S L

el Lok

!
‘,
|

X

Reference

Copyright and Trademark Notices
This manual is copyright © 2000-2003 Cycling '74.

Max is copyright © 1990-2003 Cycling '74/IRCAM, I'Institut de Recherche et Cotrdination
Acoustique/Musique.

Credits

Original Max Documentation: Chris Dobrian

Max 4.3 Reference Manual: David Zicarelli, Gregory Taylor, Joshua Kit Clayton, jhno, Richard
Dudas

Max 4.3 Tutorials and Topics Manual: David Zicarelli, Gregory Taylor, Jeremy Bernstein, Adam
Schabtach, Richard Dudas

Max 4.3 Manual page example patches: R. Luke DuBois, Darwin Grosse, Ben Nevile, Joshua Kit
Clayton, David Zicarelli

Cover Design: Lilli Wessling Hart

Graphic Design: Gregory Taylor

Introduction

This volume, Max Reference, contains information about each individual Max object. It includes:
Max Objects

Contains precise technical information on the workings of each of the built-in and external
objects supplied with Max, organized in alphabetical order.

Max Object Thesaurus

Consists of a reverse index of Max objects, alphabetized by keyword rather than by object
name. Use this Thesaurus when you want to know what object(s) are appropriate for the task
you are trying to accomplish, then look up those objects by name in the Objects section.

Manual Conventions

The central building block of Max is the object. Names of objects are always displayed in bold
type, like this.

Messages (the arguments that are passed to and from objects) are displayed in plain type, like this.

The name of a Max object displayed in blue type like this is hyperlinked to the reference page for
that object in this document. Clicking on the blue text will jump to the reference page for that
object.

In the“See Also” sections, anything in regular type is a reference to a section of either this manual
or the Max Tutorials and Topics manual.

Reading the manual online

The table of contents of the Max Reference Manual is bookmarked, so you can view the book-
marks and jump to any topic listed by clicking on its names. To view the bookmarks, choose
Bookmarks from the Windows menu. Click on the triangle next to each section to expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat Reader’s Find
command. Choose Find from the Tools menu, then type in a word you're looking for. Find will
highlight the first instance of the word, and Find Again takes you to subsequent instances. We'd
like to take this opportunity to discourage you from printing out the manual unless you find it
absolutely necessary.

|- Subtraction object
. (inlets reversed)

The - object functions just like the - object, but the inlets’ functions are reversed.

Input

int Inleftinlet: The number is stored, and will be subtracted from a number received
in the right inlet.

In right inlet: The number in the left inlet is subtracted from the number, and the
result is sent out the outlet.

float ~ Converted to int, unless !- has a float argument.

bang Inleftinlet: Performs the subtraction with the numbers currently stored. If there
is no argument, - initially holds 0.

Arguments

intorfloat ~ Optional. Sets the initial value, to be subtracted from a number received in the left
inlet. Float argument causes the numbers to be subtracted as floats.

Output

int The difference between the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Examples
] [5-1)22.7] [5.1[z2.7]
23.7
| ! = - \Il_=l\ !I!_=1.II | - -
P18 | P18 | p18.6 | p

- with the inputs swapped

Subtraction object
(inlets reversed)

%
Tutorial 8

Evaluate a mathematical expression

Division object (inlets reversed)

Compare two numbers, output 1 if they are not equal
Add two numbers, output the result

Subtract two numbers, output the result

Multiply two numbers, output the result

Divide two numbers, output the result

Divide two numbers, output the remainder

Doing math in Max

| / Division object
. (inlets reversed)

The !/ object functions just like the / object, but the inlets’ functions are reversed.

Input

int Inleftinlet: The number is stored as the divisor (the number to be divided into the
number in the right inlet).

In right inlet: The number is divided by the number in the right inlet, and the
result is sent out the outlet.

float ~ Converted to int, unless !/ has a float argument.

bang Inleftinlet: Performs the division with the numbers currently stored.

Arguments

intorfloat ~ Optional. Sets an initial value for the divisor. If there is no argument, the divisor is
set to Linitially. Float argument causes the numbers to be divided as floats. (Divi-
sion by 0 is not allowed. Int division by 0 will have the same result as dividing by 1.
Float division by 0 will always cause an output of -2%1.)

Output

int The two numbers in the inlets are divided, and the result is sent out the outlet.

float ~ Only if there is an argument with a decimal point.

Examples

E

tbf
] EzET B2 —

| 1 \g\ | S |
17 1/ [1/ 1. | r=—
P]
integer Floats are truncated ...unless there iz the ocld way
version betore division... a tloat argument. of doing it!

/ with the inputs swapped

Division object
(inlets reversed)

%
Tutorial 8

Evaluate a mathematical expression

Subtraction object (inlets reversed)

Compare two numbers, output 1 if they are not equal
Add two numbers, output the result

Subtract two numbers, output the result

Multiply two numbers, output the result

Divide two numbers, output the result

Divide two numbers, output the remainder

Doing math in Max

Compare two numbers,
output 1 if they are not equal

int

float

bang

list

Arguments

int or float

Output

int

Examples

See Also

select
split

>=
Tutorial 15

In leftinlet: The number is compared with the number in the right inlet. If the two
numbers are not equal, '= outputs 1. If they are equal != outputs 0.

Inright inlet: The number is stored, to be compared with a number received in
the leftinlet.

Converted to int before comparison, unless != has a float argument.

In left inlet: Performs the comparison with the numbers currently stored. If there
is no argument, != initially holds 0 for comparison.

In left inlet: Compares first and second number, outputs 1 if they are not equal, 0 if
they are equal.

Optional. Sets the initial value, to be compared with a number received in the left
inlet. Float argument forces a float comparison.

1if the numbers in the inlets are not equal, 0 if they are equal.

s -

br] Bl

Test if two numbers are not equal

Select certain inputs, pass the rest on

Look for a range of numbers

Is less than, comparison of two numbers

Is less than or equal to, comparison of two numbers
Compare two numbers, output 1 if they are equal

Is greater than, comparison of two numbers

Is greater than or equal to, comparison of two numbers
Making decisions with comparisons

Add two numbers,
output the result

Input

int

float

bang
list

set

In left inlet: The number is added to the number in the right inlet, and the result is
sent out the outlet.

Inright inlet: The number is stored for addition to a number received in the left
inlet.

Converted to int, unless + has a float argument.

In left inlet: Performs the addition with the numbers currently stored. If there is
no argument, + initially holds 0.

In left inlet: The first number is added to the second number, and the result is sent
out the outlet.

In left inlet: The word set, followed by a number, adds that number to the number
in the right inlet but nothing is sent out. A subsequent bang sends out the result.

The set message functions similarly for all the arithmetic operators, logical operators, and bitwise
operators: +,-,*,/,%, <,<=,==,I- I/, 1=,>= > &&,||, &, |, <<,and >>. The number is used as the
left operand, and the expression is evaluated, but the result is not sent out.

Arguments

int or float

Output
int

float

Optional. Sets the initial value, to be added to a number received in the left inlet.
Float argument causes the numbers to be added as floats.

The sum of the two numbers received in the inlets.

Only if there is an argument with a decimal point.

+

Add two numbers,
output the result

Examples
E] Bl

Normally adds ints

See Also
expr

I-

1/

*

/
%
Tutorial 8

6.0
|

5.5 |
|

*

Floats are truncated before addition...

Evaluate a mathematical expression
Subtraction object (inlets reversed)
Division object (inlets reversed)

Subtract two numbers, output the result
Multiply two numbers, output the result
Divide two numbers, output the result
Divide two numbers, output the remainder

Doing math in Max

10

[6.0] [5.5]
| |

* 0.0

unless there is a float argument

Subtract two numbers,
output the result

Input

int

float

bang

list

Arguments

int or float

Output
int

float

In left inlet: The number in the right inlet is subtracted from the number, and the
result is sent out the outlet.

