two arguments, play searches to the location specified by thefirst number and plays until the disc reaches the second framenumber.
int In left inlet: Same as play from a specified framenumber to the end of the disc.
In middle inlet: vdp expects responses from the player to befed from the serial object into its middle inlet. When vdp sees"received" (the letter R followed by the return character) from the player, it sends the next command from its queue of pending commands. The example shows how to connect thevdp and serial objects together.
scan In left inlet: Initiates a"fast forward" or "rewind" operation. scan forward moves forward, scan backward moves backward.
search In left inlet: Thefirst argument indicates a framenumber to search to. The second, optional argument, if non-zero, instructs the player to keep the picture on while searching. If searching a great distance from the current location, the player may not be able to keep from blanking the screen. O nce the player arrives at the desired frame, it will display the (still) image from that frame.
step In left inlet: Followed by-1, step pauses the player (if playing) and di splays theprevious frame. Followed by 1 , step pauses the player (if playing) and displays the next frame.
stop In left inlet: Pauses the player.
cmd In left inlet: The cmd message can beused to send "primitive" commands consisting of ASCII codes to thevideo disk player. Commandsusually consist of two-let-
ter codes preceded by numeric arguments. For example, searching to frame 5000 could be accomplished with the message cmd 5000 SE. Refer to theowner's manual of your player for details. Thecmd message is particularly useful with thePioneer 8000 player, since it has a number of special features not supported by the regular messages of thevdp object.
setskip In left inlet: Followed by a number, sets thenumber of framesto jump (forward or backward) from the current framelocation when using theskip message.
skip In left inlet: Followed by-1, skips backward by a number of frames specified in the setskip message. Followed by 1, skips forward by a number of frames specified in the setskip message.

\section*{Arguments}

None.

\section*{Output}
int Out left outlet: A stream of characters, coded instructions to the videodisc player, for each command. Thesenumbers are intended to be sent to the left inlet of a serial object.
bang Out middle left outlet: After sending a command out its left outlet, vdp begins "polling" the serial object for a responsefrom the player by sending bang messages out this outlet approximatel y every 20 milliseconds, until vdp receives a"received" signal from the player in its right inlet. (A bang sent to a serial object causes any characters received in that serial port to be sent out the serial object's outlet.)
int Out middle right outlet: Current frame number, received from the player in response to a frame message.
int Out right outlet: Not implemented.

\section*{Examples}


\section*{See Also}
serial
Send and receive characters from serial ports and cards Pioneer 4200 operation manual
HyperC ard InteractiveVideo Toolkit documentation

The vexpr object behaves exactly like the expr object, except for the way in which it handles lists. See expr for a full description.

\section*{Input}
list vexpr is designed to receive a list in each inlet. Theitems of each list are used individually, in order from left to right, to replace the changeable argument in a series of evaluations of the expression. W hen a list is received in theleft inlet, the expression is first evaluated using the first item of each list, then using the second item of each list, etc. The series of results of these evaluations is then sent out as a list.
int, or float An int or float received in any inlet is treated as a single item list.
bang In left inlet: Evaluates the expression and sends out the results, using the most recently received lists of numbers.
scalarmode In left inlet: Theword scalarmode, followed by a non-zero number, sets the scalar mode of operation. In scalar mode, sending a list of length 1 (i.e., a single value) will cause that valueto be applied to each element of the other list. Themessage scalarmode 0 disables scalar mode.

\section*{Arguments}

Obligatory. Seeexpr.

\section*{Output}
list When a list is received in the left inlet, vexpr uses the first item of the lists it has received in each of its different inlets, puts those items in place of the changeable arguments in the expression, and evaluates the expression. It then does the same with the second item in each list, and so on until it has used the last item of the shortest list. It then sends out all of the different results as a single list.
int If the input in one of theinlets was a single number rather than a list, and the expression is evaluated as an integer value, then a single result is sent out as an int rather than a list.
float If the input in one of the inlets was a single number rather than a list, and the expression is evaluated as a float value, then a single result is sent out as a float rather than a list.

\section*{Examples}

Evaluate the expression using the 1st item in each list, then using the 2nd itell, etc.


Perform thesamecalculation on a wholelist of input values

\section*{See Also}
expr
Tutorial 38

Evaluate a mathematical expression expr and if
int Thenumbers are individual bytes of aM IDI message stream, received from an object such as midiin or seq. M IDI pitch bend messages are recoognized by xbendin, and the pitch bend data is sent out in full precision.

\section*{Arguments}
int Optional. Thenumber specifies a M IDI channel on which to recognize pitch bend messages. If there is no argument, xbendin recognizes pitch bend messages on all channels, and the channel number is sent out the extra outlet on the right.
xbendin2 Optional. Normally, xbendin sends pitch bend values out the eft outlet as 14-bit values. If the object is called xbendin2, however, there will be an additional outlet. Themost significant data byte of the message is sent out the leftmost outlet, and the least significant data byte is sent out the second outlet.

\section*{Output}
int The pitch bend valueis sent out the left outlet of xbendin as a single 14 -bit value If the object is called xbendin2, there is an additional outlet. The most significant 7 bits are sent out the leftmost outlet, and the least significant (extra precision) 7 bits are sent out the second outlet. If there is no channel number specified as an argument (omni on), xbendin will have an extra outlet on the right, which will output the channel number of the incoming pitch bend message.

\section*{Examples}



Most significiant byte of pitchbend value

Least sigmif-
Chaminel icant byte
Pitch bend values aresent out as a singlenumber or as two separate bytes

\section*{See Also}
bendin
midiin
xbendout
Tutorial 34
MIDI

Output received M IDI pitch bend messages
O utput received raw M IDI data
Format extra precision MIDI pitch bend messages
M anaging raw MIDI data
MIDI overview and specification
int In left inlet: Thenumber is a 14-bit pitch bend value to beformatted into a completeM IDI pitch bend message by xbendout.

In right inlet: Thenumber is stored as the M IDI channel for the pitch bend message sent out by xbendout. Channel numbers greater than 16 will bewrapped around to stay within the 1-16 range.
list Thefirst number is a 14 -bit pitch bend value, and the second number is the channel. Both numbers arestored and areformatted into aM IDI pitch bend message which is sent out the outlet.
bang Sends out a M IDI pitch bend message using the numbers currently stored in xbendout.

\section*{Arguments}
xbendout2 If the object is called xbendout2, there will bethreeinlets. Themost significant byte of the pitch bend message is received in the left inlet, and the least significant (extra precision) byte is received in themiddleinlet.
int Optional. Thenumber sets an initial valuefor theM IDI channel of the pitch bend messages. If there is no argument, the initial channel number is 1.

\section*{Output}
int When apitch bend value is received in the left inlet, the complete M IDI pitch bend message is sent out the outlet, byte-by-byte.

\section*{Examples}


14-bit pitch bend value is formatted into a M IDI message, which is sent out byte by-byte

\section*{See Also}
\begin{tabular}{ll} 
bendout & Transmit M IDI pitch bend messages \\
midiout & Transmit raw M IDI data \\
xbendin & Interpret extra precision M IDI pitch bend messages \\
Tutorial 34 & M anaging raw M IDI data \\
MIDI & MIDI overview and specification
\end{tabular}
int Thenumbers are individual bytes of a M IDI stream from midiin. Whereas a noteon with a velocity of 0 is most commonly used to indicate a note off, xnotein also recognizes the MIDI note-off command, and outputsits release velocity.

\section*{Arguments}
int Optional. Specifies a channel number on which to look for incoming M IDI noteon and note-off messages. Channel numbers greater than 16 will be wrapped around to stay within the \(1-16\) range. If there is no argument, xnotein recognizes note-on and note- off messages on all M IDI channels, and the channel number of the message is sent out the rightmost outlet.

\section*{Output}
int Out left outlet: The pitch value of the incoming note-on or note-off message.
Out 2nd outlet: Thekey-down or key-up velocity of a note-on or a note-off message.

Out 3rd outlet:Thenumber is the indicator of whether the incoming M IDI message is a note on or a note-off. If the incoming message is a note on, theoutput is 1. If the incoming message is a note off- or a note on with a velocity of \(0-\) the output is 0 .

If no channel number is specified as an argument, xnotein has a 4th outlet on the right. The channel number of incoming messages is sent out the rightmost outlet.

\section*{Examples}


Both note-on and note-off messages are interpreted, with a key-down or key-up velocity

\section*{See Also}
\begin{tabular}{ll} 
notein & Output received M IDI note messages \\
midiin & Output received raw M IDI data \\
xnoteout & Format M IDI notemessages with release velocity \\
Tutorial 34 & M anaging raw M IDI data \\
MIDI & MIDI overview and specification
\end{tabular}
int In left inlet: Thenumber is used as the pitch value for a note on or note off message, and the message is sent out the outlet byte-by-byte.

In left-middle inlet:Thenumber is stored as the velocity for either a note-on or a note off message. If no number has been received yet, the velocity for note- ons is 64, and the velocity for note offs is 0 .

In right-middleinlet:Thenumber is stored as the indicator of whether outgoing messages should benote-ons or note-offs. If the number is not 0, xnoteout will send out a note- on message. If the number is 0 , xnoteout will send out a note off message with a release velocity. If no number has been received yet, it is initially 1 (note-on).