Inright inlet: The number is stored, to be subtracted from a number received in
the leftinlet.

Converted to int, unless - has a float argument.

In left inlet: Performs the subtraction with the numbers currently stored. If there
IS no argument, - initially holds 0.

In left inlet; The second number is subtracted from the first number, and the
result is sent out the outlet.

Optional. Sets the initial value, to be subtracted from a number received in the left
inlet. Float argument causes the numbers to be subtracted as floats.

The difference between the two numbers received in the inlets.

Only if there is an argument with a decimal point.

1

Subtract two numbers,
output the result

Examples

|$_| [5.02] [2.95]
| |

Subtracted as ints Floats are truncated before subtraction...
See Also
expr Evaluate a mathematical expression
I Subtraction object (inlets reversed)
I/ Division object (inlets reversed)
+ Add two numbers, output the result
- Subtract two numbers, output the result
* Multiply two numbers, output the result
/ Divide two numbers, output the result
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max

12

[5.02] [3.95]
| |

- 0.0

...unless there is a float argument

* Multiply two numbers,
output the result

Input

int Inleftinlet: The number is multiplied by the number in the right inlet, and the
result is sent out the outlet.

Inright inlet: The number is stored for multiplication with a number received in
the leftinlet.

float ~ Converted to int before multiplication, unless * has a float argument.

bang Inleftinlet: Performs the multiplication with the numbers currently stored. If
there is no argument, * initially holds 0 as a multiplier.

list Inleftinlet: The first number is multiplied by the second number, and the result is
sent out the outlet.

Arguments

intorfloat ~ Optional. Sets the initial value, to be multiplied by a number received in the left
inlet. Float argument causes the numbers to be multiplied as floats.

Output

int The product of the two numbers received in the inlets.

float ~ Only if there is an argument with a decimal point.

Examples

[-?——I @ 0] [55] 0] [5.5]
| | | |
+

* * 0.0
Multiplied asints Floats are truncated before multiplication... ...unless there is a float argument

13

Multiply two numbers,
output the result

See Also

expr

<<
Tutorial 8

Evaluate a mathematical expression

Subtraction object (inlets reversed)
Division object (inlets reversed)

Compare two numbers, output 1 if they are not equal
Add two numbers, output the result

Subtract two numbers, output the result

Divide two numbers, output the result

Divide two numbers, output the remainder

Shift all bits to the left

Doing math in Max

14

Divide two numbers,
output the result

Input

int

float
bang

list

Arguments

int or float

Output
int

float

In leftinlet: The number is divided by the number in the right inlet, and the result
is sent out the outlet.

Inright inlet: The number is stored as the divisor (the number to be divided into
the number in the left inlet).

Converted to int, unless / has a float argument.
In left inlet: Performs the division with the numbers currently stored.

In left inlet: The first number is divided by the second number, and the result is
sent out the outlet.

Optional. Sets an initial value for the divisor. If there is no argument, the divisor is
set to L initially. Float argument causes the numbers to be divided as floats. (Divi-
sion by 0 is not allowed. Int division by 0 will have the same result as dividing by 1.
Float division by 0 will always cause an output of -2%%.)

The two numbers in the inlets are divided, and the result is sent out the outlet.

Only if there is an argument with a decimal point.

15

/

Divide two numbers,

output the result
Examples
E [2.06] [1.51] [.06] [1.51]
| | | |
/ / /1.0

Remainder is discarded Floats are truncated before division...

See Also
expr
I-

I/
+

*

%
Tutorial 8

Evaluate a mathematical expression
Subtraction object (inlets reversed)
Division object (inlets reversed)

Add two numbers, output the result
Subtract two numbers, output the result
Multiply two numbers, output the result
Divide two numbers, output the remainder
Doing math in Max

16

...unless there is a float argument

%

Divide two numbers,
output remainder

Input

int

float
bang

list

Arguments

int

Output

int

Examples

See Also
expr

I-

I/

+

*

/
Tutorial 8

In left inlet: The number is divided by the number in the right inlet, and the
remainder is sent out the outlet.

Inright inlet: The number is stored as the divisor (the number to be divided into
the number in the left inlet) for calculating the remainder.

Converted to int.
In left inlet: Performs the operation with the numbers currently stored.

In leftinlet: The first number is divided by the second number, and the remainder
is sent out the outlet.

Optional. Sets an initial value for the divisor. If there is no argument, the divisor is
setto Linitially.

When the two numbers in the inlets are divided, the remainder is sent out the out-
let. % is called the modulo operator.

5
¥ ¥ 12 ||/ 12

i

note octave

Find the remainder of a division

Evaluate a mathematical expression
Subtraction object (inlets reversed)
Division object (inlets reversed)

Add two numbers, output the result
Subtract two numbers, output the result
Multiply two numbers, output the result
Divide two numbers, output the result
Doing math in Max

17

< _ Is less than,
comparison of two numbers

Input

int Inleftinlet: If the number is less than the number in the right inlet, < outputs 1.
Otherwise, < outputs 0.

Inright inlet: The number is stored to be compared with a number received in the
leftinlet.

float ~ Converted to int before comparison, unless < has a float argument.

bang Inleftinlet: Performs the comparison with the numbers currently stored. If there
is no argument, < initially holds 0 for comparison.

list Inleftinlet: If the first number is less than the second number, < outputs 1. Other-
wise, < outputs 0.

Arguments

intorfloat ~ Optional. Sets the initial value, to be compared with a number received in the left
inlet. Float argument forces a float comparison.

Output

int 1if the number in the left inlet is less than the number in the right inlet. 0 if the
number in the left inlet is greater than or equal to the number in the right inlet.

Examples

H

i“ﬁl

Number on left is less than number on right Number on left is not less than number on right
See Also
I= Compare two numbers, output 1 if they are not equal
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

18

Is less than or equal to,
comparison of two numbers

Input
int Inleftinlet: If the number is less than or equal to the number in the right inlet, <=
outputs 1. Otherwise, <= outputs 0.
Inright inlet: The number is stored to be compared with a number received in the
leftinlet.
float ~ Converted to int before comparison, unless <= has a float argument.
bang Inleftinlet: Performs the comparison with the numbers currently stored. If there
is no argument, <= initially holds 0 for comparison.
list Inleftinlet: If the first number is less than or equal to the second number, <= out-
puts 1. Otherwise, <= outputs 0.
Arguments
intorfloat ~ Optional. Sets the initial value, to be compared with a number received in the left
inlet. Float argument forces a float comparison.
Output
int 1if the number in the leftinlet is less than or equal to the number in the right inlet.
0 if the number in the left inlet is greater than the number in the right inlet.
Examples
6l Bl Bl el bl
<= {= {=
Is less than... or equal to Is not less than or equal to
See Also
I= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

19

Compare two numbers,
output 1 if they are equal

int

float

bang

list

Arguments

int or float

Output

int

Examples

DT

In leftinlet: The number is compared with the number in the right inlet. If the two
numbers are equal, == outputs 1. If they are not equal == outputs 0.

Inright inlet: The number is stored to be compared with a number received in the
leftinlet.

Converted to int before comparison, unless == has a float argument.

In left inlet: Performs the comparison with the numbers currently stored. If there
is no argument, == initially holds 0 for comparison.

In left inlet: Compares first and second number, outputs 1 if they are equal, 0 if
they are not equal.

Optional. Sets the initial value, to be compared with a number received in the left
inlet. Float argument forces a float comparison.

Lif the numbers in the inlets are equal, 0 if they are not equal.