In right inlet: Thenumber is stored as the channel for the M IDI message sent out by xnoteout. Channel numbers greater than 16 will bewrapped around to stay within the \(1-16\) range.
float In left inlet: Is not understood by xnoteout.
In other inlets: Converted to int.
list Thefirst number is the pitch value, the second number is the velocity, the third number is the note-on/note-off indicator (non-zero for note-on, 0 for note-off), and the fourth number is the channel. The numbers are stored by xnoteout, and a M IDI note on or note off message is sent out.
bang Sends out a M IDI message using the numbers currently stored in xnoteout.

\section*{Arguments}
int
Optional. Sets an initial valuefor theM IDI channel of the outgoing messages. Channel numbers greater than 16 will be wrapped around to stay within the 1-16 range. If there is no argument, the initial channel number is1.

\section*{Output}
int When a pitch value is received, a completeM IDI note-on or note-off messageis sent out the outlet, byte-by-byte. W hereas a note-on with a velocity of 0 is most commonly used to indicate a note-off, xnoteout sends out the M IDI note-off command and uses the specified velocity as a release velocity.

\section*{Examples}


The numbers areformatted into a M IDI note-on or note-off message, which is sent out byte-by-byte

\section*{See Also}
noteout
midiout
xnotein
Tutorial 34
MIDI

Transmit M IDI notemessages
Transmit raw M IDI data
Interpret M IDI notemessages with release velocity
M anaging raw MIDI data
MIDI overview and specification

Thezl object performs several kinds of list processing functions. You set the function with akeyword argument, and can change the function performed with themode message. Thebehavior of thezl object's inlets and outlets and the types of messages they expect or process varies according to the mode of thezl object. For brevity in thediscussion that follows, werefer to any M ax message as a list including single elements such as int, symbol, and float and messages that begin with a symbol ( aM ax list is a message that begins with a number).

\section*{Input}
mode The word mode, followed by one of the symbolsgroup, iter, join, len, reg, rev, rot, sect, slice, or union, sets the current mode of thezl object. For some modes of operation, A list received in theleft inlet may be used as an argument to specify the functionality of a given mode. Theitems of messages that are not long enough to send out are added to the length of the stored list. O nce the stored list is long enough, it is sent out the left outlet.
mode ecils s s used to divide a list into two lists. This modetakes an additional number argument which specifies the size, in elements, of a list. This value can also be specified as an input in the right inlet in this mode. A list received in the left inlet will be split into two lists- the first list contains the number of items specified by the argument beginning from the end of the list and counting backward toward the first list element, and is sent out the right outlet. Any remaining list elements are sent out the left outlet of the object. Note: Lists are sent out the right outlet first.
mode group takes an additional number argument which specifies the size, in elements, of a list. A list received in the left inlet will be stored and thelength of the list is compared to a number received in the right inlet or an argument to thezl object. If the list of items is longer than the number specified by the right inlet or argument, a list of items of the length specified by the number is sent out the left outlet. Any remaining symbols or list elements are stored.
mode iter takes an additional number argument which specifies the size, in elements, of a list. A symbol list of items received in the left inlet will be stored and sent out the left outlet as a series of lists consisting of the number of items specified by argument or by a number received in the right inlet. The final list output may be shorter than the specified number of items, depending on the stored contents of the \(z\) object
mode join accepts a list in both inlets and sends a list out the left outlet which is the combination of both input lists.
mode len accepts alist in the left inlet and outputs number of elements in the list out the left outlet.
mode nth accepts a list in the left inlet and outputs thenth element of the list out the left outlet.
mode reg functions as a register that holds alist.A list received in theleft inletissent out the left outlet immediately. A list received in the right inlet is stored. A bang sends the stored list out the left outlet.
mode rev accepts a list in its left inlet and sends the list out the left outlet in reverse order.
mode rot is used to rotatethecontents of a list. An additional argument is used to specify the number of places a listitem is to be rotated - positive numbers rotate the list to the right, and negativenumbers rotate left. This value can also bespecified as an input in the right inlet in this mode.
mode sect acceptsalist in both inlets and sendsalist out the left outlet that contains theelements common to both lists.
mode slice is used to divide a list into two lists. This modetakes an additional number argument which specifies the size, in elements, of a list. This value can also be specified as an input in the right inlet in this mode. A list received in the left inlet will be split into two lists- thefirst list contains the number of items specified by the argument, and is sent out the left outlet. A ny remaining list elements are sent out the right outlet of the object. Note: Lists are sent out the right outlet first.
mode sub accepts a list in both inlets and sends the output position for each occurrence of right list in the left list out the left outlet.
mode union accepts a list in both inlets and sends a list out the left outlet that containsthe contents of both input lists. If the left and right inlets contain any items in common, only one symbol will beoutput.
list In left inlet: Thebehavior of the zl object to lists received in the left inlet varies according to the mode of the object, as described above under themode message.
list In right inlet: Somemodes of \(\mathbf{z l}\) accept a list in the right inlet and behave as follows:

Mode Behavior
join The list isjoined with the list received in the left inlet, and output when a bang or list is sent to the left inlet.

The list is stored, and sent out the left outlet when abang is received by the left inlet.

The list is stored; when abang or list is sent to the left inlet, items common to both lists are sent out the left outlet.
sub Thelist isstored; when abang or list is sent to the left inlet, the output position for each occurrence of right list in the left list is sent out the left outlet.
union Thelistis stored; when abang or list is sent to the left inlet, a combination of both lists without repeating items common to both lists is sent out the left outlet.
bang In left inlet: Sends a list out the left or left and right outlets as follows:
Mode Behavior
slice Divides the currently stored list into two, outputsthelastN items out the right outlet and any remaining items out the left outlet, where N is set by argument or a number received in theright inlet.
group Outputs the most recently stored N items out the left outlet, whereN is specified by argument or a number received in the right inlet.
iter

Outputs the most recently stored items out the left outlet in groups of a size specified by the argument or a number received in the right inlet.

Outputs the combination of the lists received in the left and right inlets out the left outlet.

Outputs themth element of the list designated by index. List numbering begins with 0 .

O utputs thenth element of the list designated by index.List numbering begins with 1 .

Outputs the currently stored list out the left outlet.
Outputs the reverse of the currently stored list out the left outlet.
Outputs the currently stored list with the contents rotated N places out the left outlet, whereN is set by argument or a number received in the right inlet.

Output the items in common to thelists received in the left and right inlets out the left outlet.

Divides the currently stored listinto two, outputs thefirstN items out the left outlet and any remaining items out the right outlet,
where N is set by argument or a number received in theright inlet.
\(\begin{array}{ll}\text { union } & \text { Output a list consisting of the items from both lists without } \\ \text { repeating the items comment to both lists received in the left and }\end{array}\)
Output a list consisting of the items from both lists without
repeating theitems comment to both lists received in the left and right inlets out the left outlet.
Outputs the position for each occurrence of the list received in the right inlet in the list received in the left inlet. If an additional argument is used to specify a value which will be replace the number specified by the input value, the resulting list is sent out theright outlet of the \(\mathbf{z}\) object.
int In right inlet: Some modes of zl accept an int in theright inlet and behave as follows:

Mode Behavior
ecils Specifies the number of list items beginning at theend of the input list to be sent out the right outlet of thezl object. A ny remaining listelementsbeyond thenumber specified by this inlet are sent out the left outlet of the object.

Specifies anumber of the most recently stored listitemsto beoutput.

The currently stored contents of thezl object will beoutput as a series of lists consisting of the number of items specified by this value. The final list output may be shorter than thenumber, depending on the stored contents of the object.
mth
rot

\section*{Arguments}
symbol Optional. The words ecils, group, iter, join, len, mth, nth, reg, rev, rot, sect, slice, sub, or union areused as optional arguments to set the mode of thezl object. Seethemode message above for descriptions of the different modes.
int Optional. For some modes of operation, an additional number may beused as an argument to specify the functionality of a given mode.

Mode Behavior
ecils Specifies the number of list items beginning at theend of the input list to be sent out theright outlet of thezl object. Any remaining list elements beyond thenumber specified by this inlet are sent out the left outlet of theobject.

Specifies a number of the most recently stored list itemsto beoutput.

The currently stored contents of thezl object will beoutput as a series of lists consisting of the number of items specified by this value. Thefinal list output may be shorter than the number, depending on the stored contents of theobject.

Specifies theorder of an element in theinput list (using 0 as the index of thefirst element of thelist) and outputs that element of thelist.

Specifies the order of an element in the input list in numerical form (i.e., \(1=\) the index of thefirstelement of thelist) and outputs that element of the list.

Specifies the number of places to rotatethecurrently stored list. Positive values for rotate the list right, and negative values rotate left.

Specifies the number of list items to be sent out the left outlet of thezl object. A ny remaining listelements beyond the number specified by this value are sent out the right outlet of the object.

The output position for the occurrence of thenumber specified by this value in the input list is sent out the left outlet of the object. An additional argument may be used to specify a value which will be replace the number specified by the input value. The resulting list is sent out the right outlet of thezl object.

\section*{Output}
list Out left outlet:
In ecils mode, a list containing the number of elements specified by the number argument starting at theend of the list and counting toward theb.eginning.

In group mode, a list containing the number of elements specified by thenumber argument.

In iter mode, a number of lists having the number of elements specified by the number argument. Thefinal list output may beshorter than thespecified number of items, depending on the stored contents of thezl object

In join mode, a list containing all the elements of the lists received in both inlets.
In len mode, a number which corresponds to the number of list items.
In mth mode, themth element of thelist ( where0 is theindex of thefirst element of thelist).

In nth mode, thenth element of thelist.
In reg mode, the input or themost recently stored input value received in the right inlet.

In rev mode, the input list in reverse order.
In rotate mode, theinput list rotated to theright or left according to the positiveor negative specified by the number argument.

In sect mode, a list containing all theelements common to the lists received in both inlets.

In slice mode, a list containing thenumber of elements specified by the number argument.

In union mode, a list containing the items from both lists without repeating items common to both lists. If the left and right inlets contain any items in common, only onesymbol will beoutput.
list Out theright outlet:
In ecils mode, a list containing any list elements before the numbered element specified by the number argument.

In mth mode, a list containing all list elements except for the list element specified by the number argument (where 0 is the index of the first element in thelist).

In nth mode, a list containing all list elements except for the list element specified by the number argument (where 1 is the index of thefirst element in thelist).

In slice mode, a list containing any list elements beyond the numbered element specified by thenumber argument.

In sub mode, thenumber of list elements specified by thenumber argument in the left input list is sent out the right outlet of theobject. If an optional second argument is used to specify a value which will replacethe number specified by the input value, the resulting list is sent out the right outlet of thezl object.

\section*{Examples}


\section*{See Also}
\begin{tabular}{ll} 
fromsymbol & Transform a symbol into individual numbers or messages \\
maximum & Output thegreatest in a list of numbers \\
minimum & Output the smallest in a list of numbers \\
pack & Combinenumbers and symbols into a list \\
swap & Reversethe sequential order of two numbers \\
thresh & Combinenumbers into alist, when received close together \\
tosymbol & Convert messages, numbers, or lists to a singlesymbol
\end{tabular}

\section*{Input}
int Converted to float.
float In left inlet: Theincoming value isscaled according to themapping provided by the arguments, or values received in the other inlets.

In second inlet: Sets the low input value. If the value is higher than the high input value, the two values are reversed to preservethehigh-low relationship.

In third inlet: Sets the high input value. If the value is lower than the low input value, the two values are reversed to preserve the high-low relationship.

In fourth inlet: Sets the low output value. If the value is higher than the high output value, the two values are reversed to preservethehigh-low relationship.

In right inlet: Sets the high output value. If the value is higher than the high output value, the two values are reversed to preservethehigh-low relationship.

\section*{Arguments}
int or float Optional. The firstargument is the minimum input value, the second argument is themaximum input value. Thethird and fourth arguments aretheminimum and maximum output values, respectively. If either of the low values is higher than the corresponding high value (or vice versa), the two values are reversed to preserve thehigh-low relationship.

\section*{Output}
float When scale receives a value in its leftmost inlet, that value is scaled to the indicated output range of values.

\section*{Examples}


An example of how to map an integer slider into a useful range of floating-point values and back again
\(M\) aps input range of values to output range

\section*{See Also}
\begin{tabular}{ll} 
scale & M aps input to output range \\
expr & Evaluatea mathematical expression
\end{tabular}

SomeM ax objects (such as fpic, matrixctrl, and pictctrl) will let you open and usean extended set of graphics files if you have Q uickTime installed on your system. Thefollowing graphics file formats are currently supported:
\[
\begin{aligned}
& \text { MooV } \\
& \text { sooV } \\
& \text { TVex } \\
& \text { MPG } \\
& \text { MPEG } \\
& \text { VfW } \\
& \text { dvc! } \\
& \text { FLI', } \\
& \text { GIFf } \\
& \text { BINA } \\
& \text { qmed } \\
& \text { Cach } \\
& \text { SWFL } \\
& \text { RTSP } \\
& \text { SDP } \\
& \text { SwaT } \\
& \text { SMI } \\
& \text { JPEG } \\
& \text { 3DMF } \\
& \text { MPGV } \\
& \text { MPGx } \\
& \text { BMP } \\
& \text { 8BPS } \\
& \text { PNGf } \\
& \text { PNG } \\
& \text { qdgx } \\
& \text { qtif } \\
& \text { SGI } \\
& \text { TPIC } \\
& \text { TIFFF } \\
& \text { FLI }
\end{aligned}
\]

For an up-to-datelist of graphics file formats supported by QuickTime, see
http://www.apple.com/quicktime/pdf/QuickTime_Pro_DS-b.pdf