L?—_| “True-False converter” E-

0| == 0 converts == 0

L J L ———
LON-Zero to 2ero,
and vice versa

i—::-@

The numbers are equal The numbers are not equal Using==0as a logical “not”
See Also
select Select certain inputs, pass the rest on
split Look for a range of numbers
I= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

20

~ Isgreater than,
comparison of two numbers

Input
int Inleftinlet: If the number is greater than the number in the right inlet, > outputs 1.
Otherwise, > outputs 0.
In right inlet: The number is stored to be compared with a number received in the
leftinlet.
float ~ Converted to int before comparison, unless > has a float argument.
bang Inleftinlet: Performs the comparison with the numbers currently stored. If there
is no argument, > initially holds 0 for comparison.
list Inleftinlet: If the first number is greater than the second number, > outputs 1.
Otherwise, > outputs 0.
Arguments
intorfloat Optional. Sets the initial value, to be compared with a number received in the left
inlet. Float argument forces a float comparison.
Output
int 1if the number in the left inlet is greater than the number in the right inlet.0 if the
number in the left inlet is less than or equal to the number in the right inlet.
Examples
] 5]
>]]
T= é
_ po_ | po |
The number on the left is greater The number on the left is not greater
See Also
I= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

21

—_ Is greater than or equal to,
comparison of two numbers

Input

int Inleftinlet: If the number is greater than or equal to the number in the right inlet,
>= outputs 1. Otherwise, >= outputs 0.

Inright inlet: The number is stored to be compared with a number received in the
leftinlet.

float ~ Converted to int before comparison, unless >= has a float argument.

bang Inleftinlet: Performs the comparison with the numbers currently stored. If there
is no argument, >= initially holds 0 for comparison.

list Inleftinlet: If the first number is greater than or equal to the second number, >=
outputs 1. Otherwise, >= outputs 0.

Arguments

intorfloat Optional. Sets the initial value, to be compared with a number received in the left
inlet. Float argument forces a float comparison.

Output

int 1if the number in the left inlet is greater than or equal to the number in the right
inlet. 0 if the number in the left inlet is less than the number in the right inlet.

Examples

i el

= = >=

Is greater than... or equal to Is not greater than or equal to
See Also
I= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
Tutorial 15 Making decisions with comparisons

22

Bitwise intersection

of two numbers
Input
int Inleftinlet: The number is compared, in binary form, with the number in the
right inlet. The output is a number composed of those bits which are 1 in both
numbers.
In right inlet: The number is stored for comparison with a number received in the
left inlet.
float Converted toint.
bang Inleftinlet: Performs the comparison with the numbers currently stored. If there
is no argument, & initially holds 0 for comparison.
list Inleftinlet: Compares the first and second numbers bit-by-bit, and outputs a
number composed of those bits which are 1 in both numbers.
Arguments
int Optional. Sets an initial value to be compared with a number received in the left
inlet.
Output
int The two numbers received in the inlets are compared, one bit at a time. If a bitis 1
in both numbers, it will be 1 in the output number, otherwise it will be 0 in the
output number.
Examples
10111 10111 10111
& [& 1]
| J 1’ lf
pTJupu
10110 Is 0dd
Nonzero bits shared by both numbers Can be used as an odd/even detector
See Also
&& If both numbers are non-zero, output 1

Bitwise union of two numbers
If either of two numbers is non-zero, output 1

23

& & If both numbers are non-zero,
output 1

Input

int If the number in both inlets is not 0, then the output is 1. If the number in one or
both of the inlets is 0, then the output is 0. A number in the left inlet triggers the
output.

float Converted toint.

bang Inleftinlet: Performs the operation with the numbers currently stored. If there is
no argument, && initially holds 0.

list Inleftinlet: If both the first and second numbers are not 0, then the output is 1.
Otherwise, the output is 0.

Arguments

int Optional. Sets an initial value to be stored by &&. A number in the right inlet
changes the value set by the argument.

Output
int If the number in the left inlet and the number in the right inlet (or specified by the
argument) are both not 0, then the output is 1. Otherwise, the output is 0.
Examples
notein a
] L
lb\ 3 3 \bl
23 — Is it Is it
. E=S0 niitle ¢ AND... lout? Merne]
60& by
_— Sk
Eoth | ‘
p1 | true? oud middle C sends 1
Both numbers are not 0 Used to combine comparisons
See Also
& Bitwise intersection of two numbers
| Bitwise union of two numbers
I If either of two numbers is non-zero, output 1
Tutorial 15 Making decisions with comparisons

24

Bitwise union
of two numbers

Input

int Inleftinlet: Outputs a number composed of all those bits which are 1 in either of
the two numbers.

Inright inlet: The number is stored for combination with a number received in
the leftinlet.

float Converted toint.

bang Inleftinlet: Performs the calculation with the numbers currently stored. If there is
no argument, | initially holds 0.

list Inleftinlet: Combines the first and second numbers bit-by-bit, and outputs a
number composed of all those bits which are 1 in either of the two numbers.

Arguments
int Optional. Sets an initial value to be or-ed with a number received in the left inlet.

Output

int All the nonzero bits of the two numbers received in the inlets are combined. If a
bitis 1 in either one of the numbers, it will be 1 in the output number, otherwise it
will be 0 in the output number.

Examples
1000011 1100000
11010 10001 . | I-g_il
<< 7
IF\
11011 1000011 1100000
All non-zero bits are combined Can be used to pack two numbers into one int

See Also
& Bitwise intersection of two numbers
&& If both numbers are non-zero, output 1

| If either of two numbers is non-zero, output 1

25

If either of two numbers
IS non-zero, output 1

Input
int If the number in either inlet is not 0, then the output is 1. If the number in both of
the inlets is 0, then the output is 0. A number in the left inlet triggers the output.
float Converted toint.
bang Inleftinlet: Performs the operation with the numbers currently stored. If there is
no argument, || initially holds 0.
list Inleftinlet: If either the first or second number is not 0, then the output is 1. Oth-
erwise, the output is 0.
Arguments
int Optional. Sets an initial value to be stored by ||. A number in the right inlet
changes the value set by the argument.
Output
int If either the number in the left inlet or the number in the right inlet (or specified
by the argument) is not 0, then the output is 1. Otherwise, the output is 0.
Examples
J 0]
' I Tirs C
El wpe———=l OR it's G,
send owt 1
One of the numbersis not 0 Used to combine comparisons
See Also
& Bitwise intersection of two numbers
&& If both numbers are non-zero, output 1
| Bitwise union of two numbers
Tutorial 15 Making decisions with comparisons

26

Shift all bits

<< to the left
Input
int Inleftinlet: All bits of the number, in binary form, are shifted to the left by a cer-
tain number of bits. The resulting number is sent out the outlet.
Inright inlet: The number is stored as the number of bits to left-shift the number
in the leftinlet.
float Converted toint.
bang Inleftinlet: Performs the bit-shift with the numbers currently stored. If there is no
argument, << initially holds 0 as the number of bits by which to shift.
list Inleftinlet: The first number is bit-shifted to the left by the number of bits speci-
fied by the second number.
Arguments
int Optional. Sets an initial value for the number of bits by which to shift leftward.
Output
int The number in the left inlet is bit-shifted to the left by a certain number of bits.
The number of bits by which to shift is specified by the number in the right inlet.
The output is the resulting bit-shifted number.
Examples
1101
| < < |
13, shifted 3 ! ‘
1101000
Same effect as multiplying by a power of 2
See Also
* Multiply two numbers, output the result
>> Shift all bits to the right

27

Shift all bits
>> to the right

Input

int Inleftinlet: All bits of the number, in binary form, are shifted to the right by a cer-
tain number of bits. The resulting number is sent out the outlet.

Inright inlet: The number is stored as the number of bits to right-shift the num-
ber in the left inlet.

float Converted toint.

bang Inleftinlet: Performs the bit-shift with the numbers currently stored. If there is no
argument, >> initially holds 0 as the number of bits by which to shift.

list Inleftinlet: The first number is bit-shifted to the right by the number of bits spec-
ified by the second number.