\section*{See Also}
\begin{tabular}{ll} 
fpic & Display a picturefrom a graphics file \\
Icd & Draw graphics in a patcher window \\
matrixcrtrl & M atrix-style switch control \\
pictctrl & Picture-based control \\
pictslider & Picture-based slider
\end{tabular}
Absolute to a relative path conversion ..... relativepath
Absolute value of an integer ..... abs, expr
Accelerate, control clock speed of M ax timing objects ..... setclock
Action patch, receive events(messages) from a timeline ..... ticmd
Active sensing, MIDI system message. midiin, midiout, rtin
Add and/or multiply a series of numbers. accum, expr, table
Add two numbers together ..... accum, expr, +
Address elements in an array by index number ..... counter, funbuff, offer, table
ADSR envelopegenerator ..... env, envi
Afterpressure, polyphonic ..... polyin, polyout
Aftertouch (monophonic) MIDI message. ..... touchin, touchout
Alert, display a text message dialog, Icd, umenu, message, pcontrol, print
Alert, flash when an event occurs. ..... button, led, ubutton
All notes off (M IDI M ode message) ctlin, ctlout
And, true if both statements are true(logical intersection) ..... expr, \&\&
A nimation of shapes or pictures. frame, graphic, Icd, oval, pict, rect, ring
Animation, control alaser videodisc player ..... serial, vdp
Animation, play a QuickTimemovie. imovie, movie, playbar, timeline
Append items at theend or beginning of a message. append, prepend
Arc-cosinefunction ..... acos
Arc-sinefunction ..... asin
Arc-tangent function ..... atan
Arc-tangent function (two variables) ..... atan2
A rithmetic expression solving ..... expr,,,+- , \(, 1, \%\)
A rithmetic operators ........ acos, acosh, asin, asinh, atan, atan2, atanh, cosh, sin, sinh, sqit, tan, tanh
A rray of arbitrary messages coll, umenu
Array of numbers funbuff, histo, offer, table
ASCII number for each character in a string ..... spell
ASCII number, convert to text character ..... sprintf
ASCII numbers, convert symbol to ..... spell
Ask for a fileor folder ..... opendialog
Ask the user to enter information .dialog, message
Assistance, attach an assistance message to an inlet or outlet in a subpatch ..... inlet, outlet
Atoms of a list, break up into individual messages cycle, iter, message, spray, unpack
Average a running stream of numbers ..... mean
Background panel ..... panel
Background, notify objects when patcher window is moved to background. ..... active
bang a certain number of times as fast as possible. ..... uzi
bang automatically when a patch is loaded ..... loadbang
bang messages, count. ..... counter
bang repeatedly at a certain rate. ..... metro
bang when a message is received or the mouse is clicked .button, ubutton
bang when a patcher window is closed closebang
bang, cause all loadbang objects in a patcher window to resend ..... thispatcher
bang, send a single bang to different places in immediate succession bangbang, trigger
bang, time elapsed between two bang messages
timer
timer
Bend, report incoming M IDI pitchbend data bendin, midiin xbendin, xbendin2
Bend, transmit M IDI pitchbend messages bendout, midiout, xbendout, xbendout2bang messagetraffic control..onebang
Binary numbers, compare with bitwise"and" (intersection) and bitwise"or" (union) ..... expr, \& |
Binary numbers, shift thebits of a number's binary representation to the left or right ..... <<, >>
Binary, display numbers as number box number box
Bit-shift, shift the bits of the number's binary representation to the left or right ..... <<, >>
Bitwise one's complement operation ..... expr
Bitwiseoperators, bitwise"and" (intersection) and bitwise"or" (union) ..... expr, \& |
Boolean logic operations .if, <, <=, ==, !=, >=, >, \&\&, ||
Breakpoint line segment function generation and storage env, envi, funbuff, line
Breath control. ctlin, ctlout
Broadcast a message to all instances of the same class in a patcher ..... universal
Brownian motion simulator ..... drunk
Button for user interface, sends a 1 or a0 to start or stop processes ..... led, toggle
Button for user interface, sends a bang .button, ubutton
Button pasted over a picture or a comment. ..... ubutton
Button, picture-based ..... pictctrl
C language expression solving ..... expr, if
Capture and display a series of numbers. capture, print, table, text
Cartesian to Polar coordinate conversion ..... cartopol
CD audio control ..... cd
Chanceoperations using pseudo-random numbers drunk, expr, random, urn
Characters in a string of text, convert to ASCII numbers ..... spell
Check box user interfaceobject ..... radiogroup
Circleor oval, drawing in a graphic window .oval, ring
Clock for reporting time elapsed ..... clocker, timer
Clock speed of M ax timing objects, control ..... setclock
Clock, M IDI system message. ..... midiin, midiout, rtin
Close a patcher window automatically pcontrol, thispatcher
Closing a patcher window, send a bang when window is closed ..... closebang
Collection of messages, store and recall ..... coll, umenu
Color selection using a modal dialog ..... colorpicker
Color swatch for RGB color selection and display ..... swatch
Colored button area. ..... panel
Combinatorics, produce random orderings of a set ..... urn
Commands, place your own commands in themenu bar ..... menubar
Commands, send to a timelinefrom one of its own action patches. ..thistimeline, thistrack, tiout
Commenting a patch comment
Compare a performance to a pre-recorded sequence in real time ..... follow
Comparison of two numbers, less than, greater than, or equal to ..... if, <, <=, ==, !=, >=, >
Complement, bitwiseone's complement operation ..... expr
Computex to the power of \(y\) ..... pow
Computer keyboard events, detect. key, keyup, numkey
Concatenatetwo messages. append, prepend
Conditional statements if, match, select, split, ==, !=, <, >, <=, >=
Connect patch cords to an inlet or outlet of a subpatch ..... inlet, outlet
Constrained random movement ..... drunk
Construct a list out of individual items append, pack, prepend
Construct M IDI messages for transmission or recording midiformat, sxformat
Continue, MIDI system message midiin, midiout, rtin
Continuous controllers. ..... ctlin, ctlout
Control a patcher window automatically from within itself. thispatcher
Control a timelinefrom one of its own action patches. .thistimeline, thistrack, tiout
Control a videodisc player through the serial port ..... vdp
Control change messages. ..... ctlin, ctlout
Control clock speed of M ax timing objects. ..... setclock
Control external (non-M IDI) device. ..... cd, serial, vdp
Control points in a function ..... env, envi
Control strip for a QuickTimemovie. ..... playbar
Control, picture-based ..... pictctrl
Convert a number, list, or symbol to bang. ..... button, bangbang, trigger
Convert an absoluteto a relative path ..... relativepath
ConvertASCII numbers to text ..... sprintf
Convert numbers between decimal, hexadecimal, and binary forms ..... number box
Convert text to ASCII numbers ..... spell
Cosinefunction ..... cos
Count how many bang messages or numbers have been received ..... counter
Count the occurrences of numbers ..... histo
Count, send a series of numbers as fast as possible. ..... uzi
Cumulative total of a series of numbers. accum, expr, table
D ata structures, arbitrarily ordered array of arbitrary messages coll, umenu
Date and time of day ..... date
Decimal numbers, store numbers with a fractional part ..... float, number box
Decrement the value of a user interface object .....  IncDec
D efine a region for dragging and dropping a file. ..... dropfile
Delay a bang for a specific amount of time. ..... delay
Delay note-off messages until a specific event occurs. ..... sustain
Delay oneor morenumbers for a specific amount of time ..... pipe, thresh
Delay, measure the time elapsed between two events. borax, clocker, date, timer
Delta time, report time interval between onsets of M IDI notes. ..... borax, timer
Devices, drive external devices ..... serial, vdp
Devices, get alist of MIDI devices and ports currently available ..... midiinfo
Dial for sending numbers ..... dial
Difference between two numbers, obtain by subtracting ..... expr, -
Discrete values from a continuous stream of data ..... speedlim
Display numbers in decimal, hexadecimal, or binary form ..... number box
Display numerical data graphically... dial, envi, hslider, kslider, multislider, number box, slider, table, usliderDisplay the zero/non-zero status of a numberled, number box, toggle
Distribute incoming numbers out individual outlets. ..... cycle
Divide one number by another ..... expr, /
Divide two numbers, output the remainder ..... \%
Division object (inlets reversed) ..... !/
Drag and drop ..... dropfile
Draw a picturein a graphic window ..... graphic, pict
Draw shapes in a graphic window. frame, graphic, oval, rect, ring
Draw shapes in a patcher window ..... Icd
Draw with themouse .Icd, mousestate
D uration, report length of M IDI notes ..... borax
Duration, specify for transmitted M IDI notes flush, makenote, midiflush, pipe
Enableor disableM IDI objects in a patcher automatically pcontrol
End of a message, add items to ..... append
Enter numerical data into a patcher from the computer keyboard ..... number box, numkey
Enter text typed in by the user dialog, message
Envelopegenerator ..... env, envi
Error messages, display text in a patcher window dialog, Icd, umenu, message, pcontrol
Error messages, print in the M ax window ..... print
Event number, assign to each M IDI note ..... borax
Exclusiveor, bitwise XOR operation ..... expr
ExportMIDI file ..... seq
Expressions, solve mathematical ..... expr, +, -, *, /, \%
External clock source, synchronizeM ax to ..... setclock
Extra precision MIDI pitchbend messages xbendin, xbendin2, xbendout, xbendout2
Fader for displaying or generating numerical data hslider, multislider, rslider, slider, usliderfiledate
Filemenu, add your own itemsto menubar
File, import and export M IDI files ..... seq
File, open any typeof. ..... filein
Files, list the files in a specific folder ..... folder
Film or video, synchronizeM ax to ..... setclock
Filter a continuous stream of messages ..... speedlim
Floating-point numbers, store numbers with a fractional part float, number box
Folder content listings ..... folder
Follow a performance, comparing it to a pre-recorded sequence ..... follow
Foreground, movea patcher window automatically to the front ..... thispatcher
Foreground, notify objects when patcher window is brought to foreground ..... active
Format M IDI messages for transmission or recording. midiformat, sxformat
Format numbers,A SCII bytes, and symbols into a single message. ..... sprintf
Fourteen-bit precision M IDI pitchbend messages xbendin, xbendout, xbendin2
, xbendout2
Fraction, obtain by dividing onenumber by another ..... expr, /
Fractions, store numbers with a fractional part. float, number box, pv, value
Frequency, keep track of how many times a number has occurred ..... histo
Full pathnameto filename conversion ..... strippath
Function generator env, envi, funbuff, line
Gatetheflow of messages ..... gate, Ggate
Generatenumbers with themouse dial, envi, hslider, imovie, kslider, Icd, mousestate, multislider,
number box, rslider, slider, table, uslider
strippath Get filenamefrom an absolute pathname

end, value

end, value
.pv, value
Global message-sending
Global message-sending
Graphic display of an array of numbers, editablewith the mouse ..... multislider, table
Graphic editor for arranging M ax messages to be sent to specific objects at specific times. timeline
Graphics, draw a picturein a graphic windowpict
Graphics, draw shapes in a graphic window. frame, graphic, oval, rect, ring
Graphics, draw shapes in a patcher window. ..... Icd
Graphics, put a picture in a patcher window ..... fpic
Greater than and less than comparisons, redirect numbers based on ..... split
Greater than, find the greater of two numbers. .expr, maximum, number box, peak, >, >=
Greater than, report when all numbers in a list surpass specific thresholds ..... past
Held M IDI notes, providenote-off messages for borax, flush, makenote, midiflushHexadecimal, display numbers as.number box
H ierarchical on/off switch ..... decode
Hint, pop-up menu ..... hint
H istogram of how many times a number has occurred ..... histo
Hold oneor morenumbers float, funbuff, int, number box, offer, pv, table, value
H old the smallest in a series of numbers ..... trough
Hyperbolic arc-cosinefunction ..... acosh
HyperbolicArc-sinefunction ..... asinh
Hyperbolic arc-tangent function ..... atanh
Hyperbolic cosinefunction ..... cosh
Hyperbolic sinefunction ..... sinh
Hyperbolic tangent function ..... tanh
If-then-else control structure. ..... if
Ignorecertain messages. gate, Ggate, Gswitch, mousefilter, select, switchseq
Incoming M IDI messages, parse ........ midiparse, xbendin, xnotein also bendin, ctlin, notein, pgmin, polyin, rtin, sysexin, touchin
Increment the value of a user interface object ..... IncDec
Index number, prepend to a number or a list ..... funnel, prepend
Indexed list of numerical values. funbuff, offer, table
Indicatethezero/non-zero status of a number if, led, number box, togedge, toggle, ==,!=Indicator flashes when a message is receivedbutton, led, ubutton
Information about current operating system and hardware ..... gestalt
Initialize values automatically when a patch is loaded loadbang, preset
Inlet for a subpatch object. bpatcher, inlet, patcher
Inlet, ignore messages in all inlets but one at a time. ..... switch
Input from the user, ask for dialog, message
Input received from M IDI devices, unaltered ..... midiin
Integer number, store. funbuff, int, number box, offer, pv, table, value
Intercept and redirect theoutput of an object ..... grab
Inter-onset interval, measure thetime elapsed between two events. borax, clocker, date, timer
Interpolatebetween two numerical values ..... line
Invert the color of a rectangular area of a patcher window over a picture or a comment.. ..... ubutton
Invisiblebutton
Invisiblebutton ..... ubutton ..... ubutton
Invisiblepatcher, close thispatcher
Invisible patcher, load ..... pcontrol
Items of a list, break up into individual messages cyde, iter, message, spray, unpack
Keyboard styleslider for displaying and generating numbers ..... ksider
Keyboard, detect computer keyboard events key, keyup, numkey
Keydown event on computer keyboard, detect ..... key
Keyup event on computer keyboard, detect ..... keyup
Knob, picture based ..... pictctrl
Label objects in a patcher window comment, umenu
Laser disc player, control viathe serial port ..... serial, vdp
Last (few) of a series of numbers are retained and sent out separate outlets. ..... bucket
Less than and greater than comparisons, redirect numbers based on ..... split
Less than, find the lesser of two numbers expr, minimum, number box, trough, <, <=
Limit the rate at which messages are sent ..... speedlim
List of indexed messages in a pop-up menu ..... umenu
List of numbers, detect a specific ordered set within ..... match
List processing .....  1
List the files in a specific folder ..... folder
List, break up items into individual messages. cyde, iter, message, spray, unpack
List, combine separate items into .append, pack, prepend, thresh
List, evaluate a mathematical expression multipletimes using lists of numbers as input. ..... vexpr
List, graphically display and send out a list of number values ..... multislider
Lists, array of coll, umenu
Load a patcher automatically ..... pcontrol
Local variablefor any message, known only to a single patcher and its subpatches ..... pv
Local variablefor storing a floating-point number (with a fractional part) ..... float, number box, pv
Local variable for storing an integer value. int, number box, pv
Logarithm of a number, solvefor ..... expr
Loops, count repeated events ..... counter
Loops, repeated series of actions. counter, metro, uzi
Markov chain ..... prob
M asking, bitwise"and" (intersection) and bitwise"or" (union) operations ..... expr, \(\&, \mid\)
\(M\) atch incoming messageto arguments, send a bang out a specific outlet if there is a match ..... select
M atch the first item in a message, route the message accordingly ..... route
M athematical expression solving expr, \(+, \cdot, *, /, \%\)
M atrix-style switch control ..... matrixcrtr|
M ax search path information ..... filepath
M aximum and minimum limit for a range of numerical values, specify and display..... rslider, splitM aximum, find the greater of two numbers...................expr, maximum, number box, peak, >, >=
M aximum, find the maximum value of a group of numbers maximum, table
Menu bar, customize or alter menus or menu items ..... menubar
M enu, pop-up menu in a patcher ..... umenu
Message symbol substitution ..... substitute
Messages, construct MIDI messages for transmission or recording midiformat, sxformat
M essages, construct append, message, pack, prependM essages, send and displayumenu, message
M essages, send remotely without patch cords. .float, forward, grab, int, message, pv, receive, send,value
M essages, send with the menu bar menubar
M essages, typein and send in alocked patcher dialog, message
M etronome of timed events. clocker, metro, setclock, tempo
M IDI , get a list of currently available devices and ports. ..... midiinfo
M IDI data, receive unaltered ..... midiin
M IDI data, transmit byte by byte. ..... midiout
M IDI file, record, play, import, export, and save astext ..... seq
MIDI M anager, synchronize M ax to an external clock source. ..... setclock
M IDI messages, construct midiformat, sxformat, midiout
M IDI messages, parse. midiparse, xbendin, xnotein
MIDI M odemessages.ctlin, ctlout
MIDI note messages, receive incoming. midiin, notein, xnotein
M IDI notemessages, transmit midiout, noteout, xnoteout
MIDI notenames, display numbers as. number box
M IDI Real Time system messages. ..... midiin, midiout, rtin
M IDI SampleDump, receive and transmit ..... midiin, midiout, sysexin
M IDI, enable or disableM IDI objects in a patcher automatically ..... pcontrol
M inimum and maximum limit for a range of numerical values, specify and display..... rslider, splitM inimum, find the lesser of two numbers.................... expr, minimum, number box, trough, <, <=
\(M\) inimum, find the minimum value of a group of numbers. ..... minimum, table
\(M\) inus, subtract onenumber from another ..... expr, -
Modem communication, transmit and receivenon-MIDI data ..... serial
Modification date of a file ..... filedate
M odulation wheel ctlin, ctlout
Modulusoperation ..... expr, \%
M onitor size ..... screensize
M onophonic aftertouch M IDI message. touchin, touchout
M ouse button, pass numbers through only when the mouse button is up ..... mousefilter
M ouse button, report status of. ..... mousestate
M ouse events, detect. imovie, Icd, mousefilter, mousestate
M ouse location, report imovie, Icd, mousestate
M ouse, generatenumbers with the mouse dial, envi, hslider, imovie, kslider, Icd, mousestate, multislider, number box, rslider, slider, table, uslider
M ovie, play QuickTime. ..... imovie, movie, playbar, timeline
Multi-media programming ..... cd, graphic, Icd, imovie, movie, timeline, vdp
Multiply and/or add a series of numbers. accum, expr, table
M ultiply two numbers. ..... accum, expr,*
Multi-purpose list processor ..... zl
M ulti-track sequencer of MIDI messages or numbers. ..... mtr
Nameuser interface objects in a patcher window. ..... comment, umenu
Negativenumber, convert to positive number. abs, expr
Nibble, examine selected bits of a number's binary representation ..... \& \(,||,, \ll, \gg\)
Noise, filtered noise generator. ..... drunk
Noise, white noise generator ..... expr, random
Non-zero and zero numbers, notify when input changes from oneto theother .....change, togedge
Non-zero, test if a number or expression ischange, if, led, select, split, togedge, toggle, ==, !=, \&\&, ||Not, bitwiseone's complement operationexpr
Not, convert a non-zero number to 0 and vice versa. ..... expr, ==
Notedata, receiveincoming M IDI ..... midiin, notein, xnotein
Noteinformation (duration, delta time, etc.) derived from M IDI note messages ..... borax
Note messages, transmit M IDI midiout, noteout, xnoteout
Note-off messages with release velocity, detecting and formatting xnotein, xnoteout
Note-off messages, hold until a specific event occurs ..... sustain
Note-off messages, supply for held or stuck M IDI note-ons ..bag, borax, flush, makenote, midiflush
Note-off messages, suppress .gate, stripnote
Notes to yourself- or another user - in a patcher window comment
Notify objects when patcher window is moved to foreground or background ..... active
Notify user when an event has occurred button, led, message, print, ubutton
Number sequences, generate automatically counter, line, clocker, tempo
Number, store float, funbuff, int, number box, offer, pv, table, value
Numbers, convert between decimal, hexadecimal, and binary number box
Numbers, generate with the mouse..... dial, envi, hslider, imovie, kslider, Icd, mousestate, multislider, number box, rslider, slider, table, uslider
Nybble, examine selected bits of a number's binary representation ..... \& |, <<, >>
Object within an object bpatcher, patcher
Occurrences, keep track of how many bang messages have occurred ..... counter
O ccurrences, keep track of how many times a number has occurred ..... histo
Octal, display numbers in Roland octal format. ..... number box
OM NI ModeOn/Off (M IDI M odemessage) ..... ctlin, ctlout
On/Off switch ..... decode, toggle
Open a dialog to ask for a file or folder. ..... opendialog
Open a dialog to ask for a filenamefor saving ..... savedialog
Open a patcher automatically ..... pcontrol
O pen patcher files automatically. ..... folder, pcontrol
O perating system and hardware information ..... gestalt
Or, bitwise exclusive or (XOR) operation ..... expr
Or, trueif onestatement or theother is true(logical union) ..... expr, ||
Order, send a number, bang, list, or symbol to different places in a specific order ..... trigger
Order, switch order of number messages fswap, message, swap
Ordered set of numbers, detect. ..... match
Outlet for a subpatch object ..... bpatcher, outlet, patcher
Outlet, send items of an incoming list out individual outlets. ..... spray, unpack
Outlet, send messages out one of the outlets of a timeline object. ..... tiout
Output MIDI data byte by byte ..... midiout
Output themonitor size ..... screensize
O val or circle, drawing in a graphic window ..... oval, ring
Panel ..... panel
Panic, turn off held MIDI notes .borax, ctlout, flush, makenote, midiflush ..... ctlin, ctlout
Panning.
Parameter change to a M IDI device. .ctlout, midiout, sxformat
Parse incoming MIDI messages midiparse, xbendin, xnotein, also bendin, ctlin, notein, pgmin, polyin, rtin, sysexin, touchin
Pass numbers through only when the mouse button is up .mousefilter
Patch changeM IDI message ..... pgmin, pgmout
Patch cords, connect to an inlet or outlet of a subpatch ..... inlet, outlet
patcher within a patcher, the contents of which are visible ..... bpatcher
Peak hold, keep track of the greatest in a series of numbers ..... peak
Peek at values in other objects. ..... grab
Permute a set in random order ..... urn
Picture, display a graphics file in a patcher window ..... fpic
Picture, display PICT filein a graphic window ..... pict
Picture-based control ..... pictctrl
Picture-based slider ..... pictslider
Pitchbend, report incoming M IDI pitchbend data bendin, midiin, xbendin, xbendin2
Pitchbend, transmit MIDI pitchbend messages bendout, midiout, xbendout, xbendout2
Play a QuickTimemovieimovie, movie, playbar, timeline
Play a sequence of \(M\) ax messages to be sent to specific objects at specific times ..... timeline
Play sequences of past messages or numbers follow, mtr, seq
Plus, add two numbers together accum, expr, +
Polar to Cartesian coordinateconversion ..... poltocar
Poly mode, assign a unique voice number to each note being played ..... borax, poly
Polyphonic afterpressure ..... polyin
Pop-up menu in a patcher ..... umenu
Pop-up stylehint text ..... hint
Portamento bendin, bendout, ctlin, ctlout
Ports, get a list of M IDI devices and ports currently available ..... midiinfo
Positive version of a negative number abs, expr
Postponea bang ..... delay
Postponea number or list ..... pipe, thresh
Postponenote-off messages until a specific event occurs ..... sustain
Potentiometer-likedial for sending numbers ..... dial
Power, one number to the power of another ..... expr