Arguments

int Optional. Sets an initial value for the number of bits by which to shift rightward.

Output

int The number in the left inlet is bit-shifted to the right by a certain number of bits.
The number of bits by which to shift is specified by the number in the right inlet.
The output is the resulting bit-shifted number.

Examples
10110
I > > |
22, shifted to the | ‘
right by 2 bits =
101
Same effect as dividing by a power of 2
See Also
I/ Division object (inlets reversed)
<< Shift all bits to the left

28

Output the absolute
ab S value of the input

Input

int ~ The absolute (non-negative) value of the input is sent out the output.
float Converted to int, unless abs has a float argument.

intorfloat ~ Optional. Float argument forces a float output.

Arguments
intorfloat Optional. Float argument forces a float output.

Output

int The absolute value of the input.

float Only if there is an argument with a decimal point.

Examples
’ruotein |
—23 | L I o ——
| | - 127
abs —
| ‘ abs
23 %=l\
noteout
Output is nonnegative Used here to invert input
See Also
expr Evaluate a mathematical expression
Tutorial 14 Sliders and dials

29

absolutepath Toan absolt pat

Input

any symbol

Arguments

Output

any symbol

Examples

A file name or path as a symbol. Input pathnames can contain slashes, colons, or
backslashes as separators. The absolutepath object converts a file name or path to
an absolute path, resolving any aliases in doing so.

None.

If the incoming file name or path is found, the output is an absolute path.The out-
put pathnames contain slash separators.

Absolute pathnames look like this:
“C./Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

If the file is not found, absolutepath outputs the symbol notfound.

absolutepath

prepend set

|
|“lapdog:

fLlibrary/application Support/Cycling '74/externals/coll”

See Also

conformpath
dropfile
opendialog
relativepath
savedialog
strippath

File Preferences

Convert paths of one pathtype and/or pathstyle to another
Define a region for dragging and dropping a file

Open a dialog to ask for a file or folder

Convert an absolute to a relative path

Open a dialog to ask for a filename for saving

Get a filename from a full pathname

30

acosS Arc-cosine function

Input

floatorint Input to aarc-cosine function.

bang Inleftinlet: Calculates the arc-cosine of the number currently stored. If there is no
argument, acos initially holds 0.

Arguments

floatorint ~ Optional. Sets the initial value for the arc-cosine function.

Output
flatorint ~ The arc-cosine of the input.

Examples

* floating-point input in

the range {-1, 1}.

p1. |

3005 |

po. [p1.570796 |p3.141593 |

* arceosine of the input in the range
{-m, m}.

See Also
acosh Hyperbolic arc-cosine function
asin Arc-sine function
asinh Hyperbolic Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
atanh Hyperbolic arc-tangent function
€0S Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tan Tangent function
tanh Hyperbolic tangent function

31

aCO S h Hyperbolic arc-cosine function

Input

floatorint Inputto a hyperbolic arc-cosine function.

bang Inleftinlet: Calculates a hyperbolic arc-cosine of the number currently stored. If
there is no argument, acosh initially holds 0.

Arguments

flatorint Optional. Sets the initial value for the hyperbolic arc-cosine function.

Output
flatorint ~ The hyperbolic arc-cosine of the input.

Examples
* floating point input
p1. | p1963.
‘acosh | acosh 16. ‘acosh |
po. | p2.4eca7ss | pa.275376 |
* hyperbolic arc-cosine of the inpur.

See Also

acos Arc-cosine function

asin Arc-sine function

asinh Hyperbolic Arc-sine function

atan Arc-tangent function

atan2 Arc-tangent function (two variables)

atanh Hyperbolic arc-tangent function

€0S Cosine function

cosh Hyperbolic cosine function

sin Sine function

sinh Hyperbolic sine function

tan Tangent function

tanh Hyperbolic tangent function

32

Store, add to,
accum and multiply a number

Input

int Inleftinlet: Replaces the value stored in accum, and sends the new value out the
outlet.

In middle inlet: The number is added to the stored value, without triggering out-
put.

Inright inlet: The stored value is multiplied by the input, without triggering out-
put.

float Inleftand middle inlet: Converted to int, unless accum has a float argument.

Inright inlet: Multiplication is done with floats, even if the value is stored as an
int.

bang Inleftinlet: Outputs the value currently stored in accum.

set Inleftinlet: The word set, followed by a number, sets the stored value to that num-
ber, without triggering output.

Arguments

intorfloat Optional. Sets the initial value stored in accum. An argument with a decimal point
causes the value to be stored as a float.

Output

int The value currently held by accum.

float Only if there is an argument with a decimal point.

33

Store, add to,
accum and multiply a number

Examples

[C] Count by 3's Double each time

‘B v
laccum 3 |
Add to and/or multiply a stored value Used here to increment by different amounts

See Also
counter Count the bang messages received, output the count
float Store a decimal number
int Store an integer value
Tutorial 21 Storing numbers

34

I Send 1 when patcher window is active,
aCt|Ve 0 when inactive

Input
There are no inlets. Output is triggered automatically when the patcher window is
activated or deactivated.
Arguments
None.
Output
int When the patcher window that contains active is activated, active sends out 1.
When the window is made inactive, active sends out 0.
Examples

1 |act1ve| ct11n 11
On only when Let data

windowi i through only

made active when window
is active

ctlout 2 1

Turn on a process or open a gate when the window is made active

See Also

closebang Send a bang when patcher window is closed
loadbang Send a bang automatically when patch is loaded
Tutorial 40 Automatic actions

35

Omn the first number,

anal

Make a histogram of
number pairs received

Input

int

reset

clear

Arguments

int

Output
list

Examples

nothing happe ns

1.

[[E

anal

prob

See Also

histo
prob

Reports how many times this number and the previously received number have
occurred in immediate succession. (The first time a number is received, there has
been no previous number, so nothing happens.)

Erases the most recently received number from the memory of the anal object.
The next number to be received gets stored in its place, to serve as the next“previ-
ous”value (but nothing else happens).

Erases the memory of the anal object entirely, but retains the most recently
received number to use as the next“previous” value.

Optional. Sets a maximum limit for how many different number pairs can be kept
track of by anal. The maximum number of different pairs is 1024. If no argument
is present, anal can store up to 128 different pairs.

The first two numbers in the list are the two most recently received numbers, and
the third number shows how many times that particular succession of two num-
bers has been received. This list of three numbers is designed to be used as input

to the prob object, to create a probability matrix of transitions from one number

to another (known as a first-order Markov chain).

Now the pair "60, 64" How the pair "64, 60" How the pair 60, 64"

has occurred once has oceured once has ocewred twice notein
| —
[ana] [anat] [ana] [emat]
60 64 1 fi4 60 1 60 642 ' ‘
prob prob prob prob

Keep track of number pairs and their relative frequency of occurrence;
pass the information to prob to generate similar transitions

Make a histogram of the numbers received
Make weighted random series of numbers

append Append arguments

at the end of a message

Input

set The word set, followed by any message, will replace the message stored in append,
without triggering output.

anythingelse ~ The message stored in append is appended, preceded by a space, to the end of any
message that is received in the inlet, and the combined message is sent out the

outlet.
Arguments
anything Optional. Sets the message that will be appended to the end of incoming mes-
sages.
Output

anything The message received in the inlet is combined with the message stored in append,
and then sent out the outlet.