Prepend one message at the beginning of another ..... prepend
Preset, store and recall values for all user interface objects ..... preset
Print any message in the M ax window ..... print
Probabilistic (stochastic) decision making drunk, prob, random, table, urn
Probability, keep track of how many times a number has occurred ..... histo
Product of multiplying two numbers. ..... accum, expr,*
Program changeM IDI message ..... pgmin, pgmout
Progress bar, graphic display. hslider, slider, uslider
Pseudo-random number generator drunk, expr, random, urn
QuickDraw graphic commands, draw with ..... Icd
QuickTimemovie, play imovie, movie, playbar, timeline
Radio button user interfaceobject ..... radiogroup
Ramp function, generate line, timeline
Random number generator drunk, expr, random, urn
Random walk ..... drunk
Range of numerical values, specify and display minimum and maximum limits ..... rslider, split
Rate at which messages are sent, limit speedlim
Rate, combine numbers into a single list if received faster than a certain speed ..... thresh
Rate, control clock speed of M ax timing objects ..... setclock
Rate, send out beat numbers at a metronomic tempo. ..... tempo
Raw data from a file, read byte by byte ..... filein
Raw M IDI data, receive and transmit midiin, midiout, sysexin
Read in a file of binary data ..... filein
Real TimeM IDI system messages. ..... midiin, midiout, rtin
Recall sequences of past messages or numbers. follow, mtr, seq
Receive any message from any window receive
Receive M IDI data unaltered ..... midiin
Receive only specific M IDI messages......... bendin, ctlin, notein, pgmin, polyin, rtin, sysexin, touchin
Recently received values arestored and recalled ..... bucket
Record sequences of MIDI data or numbers ..... follow, mtr, seq
Rectangle or square, drawing in a graphic window ..... frame, rect
Redirect messages to a specific destination gate, Ggate, grab, route, split, spray, unpack
Release velocity, detecting and formatting note-off messages with. xnotein, xnoteout
Remainder from dividing one number by another, modulus operation ..... expr, \%
Remoteconnection of objects, without patch cords.... float, forward, grab, int, message, pv, receive, send, value
Repeatedly send bang messages as fast as possible. ..... uzi
Repeatedly send output at a certain rate. clocker, metro, tempo
Repetitions, count ..... counter
Repetitions, suppress repeated numbers ..... change
Report information about the current M ax search path ..... filepath
Report the modification date of a file. ..... filedate
Reports when application is suspended and resumed ..... suspend
Reproduce a single bang to different places in immediate succession ..... bangbang, trigger
Reverse theorder of two number messages fswap, message, swap
RGB color selection and display swatch ..... swatch
Ritardando, control clock speed of M ax timing objects ..... setclock
Rotate elements of a set of numbers, out successive outlets ..... bucket, cyde
Route messages to a specific destination gate, Ggate, route, split, spray, unpack
Sampler, receive and transmit sound data via M IDI SampleDump midiin, midiout, sysexin
savedialog
Save, move to theforeground, or closea patcher window automatically. ..... thispatcher
Schedule a number or list to be sent at a futuretime. ..... pipe, thresh
Schedule an event for a futuretime ..... delay
Score of M ax messages to be sent to specific objects at specific times. ..... timeline
Score-following ..... follow
Screen size. .screensize
Scroll through a list of messages umenu
Search path information ..... filepath
Select a color using a modal dialog colorpicker
Select specific values or symbols from incoming messages ..... select
Selector, route messages depending on the first item of each message ..... route
Send a messageto all instances of the same class in a patcher universal
Send a messageto receive objects in any other window.........float, forward, grab, int, message, sendSeparate a list into its constituent elementscyde, iter, spray, unpack
Sequence of numbers, detect a specific ordered set of numbers ..... match
Sequence of numbers, generate automatically. counter, line, docker, tempo
Sequencer of Max messages to be sent to specific objects at specific times timeline
Sequencer follow, mtr, seq
Serial port, transmit and receivenon-MIDI data. serial, spell
Series of numbers, break a list up into individual messages. cyde, iter, message, spray, unpack
Series of numbers, combine into a single list. ..... thresh
Set ( of fixed order and size) of integers; output all whenever one is modified ..... bondo
Set values automatically when a patch is loaded ..... loadbang, preset
Set, produce a random ordering of a set. ..... urn
Set, store an unordered set of numbers ..... bag
Shift sequential input from oneoutlet to another ..... bucket, cycle
Simultaneity, send a series of bang messages or numbers in a singletick of Max'sclock ..... uzi
Sinefunction ..... sin
Sine, cosine, tangent, and other trigonometric functions ..... expr
Slider to display or generate numerical data. hslider, kslider, multislider, rslider, slider, uslider
Slider, picture based ..... pictslider
SM PTE time code, synchronizeto an external source viaM IDI M anager ..... setclock
Snapshot, store and recall instantaneous values of all user interface objects ..... preset
Sound sampledata, receive and transmit via M IDI SampleDump . midiin, midiout, sysexin
Sound, play in a QuickTimemovie. imovie, movie, playbar, timeline
Sparse array of numbers funbuff, offer
Speed, combine numbers into a single list if received faster than a certain rate ..... thresh
Speed, limit the rate at which messages are sent ..... speedlim
Sprites, pictures and geometric shapes. frame, graphic, Icd, oval, pict, rect, ring
Squareor rectangle, drawing in a graphic window frame, rect
Square root of a number ..... sqrit
Start a process by sending the bang message button, loadbang, ubutton
Start activity automatically when a patch is loaded ..... loadbang
Start, M IDI system message midiin, midiout, rtinpoly
Stochastic (probabilistic) decision making drunk, prob, random, table, urn
Stop or alter the flow of messages. gate, Ggate, Gswitch, speedlim, switch
Stop, MIDI system message ..... midiin, midiout, rtin
Store a fixed-size set of integers; output all whenever oneelement is modified ..... bondo
Storea series of numbers in order in an editable window. capture, table, text
Storean unordered set of numbers ..... bag
Store and recall recently received values, .bucket, table, text
Store and recall values of all user interface objects at a certain moment. ..... preset
Storeoneor morenumbers float, funbuff, int, number box, offer, pv, table, value
Store, recall, and automatically deletex, \(y\) pairs of numbers, ..... offer
String of text combining numbers, ASCII bytes, and symbols into a single message ..... sprintf
Stuck MIDI notes, avoid or turn off borax, flush, makenote, midiflush
Subpatch in abox, visiblefrom the patcher that contains it bpatcher
Subpatch object (subroutine) bpatcher, patcher
Subpatch object, create an inlet or outlet in ..... inlet, outlet
Substitute a symbol for another symbol in a message ..... substitute
Subtract onenumber from another ..... expr, -
Subtraction object (inlets reversed) ..... !-
Sum of a set of numbers accum, expr, table
Sum of two numbers ..... accum, expr, +
Suppress note off messages ..... stripnote
Suppress the flow of certain messages gate, Ggate, Gswitch, mousefilter, select, switch
Sustain notes by holding note off messages until a specific event occurs ..... sustain
Sustain pedal ctlin, ctout, sustain
Switch a process on and off led, togedge, toggle, ubutton
Switch control matrixmatrixctrr|
Switch the flow of messages on or off. gate, Ggate, Gswitch, switch, toggle
Symbol to message conversion fromsymbol
Synchronize asynchronously arriving inputs, send them out together ..... buddy
SynchronizeM ax to an external clock source ..... setdock
System exclusive messages, construct and transmit. ..... midiout, sxformat
System exclusivemessages, receive. ..... midiin, sysexin
System Reset, M IDI system message. midiin, midiout, rtin
Tag messages with a unique index number borax, funnel, poly
Tangent function ..... tan
Tempo, control clock speed of M ax timing objects ..... setclock
Tempo, send out beat numbers at a metronomic tempo ..... tempo
Test the equality of two numbers change, if, match, select, \(==\), !=
Test thezero/non-zero status of a number or expressionchange, if, led, match, select, split, togedge, toggle, \(==,!=, \& \&,| |\)
Test whether onenumber is greater than another .maximum, number box, peak, >,>=
Test whether one number is less than another minimum, number box, trough, \(<,<=\)
Text file, load, play, and save M M IDI file as plain text ..... seq
Text file, open and save ..... text
Text input by the user, obtain ..... dialog, message
Text, convert to ASCII numbers. ..... spell
Text, display automatically in a patcher dialog, Icd, umenu, message, pcontrol, sprintf
Text, display in a patcher comment, fpic, message
Text, format numbers,ASCII bytes, and symbolsinto a single message ..... sprintf
Text, print any message in the M ax window ..... print
Threshold, report when numbers surpass. ..... past
Timbrechangeon a M IDI synthesizer. ..... pgmout
Timecode, receivefrom an external source ..... setclock
Timeelapsed between events, check ..... clocker, date, timer
Time of day and date ..... date
Timeline of M ax messages to be sent to specific objects at specific times ..... timeline
Timeline, control a timelinetrack from its own action patch ..... thistrack
Timeline, control from one of its own action patches. thistimeline, thistrack, tiout
Timeline, receive events (messages) from ..... ticmd
Timeline, report the current time of. ..... thistimeline
Timeline, send messages out one of the outlets of atimeline object ..... tiout
Times, multiply two numbers ..... accum, expr,*
Togglea process on and off led, togedge, toggle, ubutton
Track, control a timelinetrack from its own action patch ..... thistrack
Track, record and play back a multi-track sequence of messages or numbers ..... mtr
Traffic control for bang messages ..... onebang
Transform a symbol into individual numbers or messages fromsymbol
Transition probabilities, M arkov chain ..... prob
Transmit a specific type of M IDI message ........bendout, ctlout, noteout, pgmout, polyout, touchout
Transmit M IDI data byte by byte
Transmit M IDI data byte by byte ..... midiout ..... midiout
Trap and redirect theoutput of an object ..... grab
Trap computer keyboard events. key, keyup, numkey
Trap mouse events .imovie, Icd, mousestate
Trap occurrences of a specific ordered set of numbers ..... match
Trap occurrences of specific numbers. follow, match, route, select, ==
Trap occurrences of specific symbols ..... route, select
Trigger a process by sending the bang message button, loadbang, ubutton
Trigger events automatically when a patch isloaded ..... loadbang
Trigger events based on notes played by the user follow, match, route, select, \(==\)
Trigonometric functions ..... expr
True/falsetesting if, led, match, select, split, togedge, toggle, ==,!=, <, >, <=, >=
Typenumerical data into a patcher number box, numkey
Typetext into a locked patcher dialog, message
Variable for storing a floating-point number (with a fractional part) .....float, number box, pv, value
Variablefor storing an integer value. int, number box, pv, value
Variablefor storing any message. ..... pv, value
Variablethat is private to a single patcher and its subpatches ..... pv
Vector math, evaluate an expression multipletimes using lists of numbers as input ..... vexpr
Velocity of incoming M IDI note-on messages, obtain midiparse, notein
Velocity, detecting and formatting note-off messages with release velocity . xnotein, xnoteout
Video or film, synchronize M ax to ..... setdock
Videodisc player ..... vdp
Videodisc player, control via the serial port. ..... serial, vdp
Virtual connection of objects, without patch cords..... float, forward, grab, int, message, pv, receive, send, value
Voicenumber, assign a unique number to each notebeing played ..... borax, poly
Voice stealing, turn off old notes if too many new ones arrive ..... poly
Volume control MIDI message. .ctlin, ctout
Volumecontrol of a QuickTimemovie playbar
Wait before allowing a number to pass. pipe, speedlim, thresh
Wait before doing something. delay
Wait for input in both inlets, then send out both numbers ..... buddy
Weighted probabilities runk, expr, random, table, urn
Window being closed sends a bang ..... closebang
Window for displaying graphic shapes and pictures ..... graphic
Window moving to foreground or background sends 1 or 0 ..... active
W indow on a subpatch seen within the patcher that contains that subpatch ..... bpatcher
W indow, enableor disableM IDI automatically ..... pcontrolW indow, open and close automaticallypcontrol, thispatcher
W indows, communicate between float, forward, grab, inlet, int,message, outlet, receive, send, valueXOR, bitwise"exclusiveor" operationexpr
Zero and non-zero numbers, notify when input changes from oneto theother.....change, togedgeZero, test if a number or expression is equal to.. change, if, led, select, split, togedge, toggle, ==, !=,\&\&, ||