Examples
split 0 127 [sequencel | [Sequence2
[l l '
append is | |append is not| |append record
— |
append a valid number. route Sequencel SequenceZ
l &\ \%\
print Input seq seq
Symbols can be combined into meaningful messages with append
See Also
prepend Put one message at the beginning of another
Tutorial 25 Managing messages

37

asin

Arc-sine function

Input

float or int

bang

Arguments

float or int

Output

float or int

Examples

See Also

acos
acosh
asinh
atan
atan2
atanh
c0s
cosh
sin
sinh
tan
tanh

Input to a arc-sine function.

In left inlet: Calculates the arc-sine of the number currently stored. If there is no
argument, asin initially holds 0.

Optional. Sets the initial value for the arc-sine function.

The arc-sine of the input.

* floating-point input
(range: {-1, 1}].

P 1570796 [po. [p-1.570796 |

* arcsine of the input, in radians (range:
{-mi2, mi'2}).

Arc-cosine function

Hyperbolic arc-cosine function
Hyperbolic Arc-sine function
Arc-tangent function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosine function
Hyperbolic cosine function

Sine function
Hyperbolic sine function
Tangent function
Hyperbolic tangent function

38

aS | n h Hyperbolic arc-sine function

Input

flatorint Inputto a hyperbolic arc-sine function.

bang Inleftinlet: Calculates the hyperbolic arc-sine of the number currently stored. If
there is no argument, asin initially holds 0.

Arguments

flatorint Optional. Sets the initial value for the hyperbolic arc-sine function.

Output
floatorint ~ The hyperbolic arc-sine of the input.

Examples
* floating point inpuk
p-1. | p1. |
[asinh | [asinh 0.| [asinh]
P-0.881274| poO. | po.ee1374 |
* hyperbolic arc-sine of the input.

See Also

acos Arc-cosine function

acosh Hyperbolic arc-cosine function

asin Arc-sine function

asinh Hyperbolic Arc-sine function

atan Arc-tangent function

atan2 Arc-tangent function (two variables)

atanh Hyperbolic arc-tangent function

€0S Cosine function

cosh Hyperbolic cosine function

sin Sine function

sinh Hyperbolic sine function

tan Tangent function

tanh Hyperbolic tangent function

39

atan Arc-tangent function

Input

flatorint Input to a arc-tangent function.

bang Inleftinlet: Calculates the arc-tangent of the number currently stored. If there is
no argument, atan initially holds 0.

Arguments
flatorint Optional. Sets the initial value for the arc-tangent function.

Output

floatorint ~ The arc-tangent of the input.

Examples

* Machin's
formula for
cOmputing .

* compukes the arctangent
of the input, in radians.

40

atan

Arc-tangent function

See Also

acos
acosh
asin
asinh
atan?
atanh
cos
cosh
sin
sinh
tan
tanh

Arc-cosine function

Hyperbolic arc-cosine function
Arc-sine function

Hyperbolic Arc-sine function
Arc-tangent function (two variables)
Hyperbolic arc-tangent function
Cosine function
Hyperbolic cosine function

Sine function
Hyperbolic sine function
Tangent function
Hyperbolic tangent function

41

Arc-tangent function
atan 2 (two variables)

Input

flatorint Inleft input: x value input to an arc-tangent function.
Inright input: y value input to an arc-tangent function.

bang Inleftinlet: Calculates the arc-tangent of the numbers currently stored. If there
are no arguments, atan2 initially holds 0 for both input values.

Arguments
floatorint Optional. Two ints may be used to set the initial value for the arc-tangent func-
tion.
Output

flatorint The arc-tangent of the input values (i.e. Arc-tangent(y/x)).

Examples

* caloulates the angle from two
points around an origin
(aran()] in radisns.

42

atan2

Arc-tangent function
(two variables)

See Also

acos
acosh
asin
asinh
atan
atanh
cos
cosh
sin
sinh
tan
tanh

Arc-cosine function
Hyperbolic arc-cosine function
Arc-sine function

Hyperbolic Arc-sine function
Arc-tangent function
Hyperbolic arc-tangent function
Cosine function
Hyperbolic cosine function
Sine function
Hyperbolic sine function
Tangent function
Hyperbolic tangent function

43

atan h Hyperbolic arc-tangent function

Input

floatorint Inputto a hyperbolic arc-tangent function.

bang Inleftinlet: Calculates the hyperbolic arc-tangent of the number currently stored.
If there is no argument, atanh initially holds 0.

Arguments

flatorint ~ Optional. Sets the initial value for the hyperbolic arc-tangent function.

Output
flatorint The hyperbolic arc-tangent of the input.
Examples
* floating point input
[atanh | [atanh 8| [atanh
[
P -Inf | p1.098&12 | Pinf |
* hyperbolic arctangent is asymptotic around -1.0 and 1.0
See Also
acos Arc-cosine function
acosh Hyperbolic arc-cosine function
asin Arc-sine function
asinh Hyperbolic Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tan Tangent function
tanh Hyperbolic tangent function

44

bag

Store a collection
of numbers

Input

int

float
bang
clear

list

send

length

cut

Arguments

any symbol

Output

int

In left inlet: The number is either added to or deleted from the collection of num-
bers stored in bag, depending on the number in the right inlet.

Inright inlet: The number is stored as an indicator of whether to include or delete
the next number received in the left inlet. If non-zero, the number received in the
left inlet is added to the bag. If 0, the number is deleted from the bag.

No output is triggered by a number received in either inlet.
Converted toint.

In left inlet: Causes bag to send all its numbers out the outlet.
In left inlet: Deletes the entire contents of the bag.

In left inlet: If the second number is not 0, the first number is included in the bag.
If the second number is 0, the first number is deleted from the bag.

In left inlet: The word send, followed by the name of a receive object, sends the
result of abang message to all receive objects with that name, instead of out the bag
object’s outlet.

In left inlet: Reports how many numbers are currently stored in the bag.

In left inlet: Sends out the oldest (earliest received) number stored in the bag, and
deletes it from the bag.

Optional. Causes bag to store duplicate numbers. If there is no argument, bag will
store only one of each number at a time. The argument must not be a number.

When bang is received in the left inlet, all the numbers stored in bag are sent out
one at a time, in reverse order from that in which they were stored.

When cut is received in the left inlet, the oldest stored number is sent out.

When length is received in the left inlet, the number of items in the bag is sent out.

45

Store a collection
bag of numbers

Examples

Report all Puwtina Delete & Delete all
numbers number number num bers

N

[$1 1] [$1 0]

notes Pitches without noteoffs
DA | will still be in the bag.

ﬂfdp |n_gt‘ein|
]=

Store a collection of numbers Used here to detect held notes
See Also
coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers
offer Store x,y pairs of numbers temporarily
Data Structures Ways of storing data in Max

46

bangbang /b many places, i order

Input

anything Causes a bang to be sent out all outlets, in right-to-left order.

Arguments

int Optional. Sets the number of outlets. Limited between 1 and 10. Any number
greater than 10 is set to 10; any number less than 1 is set to 2. If there is no argu-
ment, there will be 2 outlets.

float Converted toint.

Output
bang When a message is received in the inlet, bang is sent out each outlet, in order from
right to left.

Examples

ERIERJER|ER

Order is normally right-to-left Order is specified by bangbang

See Also
button Flash on any message, send a bang
trigger Send input to many places, in order
Tutorial 7 Right-to-left order

47

I Output received
bend N MIDI pitch bend values

Input

(MIDI) bendin receives its input from a MIDI pitch bend message received from a MIDI
input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming
MIDI data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by an
enable message to a pcontrol object.

port The word port, followed by a letter a-z or the name of an MIDI port or device, sets
the port from which the object receives incoming pitch bend messages. The word
port is optional and may be omitted.

(mouse) Double-clicking on a bendin object shows a pop-up menu for choosing a MIDI
port or device.

Arguments

a-z Optional. Specifies the port from which to receive incoming pitch bend messages.
If there is no argument, bendin receives from all channels on all ports.