\section*{Index}

\section*{Symbols}

9, 18, 19, 27
!- 4, 9
-9,11
!/ 6, 9
\(!=8,9\)
\$
in a messagebox 227
in an object box 132, 180
\% 9, 17
\& 9, 23
\&\& 9, 24
* 9, 13
\(+9\)
| 9, 15
= \(=9,20\)
> 9, 21, 42
\(>=9,21,22\)
> 9 , 28
\} 2 2 8
|9, 25
|| 9, 26

\section*{A}
abs 29
absolute value 29
absolutepath 30
accum 33
\(\operatorname{acos} 31\)
acosh 32
action, timeline 437, 438, 447, 450
active 35
activewindow 35
add, +9
address
of atable 411
aftertouch
touchin 454
touchout 456
aftertouch, polyphonic
polyin 327
polyout 329
anal 36
and 9,24
append 37
received in a messageobject 227
application status reporting 400
argument
as a receiver of a message 228
changeableargument 228
argument, changeable 294
arithmetic operators
- 11
!- 4
!/ 6
\% 17
* 13
\(+9\)
/ 15
array 411
funbuff 159
offer 277
ASCII 189, 191, 275, 386, 391
asin 38
asinh 39
Assistance
assigned to an inlet object 185
assigned to an outlet object 282
associating a symbol with a number 72
atan 40
atan2 42
atanh 44

\section*{B}
backslash 228
bag 45
bang 61, 230
produced by clicking on a picture 462
received in a table 411
send to many places, in order 47
timeelapsed between 449
when a window is closed 71
bang message
traffic control 278
bangbang 47
beatsper minute 419
bendin 48
bendout 50
bitwise and 9, 23
bitwiseoperators
27
\& 23
>> 28
| 25
bitwiseor 9, 25
bold type, displaying numbers in 272
bondo 52
borax 53
bpatcher 55
broadcast a message everywhere 469
bucket 58
buddy 60
button 61
transparent 462
buttons, user-created 304

\section*{C}

C function 132
C programming language 132, 391
capture 62
cartopol 64
change 65
changeableargument 228
channel modemessage
ctlin 92
ctlout 94
channel pressure
touchin 454
touchout 456
check boxes 343
clip 67
clocker 69
closebang 71
coll 72
data format 74
Color Picker dialog 79
color selection
colorpicker 79
swatch 405
colored indicator, led 205
colorpicker 79
comma 228
comment 81
changing font and size 81
clicking on 463
comparison
both numbersarenot zero 24
equal to 20
greater than 21
greater than or equal to 22
if/then/else 180
less than 18
less than or equal to 19
look for a number or symbol 356, 367, 398
look for a range of numbers 388
look for a series of numbers 212
not equal to 8
oneor both numbers are not zero 26
report when numbers pass a threshold 290
the greater of two numbers 220
thegreatest in alist of numbers 220
the lesser of two numbers 243
the smallest in a list of numbers 243
conformpath 83
constant value 132
control change
ctlin 92
ctlout 94
conversion of messagetype 458
coordinateconversion
Cartesian to Polar 64
Polar to Cartesian 324
cos 86
cosh 87
cosinewave 86
counter 88
ctlin 92
ctlout 94
cycle 96

\section*{D}
data byte
system exclusive 408
datastructure
coll 72
date 98
decide 99
decode 100
decrementing 88, 207
default scaling 109
defer 102
delay 103

\section*{Index}
delaying
a bang 103
before sending a note-off 210
numbers 320, 439
delta count 53
delta time 53, 104, 256, 257, 449
detonate 104
dial 111
dialog 114
discrete values from a continuous stream 385
displaying messages 227
displaying numbers 271
divide, / 6, 9, 15
division of a beat 419
division, inlets reversed 6
dollar sign 228
drag-and-drop interfaces 116
dropfile 116
drunk 118
duration
reported by borax 54

\section*{E}
editing a sequence 257, 370
entering numbers from the keyboard 275
entering numbers in a N umber box 271
env 120
envelopegenerator 120
envi 120
equal to 9,20
error 131
evaluate item text of a pop-up menu 468
exponential curve 331
expr 132
extra precision pitch bend data 486, 487

\section*{F}
filemanagement
opendialog 280
report modification date 134
savedialog 362
filemodification date 134
file/pathname management
absolutepath 30
conformpath 83
filepath 137
relativepath 353
stripppath 397
filedate 134
filein 135
filepath 137
filtering a stream of numbers 246, 385
filtering M IDI messages 241
filtering out note-off messages 396
filtering out repetitions
of numbers 65
of zero/non-zero status 451
first-order M arkov chain 337
float 139
floating point variable 139
flush 141
folder 143
follow 145
following a score 105
format
of an mtr file 257
formatting
M IDI messages 233
forward 148
fpic 149
fpic and QuickTIme 502
fquantile 411
fraction 6, 15, 275
frame 154
fromsymbol 156
fswap 157
funbuff 159
function, mathematical 132
funnel 163

\section*{G}
gate 164
gestalt 166
getting system information
gestalt 166
screensize 366
suspend 400
Ggate 168
global variable 479
gotolink xbendin
firstpage 511
grab 169

Index
graph interval 109
graphic 171
graphics 171
in a Patcher window 196
graphicsfileformat 149, 302
graphicswindow 171
greater than 21, 42
greater than or equal to \(9,21,22,42\)
greater than, > 9
grid-based interface controls 213
Gswitch 173

\section*{H}
hexadecimal number displaying 62
highlighting 462
hint 174
histo 176
hslider 178