(MiDIname) Optional. The name of a MIDI input device may be used as the first argument to
specify the port.

a-zandint A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to receive pitch bend messages. Channel num-
bers greater than 16 will be wrapped around to stay within the 1-16 range.

int A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

Output

int If aspecific channel number is included in the argument, there is only one outlet.
The output is the incoming pitch bend value from 0-127 (the most significant
byte of the MIDI pitch bend message) on the specified channel and port.

If there is no channel number specified by the argument, bendin will have a sec-
ond outlet, on the right, which will output the channel number of the incoming
pitch bend message.

48

bendin

Output received
MIDI pitch bend values

Examples

Receive from everywhere

Receive only from port b Only from port b, channel 13

bendin

bendin b bendin b 13

b

channel 13 D I/

T ' oL port b T '
pei] b] pei] piE]
pitchbend channel pitchbend channel pitchbend
Pitch bend messages can be received from everywhere,
a specific port, or a specific port and channel

See Also
bendout Transmit MIDI pitch bend messages
ctlin Output received MIDI control values
midiin Output received raw MIDI data
notein Output received MIDI note messages
rtin Output received MIDI real time messages
xbendout Prepare extra precision MIDI pitch bend messages
xbendin Interpret extra precision MIDI pitch bend messages
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

49

Transmit MIDI
be n d 0 Ut pitch bend messages

Input

int

float

list

enable

port

(mouse)

Arguments

a-z

a-zand int

(MIDI name)

int

Output
(MIDI)

In left inlet: The number is transmitted as a MIDI pitch bend value on the speci-
fied channel and port. Numbers are limited between 0 and 127.

Inright inlet: The number is stored as the channel number on which to transmit
the pitch bend messages.

Converted to int.

In left inlet: The first number is the pitch bend value, and the second number is
the channel, of a MIDI pitch bend message, transmitted on the specified channel
and port.

The message enable 0 disables the object, causing it not to transmit MIDI data. The
word enable followed by any non-zero number enables the object once again, even
if the entire patcher window has had its MIDI disabled by an enable message to a
pcontrol object.

In left inlet: The word port, followed by a letter a-z or the name of a MIDI output
port or device, specifies the port used to transmit MIDI messages. The word port
is optional and may be omitted.

Double-clicking on a bendout object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port for transmitting MIDI pitch bend messages. Channel
numbers greater than 16 received in the right inlet will be wrapped around to stay
within the 1-16 range. If there is no argument, bendout initially transmits out port
a,on MIDI channel 1.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to transmit pitch bend messages. Channel num-
bers greater than 16 will be wrapped around to stay within the 1-16 range.

Optional. The name of a MIDI output device may be used as the first argument to
specify the port.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

There are no outlets. The output is a MIDI pitch bend message transmitted
directly to the object’s MIDI output port.

50

Transmit MIDI
be n d 0 Ut pitch bend messages

Examples
P64 | Will transmit P64 | Wil transmit
on channel 13, on channel 13,
m port a m port b
bendout a bendout 1
Letter argument transmits Otherwise, number specifies
to only one port both port and channel
See Also
bendin Output received MIDI pitch bend messages
midiout Transmit raw MIDI data
xbendout Prepare extra precision MIDI pitch bend messages
xbendin Interpret extra precision MIDI pitch bend messages
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

51

bondo

Synchronize a
group of messages

Input
anymessage Inany inlet: The input is stored in the location corresponding to that inlet, and
causes anything previously stored to be sent out its corresponding outlet. If no
message has yet been received in a particular inlet, 0 is sent out of the correspond-
ing outlet.
bang Inanyinlet: Sends out all stored messages immediately.
set Inany inlet: The word set, followed by any message, stores the input in the loca-
tion corresponding to that inlet without triggering any output.
Arguments
int Optional. The first argument specifies the number of inlets and outlets. The
default number of inlets and outlets is 2. The second argument specifies a number
of milliseconds to delay when a message is received before sending messages out
the outlets.
Output
anymessage Anything stored in an inlet is sent out the corresponding outlet numbers. Output
is immediate if triggered by a bang. If output is triggered by a message, and a sec-
ond argument has been typed in, output will be delayed by the number of milli-
seconds specified in the second argument.
Examples
pitch bend data amiving from three different MIDI sowrces...
[bendin 3| [bendin 5| [bendin 7|
il adways comes ouk together
when any sowree sends data
pack 0 0 0O
bondo can synchronize messages arriving from different sources
See Also
buddy Synchronize arriving data, output them together
onebang Traffic control for bang messages
pack Combine numbers and symbols into a list
thresh Combine numbers into a list, when received close together

52

bO Fax Report current information
about note-ons and note-offs

Input

int Inleftinlet: The number is the pitch value of a MIDI note-on message or note-off
message (note-on with a velocity of 0). The pitch is paired with the velocity in the
middle inlet. borax ignores note-on messages for pitches it is already holding, and
ignores note-off messages for pitches that have already been turned off. If the note
is not a duplicate, borax sends out the pitch and velocity values, as well as other
information.

In middle inlet: The number is stored as the velocity, to be paired with pitch num-
bers received in the left inlet.

flobat Inmiddle inlet: Converted to int.

list Inleftinlet: The second number is stored as the velocity, and the first number is
used as the pitch, of a pitch-velocity pair. If the note is not a duplicate, borax sends
out the pitch and velocity values, as well as other information.

delta Inleftinlet: Causes the delta time (the time elapsed since the last note-on) and the
delta count (the number of delta times that have been reported) to be sent out.

bang Inrightinlet: Resets borax by sending note-offs for all notes currently being held,
erasing the borax object’s memory of all notes received, and setting its counters
and its clock to 0.

Arguments

None.

Output

int Out left outlet: Each note-on received by borax is assigned a unique number, equal
to the total count of note-ons received (since the last reset). That number is sent
out when the note-on is received, and the same number is sent out when the note
is turned off.

Out 2nd outlet: Each note is also assigned a unique voice number, equal to the
lowest available number. (A voice becomes available when the note assigned to it
is turned off.) That number is sent out when the note-on is received, and the same
number is sent out when the note is turned off.

Out 3rd outlet: The number of notes being held by borax is sent out each time a
note-on or a note-off is received.

Out 4th outlet: The pitch of the note-on or note-off is sent out.

Out 5th outlet: The velocity of the note-on or note-off is sent out.

53

borax

Report current information
about note-ons and note-offs

Out 6th outlet: When a note-off is received, the total count of all completed notes
(since the last reset) is sent out.

Out 7th outlet: When a note-off is received, the duration of that note, in millisec-
onds, is sent out.

Out 8th outlet: Each time a delta time is reported, the total count of delta times is
sent out.

Out right outlet: When a note-on is received, the delta time is sent out (the time
elapsed since the previous note-on, in milliseconds). A delta message in the left
inlet causes the same output.

A bang received in the right inlet causes borax to provide note-offs for any notes it
currently holds. These note-offs trigger the same outputs as if they had actually
been received.

Examples
notein 1 notein 1
| | | |
borax borax

How many
notes are
being held?

(]

See Also

midiparse
poly

PS19 |7
EI I _E hel:nwien =l 15 pack 0 0 0

T O

|

\

funbuff | pote-ons

‘ . Yoice No., Pitch, Velocity
Duration of Look for the route 1 2 3 4
each note 15th note

Route notes to
different destinations
borax provides extensive information about the notes passing through

Interpret raw MIDI data
Allocate notes to different voices

54

— Ernbed a visibl
bpatCher r= subpatcrﬂiﬁsige\/:éoi

Input
anything

offset

border

(mouse)

Inspector

The number of inlets in a bpatcher object is determined by the number of inlet
objects contained in its subpatch window. If the patch being used in a bpatcher
contains inlet objects, they will appear in left-to-right correspondence as inlets in
the bpatcher object’s box.

If the subpatch being used in the bpatcher contains a thispatcher object connected
to one of its inlet objects, the view of the subpatch can be changed by an offset
message received in the corresponding inlet of bpatcher. The word offset must be
followed by two ints, specifying the number of pixels by which the upper left cor-
ner of the subpatch is to be offset horizontally and vertically within the bpatcher.
In this way, a single bpatcher can be used to give different views of the subpatch.
User interface objects in the subpatch that are partially outside the bpatcher
object’s box will redraw completely (even outside the bounds of the bpatcher) in
response to messages received in their inlet. It is therefore advised that user inter-
face objects in the subpatch be either completely inside or completely outside the
bpatcher object’s box.

If the subpatch being used in the bpatcher contains a thispatcher object connected
to one of its inlet objects, the word border with any non-zero number in that inlet
causes a black border to be drawn around the bpatcher. The message border 0 erases
the border of the bpatcher (the default appearance).

When the window containing the bpatcher is locked (or the Command key on
Macintosh or Control key on Windows is held down) and the mouse is clicked
inside the bpatcher object’s box, the gesture is handled by the patch inside the box.

If the Shift and Command keys on Macintosh or Shift and Control keys on Win-
dows are held down while clicking on a bpatcher, dragging the mouse moves the
upper-left corner of the visible part of the patch inside the box. The Assistance
area of the patcher window shows the pixel values of the offset. If Enable Drag-
Scrolling is unchecked in the bpatcher Inspector window, this feature is disabled.

If the Command and Option keys on Macintosh or Control and Alt keys on Win-
dows are held down while clicking in a bpatcher, a pop-up menu allows you to
open the original file of the patch contained inside the box in its own window, or
change the patch currently contained inside the box in its own window.

The behavior of a bpatcher object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any bpatcher object displays the
bpatcher Inspector in the floating window. Selecting an object and choosing Get
Info... from the Object menu also displays the Inspector.

55

— Ernbed a visibl
bpatCher r= subpatcrﬂiﬁsige\/:éoi

Arguments

The bpatcher Inspector lets you set the following attributes:

Offset specifies the number of pixels by which the left upper corner of the picture
Is to be offset horizontally and vertically from the left upper corner of the fpic box.
By default the left upper corner of the picture is located at the left upper corner of
fpic (that is, with an offset of 0,0). This offset can be changed by entering new
pixel values into the number boxes. The default is no offset (i.e. 0 horizontal, 0
vertical).

Use the Offset number boxes to specify the number of pixels by which the upper
left corner of the subpatch is to be offset horizontally and vertically within the
bpatcher object’s display area. The default values are 0 for both horizontal and ver-
tical offsets.

Checking the Border checkbox causes a black border to be drawn around the
bpatcher. The default appearance is unchecked (no border).

The Embed Patcher in Parent checkbox allows you to embed the subpatch and save
it as part of the main patch (just as with a patcher object) instead of the subpatch
being saved in a separate file. The default is unchecked (the subpatch is saved asa
separate file).

Checking the Enable Drag-Scrolling checkbox allows you move the upper-left cor-
ner of the visible part of the patch inside the box by holding down the Shift and
Command keys on Macintosh or Shift and Control keys on Windows while click-
ing on a bpatcher, and dragging the mouse. The default value is unchecked (drag-
scrolling is disabled).

The Patcher File option lets you choose a patcher file for the bpatcher to use by
clicking on the Open button. The current file's name appears in the text box to the
left of the button. You can also choose a file by typing its name in this box, or by
dragging a file icon from the Finder into this box.

The Arguments to Patcher lets you input arguments to your patcher which will be
saved along with the main patch.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

56

— Ernbed a visibl
b patCh er r= subpatcrt? iﬁsigevésgoi

Output

If the patcher being used in a bpatcher contains outlet objects, they will appear in
corresponding left-to-right order as outlets in the bpatcher object’s box.

Examples

[- | | Volume Panning
' [offset -13 -11 |

b ’i#) ’f,) {/J?ffset -82 -11 |

0 : 0
expr 128 - $iil FI | | [>. l Panning
ctlout 7 ctlout 10
P25 | —_ |
] m inlet for receiving j
b "offset" message
|'l T | thispatcher
View the contents The contents of this patch ...using offset messages to a
of a subpatcher can be windowed... small bpatcher containing it
See Also
patcher Create a subpatch within a patch
pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher
Tutorial 27 Your object
Tutorial 28 Your argument
Encapsulation How much should a patch do?

57

b UCkEt Pass a number from outlet to

outlet, out each one in turn

Input

int The numbers currently stored in bucket are sent out, then each number is moved
one outlet to the right and the new number is stored to be sent out the left outlet
the next time a number is received.

float ~ Converted toint.
list Only the first number in the list is used.
bang Allstored values are sent out, but their position is not shifted.

freeze Suspends the bucket output, but new incoming numbers continue to shift the
stored values internally.

thaw Resumes bucket output.

roll The word roll, followed by any number, causes bucket to use the value stored in its
rightmost outlet as input; thus, it sends its output, shifts all stored values to the
right, then stores the value which had been in the rightmost outlet in the leftmost
outlet (as if it had been received in the inlet).

I2r Sets bucket to shift its stored values from left to right (the default) whenever it
receives a number in its inlet.

r2l Setsbucket to shift its stored values from right to left whenever it receives a num-
ber inits inlet, placing the incoming number in the rightmost outlet.

set The word set, followed by a number, sends that number out each outlet, and stores
the number as the next value to be sent out each of its outlets.

Arguments

int Optional. Sets the number of outlets. If there is no argument, there will be one
outlet.

Output

int When anumber is received, it is not sent out immediately, but the numbers stored
in bucket are sent out. The numbers are all moved one outlet to the right, and the
newly received number is stored in the left position.

58

b UCket Pass a number from outlet to

outlet, out each one in turn

Examples
bucket 3 bucket 3 bucket 3 bucket 3
I I I I I I I I I I I I
Bo_1p0_1po]pio]pe B0 _|p2Z0 Jpio |po |p30_|pz8 |piv |
Stored numbers are sent out, Each time & number is received, the stored numbers are sent our,
but input is not sent our then shifted to the right to make room for the new number
Numbers are passed from one outlet to another
See Also
cycle Send a stream of data to individual outlets
decode Send 1 or 0 out a specific outlet
gate Pass the input out a specific outlet
spray Distribute an integer to a numbered outlet

59

Synchronize arriving data,
bUddy output them together

Input

anymessage Inany inlet: When data has been received in all its inlets, buddy sends the received
messages out their corresponding outlets, then waits until data has arrived again
inall inlets.

clear Inleftinlet; Deletes all values stored in the inlets.

bang Inany inlet: Same as the number 0.

Arguments

int Optional. Sets the number of inlets (and outlets). If there is no argument, there
are two inlets and two outlets.

Output
anymessage When a data has arrived in each inlet, it is sent out the outlets, in order from right
to left.
Examples
Humbers can be receive from é’

received in any order =
a L}—J receive from —é]
...0F a5 & list buddy 3 rl'ece:.ve .from_él

: : : buddy 3
o |po |po | = .
Output is always right-<o-left po_ |po |po |

Output is synchronous, even if input is not synchronous

See Also

bondo Synchronize a group of messages

onebang Traffic control for bang messages

pack Combine numbers and symbols into a list

swap Reverse the sequential order of two numbers

thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages

60

: Flash on any message,
bUtton s)e/nd a ba?ng
Input

color The word color, followed by a number from 0 to 15, sets the color of the center cir-
cle of the button to one of the object colors which are also available via the Color
command in the Object menu. When button sends a bang, it always flashes with
the color yellow.

anymessage When any message is received in the inlet, button flashes briefly and bang is sent
out the outlet. A mouse click on the button has the same effect.