I
if 180
imovie 182
IncDec 184
incrementing 88, 176, 207
inlet object 185, 292
inlet, Assistance description 185
Inspector 382
bpatcher 55
coll 76
comment 81
counter 90
detonate 109
dial 112
fpic 151
hint 174
hslider 178
inlet 185
kslider 194
Icd 202
led 205
matrixctrl 215
message 227
multiSlider 263
number box 272
outlet 282
panel 288
pictctrl 306
pictslider 315
preset 334
radiogroup 345
rslider 358
slider 382
table 414
textedit 424
ubutton 463
umenu 467
uslider 474
int 187
integer variable 187
inter-onset interval 104
interpolate between points 207
iter 188

\section*{K}
key 189, 244
key code 189, 191
keyboard commands 189, 191
entering numbers 271, 275
keyboard modifier commands 244
keyboard-likeslider 193
keyup 191
knobs, user-created 304, 312
kslider 193

\section*{L}
labeling 81
Icd 196
least significant byte, pitch bend 486, 487
led 205
left shift operator 9, 27
less than or equal to 9,19
lessthan, 9, 18
limiting numbers to a specific range 17,67 , 388, 475
limiting the speed of a stream of numbers 385
line 207
list
combining numbers into 286, 439
convert to a series of numbers 188
separate numbers 470
list and symbol handling
fromsymbol 156
substitute 398
tosymbol 453
zl 493
list processing 493
list to symbol conversion 453
loadbang 209
loading a patch
send a bang when patch is loaded 209
logical and 24
logical or 26
loop 17
M
Mac OS Gestalt selector 166
magnifying glass tool 107
makenote 210
M arkov chain 36, 337
masking 23, 25
match 212
mathematical operators
arc-cosine 31, 32
arc-sine 38,39
arc-tangent 40, 44
arc-tangent ( 2 variables) 42
cosine 86
hyperbolic cosine 87
hyperbolic sine 381
sine 380
tangent 417
matrix switch control 213
matrixctrl 213
matrixctrl and QuickTime 502
M ax search path 137
Max Window
printing in 336
maximum in a series of numbers 296
maximum number of presets 335
maximum object 220
mean 221
menu bar, changing 222
menu object 465
menubar object 222
message
append arguments at the end of 37, 227
displaying 227
maximum length of 228
prepend arguments to the beginning of 227
prepend onebeforeanother 332
reversing order of two numbers 157
routing to different destinations 164, 168, 356, 398
message object 227
\$ argument 227
metro 230
MIDI
receiving and transmitting 235, 239
MIDI Enable/
294
MIDI file 106, 146, 371
MIDI fileformat 106
midiflush 232
midiformat 233
midiin 235
midiout 239
midiparse 241
minimum in a series of numbers 460
minimum object 243
minus, - 4, 9, 11
modulo 17
modulo, \% 9
monitor bounding coordinates 366
mouse status and location 246, 247
mousefilter 246
M ouseState 247
movie 249
mtr 254, 256
multiply,* 9, 13
multiSlider 260
multi-track M IDI file 106
multi-track sequencer 254, 256, 446
muting notes in a M IDI file 106

\section*{N}
n 81
next 266
not equal to 8,9
noteevent recording 105
notein 267
note-off message
filtering out 396
holding, then outputting 401
supplying 53, 141, 210, 325
note-off with release velocity
xnotein 489
xnoteout 491
note-on/note-off indicator to xnoteout 491
noteout 269
number
displaying 271
send to many places, in order 458
typing on the keyboard 275
number box 271
numkey 275

\section*{0}
objects
storing settings of 333
that evaluate expressions 132
offer 277
OM S 237
omsinfo 237
onebang 278
onecopy 279
open a dialog box 114, 280, 362
open a subpatch window 292
open and close a subpatch window 294, 427
Open Document dialog 280
opendialog 280
or 9, 26
outlet object 282, 292
outlet, A ssistance description 282
oval 284
Overdrive, defer 102

\section*{P}
p 292
pack 286
pairing numbers 60, 286, 391
pairing numbers, pairing lists, pairing floats, pairing symbols 60
palettein detonate window 107
palette of graphic editing tools 414
panel 288
parsing M IDI messages 241
past 290
patch cord
send messages without 369
patcher object 292
Patcher window
of a patcher object 292, 294
of a subpatch 294
pathnameconversion
absoluteto relative 353
cross-platform 85
relative to absolute 30
strippath 397
pcontrol 294
peak 296
pgmin 298, 300
pict 302
pictctrl 304
pictctrl and QuickTime 502
pictslider 312
picture
clicking on 463
in a patch 149
picturecontrols 312
pipe 320
pitch bend
14-bit, xbendin 486
14-bit, xbendout 487
bendin 48, 92
bendout 50
play a recorded sequence
mtr 256
seq 370
with M IDI start message 360
play audio sample 116, 134, 137, 266, 353, 397
playbar 322
plus, + 9
Polar to Cartesian coordinate conversion 64, 324
polling mouse status and location 247
poltocar 324
poly 325
polyin 327
polyout 329
polyphonic key pressure
polyin 327
polyout 329
pop-up hint text 174
pop-up menu 465
port
getting OM S devicenames 237
pow 331
Preferences file, setting search path 137
prepend 332
received in a message object 227
preset 333
print 336
prob 337
probability 36, 176, 347
program change
pgmin 298
pvar 341

\section*{Q}
quantile 177, 412
QuickTime 149, 249, 304, 312, 322
QuickTime and graphics fileformats 502
QuickTimemovie 182, 251
QuickTimemovieplay controller 322

\section*{R}
r 349
radio buttons 343
radiogroup 343
ramp of number values 207
random number
decide 99
drunk 118, 131
uniquechoice of 472
real time
rtin 360
receive 349
used with grab 169
receiving MIDI 235
recording a sequence of messages 256
recording a sequence of MIDI messages 370
recording note events 105
relational operators
18, 19
!= 8
\(=20\)
\(>21\)
\(>=22\)
relativepath 353
remainder 17
repeat actions 230, 477
right shift operator 9, 28
right-to-left
switching theorder 47, 157, 458
ring 354
route 356,398
routing
a range of numbers 388
messages to different destinations 164 , 168, 356, 398
rslider 358
rtin 360

\section*{S}
s 369
sample, read single 116, 134, 137, 266, 353,
397
saveafileastext 62
SaveAs dialog box
savedialog object 362
savedialog 362
scale 364
scoreof M IDI notes 105
score-following 105
scorereading object 145
screen bounding coordinates 366
screensize 366
script of a menubar object 222
examplescript 225
script of an env object 121
examplescript 126
scripting
changing object properties 432
connecting objects 431
creating objects 430
deleting objects 430
disconnecting objects 431
moving objects 434
naming objects 430
sending messages to object 433
scripting messages 428
scrolling display of number values 261
seed for random generator 99, 118, 347, 472
sel 367
select 364, 367, 394, 500
selecting colors
HSV 79
RGB 79
web-safe 79
semicolon 228
send 369
seq 370
stopping output 232
sequencing
editing a sequence 257, 370
multi-track 254, 256
noteevents 105
saving a sequence 257,370
singletrack 370
serial 373
serial port 373
set
received in a message object 227
setclock 377
setting search path for files 137
settings of objects, storing 333
shift operator 27, 28
\(\sin 380\)
sinh 381
slider 382
sliders, user-created 312
special character 150, 228, 251
speedlim 385
spell 386
split 388
spray 390
sprintf 391
sqrt~ 393
square root of a value 393
standalone 394
standard M IDI file 106
status byte
system exclusive 408
stealing voices 325
storing
messages 72
settings of objects 333
stripnote 396
strippath 397
stuck notes, avoiding 53, 141, 210, 232, 325
subpatch 55, 292
opening the window of 292, 294, 427
subtract 4, 11
subtraction, inlets reversed 4
sustain 401
swatch 405
switch 403, 407
switches, user created 304
sxformat 408
symbol
received in a message object 227
symbol and list handling
fromsymbol 156
substitute 398
tosymbol 453
zl 493
symbol to list conversion 156
synchronizing 360
synchronous messages 60
sysexin 410
system exclusive
end byte 408
status byte 408
sysexin 410
system exclusive programming 408

\section*{T}
table 411
Don't Save 415
entering values as text 414
Save with Patcher 415
size of 413
\(\tan 417\)
tanh 418
tempo 419
text 421
textedit 423
thispatcher 427
thistimeline 437
thistrack 438
thresh 439
threshold
numbers received within 439
when numbers go beyond 290
ticmd 441
time elapsed between events 53, 69, 98, 449
time of day 98

\section*{Index}
timed repetition 230
timelineeditor window 446
timelineobject 445
timer 449
times, * 13
tiout 450
titlebar hidden 428
togedge 451
toggle 452
toggling 100, 173, 205, 451, 452
tosymbol 453
touchin 454
touchout 456
track in a timeline 438
transmitting MIDI 239
transparent button 462
trap a number or symbol 356, 367, 398
trigger 458
trough 460
type of message
conversion 458

\section*{U}
ubutton 462
universal 400, 469
unpack 470
urn 472
U SB ports and the serial object 373
uslider 474
uzi 477

\section*{V}
v 479
value 479
variable, global 479
vdp 480
vexpr 484
videodisc control 480
voiceallocation
borax 53
poly 325
voicestealing 325

\section*{W}
wild card 212
window
opening and closing automatically 294, 427
window size 428
wrench tool 107

\section*{X}
xbendin 486
xnotein 489
xnoteout 491

\section*{Z}
zl 493
zmap 500```