Arguments
None.
Output
bang A mouse click or any message in the inlet causes button to flash and send out bang.

Examples

|An}r message I

| .
|Message for x| int 5

IAny other messagel

[send x| IMessage box won't respond to just "any message”
Triggers other messages and processes Converts other messages to bang
See Also
bangbang Send a bang to many places, in order
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
trigger Send input to many places, in order
ubutton Transparent button, sends a bang
Tutorial 2 bang means“Do it!”

61

Store numbers
Capture to view or edit

Input

int, float, or symbolNumbers or symbols are stored in the order in which they are received.

list
clear

count

dump

open

weclose

write

Arguments

int

a,xorm

Output

All numbers and/or symbols in the list are stored in order from first to last.
Erases the contents of a capture object.

Sends the number of items collected since the last count message out the right out-
let of the capture object.

Outputs the contents of the capture object, one item at a time, out the left outlet.

Causes the window associated with the capture object to become visible. The win-
dow is also brought to the front. Double-clicking on the capture object in a locked
patcher has the same effect.

Closes the window associated with the capture object.

The word write, followed by a symbol, saves the contents of the capture object into
a text file, using the symbol as the filename. The file will be saved in the same
folder as the Max application, unless the symbol is a pathname specifying some
other folder (such as write “MyDisk:/Documents/Captured Data/outputfile”). The word
write by itself causes a standard Save As dialog box to be opened, allowing you to
name the file and save it in the desired folder.

Optional. The first argument sets a maximum number of items to store. If there is
no argument, capture will store up to 512 items. Once the maximum has been
exceeded, the earliest stored item is dropped as each new item is received.

Optional. If the second argument is a, all items will be displayed in ASCII formin
the editing window. If the second argument is x, all numbers will be displayed in
hexadecimal form in the editing window.If the second argument is m, numbers
less than 128 are displayed in decimal, and numbers greater than 128 are in hexa-
decimal. If there is no argument, all items are displayed in decimal.

int, float, or symbolOut left outlet: The captured contents are sent out the left outlet, one at a time, in

response to the dump message.

Double-clicking on capture (when the patcher window is locked) opens an edit-
ing window in which the stored numbers can be viewed and edited. Editing the
window does not actually alter the contents of capture, but is useful for cutting
and pasting values into a table or a separate file. (Although capture can continue

62

capture

Store numbers
to view or edit

to store items while the editing window is open, the editing window is not
updated. It must be closed and reopened to view the newly stored items.)

int Outright outlet: The number of items received since last count message was

received is sent out the right outlet in response to a count message.

Examples

notein a 1
| |
stripnote

|

capture 128

Collect numbers to paste into a table...

J

patcher testing

Eapture

...0r just to see what's been going on

See Also

text Format numbers as a text file
Debugging Techniques for debugging patches
Tutorial 34 Managing raw MIDI data

63

cartopol

Cartesian to Po_Iar
coordinate conversion

Input
float

int

Arguments

Output
float

Examples

See Also

atan2
Icd
poltocar
pow

In leftinlet: The real part of a frequency domain value to be converted into a polar
coordinate pair consisting of amplitude and phase values.

Inright inlet: The imaginary part of a frequency domain value to be converted
into a polar coordinate pair consisting of amplitude and phase values.

Converted to float.

None.

Out left outlet: The magnitude (amplitude) of the frequency represented by the
currently input.

Out right outlet: The phase, expressed in radians, of the frequency represented by
the current input. If only the left outlet is connected, the phase computation is not
performed.

%X, ¥ in
0 [
‘cartopol‘ ‘cartopol cartopol
\:\ :
Br] o] pos] b-is] pbr_] p=id

r, theta out

Convert Polar to Cartesian coordinates

Arc-tangent function (two variables)
Draw graphics in a patcher window
Polar to Cartesian coordinate conversion
Compute x to the power of y

64

Filter out repetitions
Change of a number

Input

intorfloat ~ The number is sent out the outlet only if it is different from the currently stored
value. Replaces the stored value.

set The word set, followed by a number, replaces the stored value without triggering
output.

mode The word mode, followed by a +, causes change to send a 1 out its left outlet if the
received number is greater than the previously received number. In this mode,
change does nothing with any other input. The word mode, followed by a -, causes
change to send out a -1 if the received number is less than the previously received
number. In this mode, change does nothing with any other input. The word mode
by itself returns change to its default mode of sending out received values that dif-
fer from the previously received input.

Arguments

intorfloat Optional. Initial value for comparison to incoming numbers. If there is no argu-
ment, the initial value is 0.

symbol Optional. A second argument may be + or -, causing change to behave as if it had
received a mode + or mode - message. Subsequent mode messages can change this

behavior.
Output
int Out left outlet: The number received in the inlet is sent out only if it is different
from the stored value.
Out middle outlet: If the stored value is 0 and the input is not 0, 1 is sent out; oth-
erwise nothing is sent out.
Out right outlet: If the stored value is not 0 and the input is 0, 1 is sent out; other-
wise nothing is sent out.
Examples
|) counter
Ibl lh\
== 127 /5
le— pe—
change | Igmore repeated 0's change

‘ ‘ ' Count every
p1 | Sthbeag

Filter out undesirable repetitions

65

change

Filter out repetitions
of a number

See Also

peak
togedge
trough

Tutorial 15

If a number is greater than previous numbers, output it
Report a change in zero/non-zero values

If a number is less than previous numbers, output it
Compare two numbers, output 1 if they are not equal
Making decisions with comparisons

66

clip

Limit numbers
within a certain range

Input
intorfloat Inleftinlet: The number is sent out the outlet, constrained within the minimum
and maximum limits specified by the arguments, inlets, or by a set message. If the
number received is a float, it will be sent out as a float.
In middle inlet: Minimum limit for the range of the output.
In right inlet: Maximum limit for the range of the output.
list Each number inthe listis constrained within the minimum and maximum limits,
and the constrained numbers are sent out as a list.
set The word set, followed by two numbers, resets the minimum and maximum lim-
its within which all numbers will be constrained before being sent out the outlet.
Arguments
intorfloat Optional: The first number specifies a minimum limit and the second number
specifies a maximum limit, within which all numbers will be constrained before
being sent out the outlet. If only one argument is present, it is used as both the
minimum and maximum limit. If no argument is present, the minimum and
maximum limit is 0.
Output
int ~ Whenanintis received in the inlet, it is constrained within the specified mini-
mum and maximum limits, then sent out the outlet. If the received number is less
than the minimum limit, the minimum value is sent out; if the received number is
greater than the maximum limit, the maximum value is sent out.
float If the received number is a float, it is constrained within the specified minimum
and maximum limits, then sent out the outlet as a float.
list Whenalistis received in the inlet, each number is constrained within the specified
minimum and maximum limits, and the numbers are sent out as a list.
Examples
clip 96 127| |clip 96 127| [clip 96 127 clip 96 127| |clip 96 127
constrained to passed on constrained to . .
minimum value unehanged maximum value Cloat ingk eanses Cloat owprk

Numbers are always kept within the specified range

67

clip

Limit numbers
within a certain range

See Also
maximum
minimum

split

Output the greatest in a list of numbers

Output the smallest in a list of numbers

Look for a range of numbers

Is less than, comparison of two numbers

Is less than or equal to, comparison of two numbers

Is greater than, comparison of two numbers

Is greater than or equal to, comparison of two numbers

68

clocker

Report elapsed time,
at regular intervals

Input

int or float

bang

stop

clock

reset

Arguments

Output

int

int

In left inlet: Any non-zero number starts clocker. The time elapsed since clocker

was started is sent out the outlet at regular intervals. 0 stops clocker. If clocker is

already running when it receives a non-zero number, it continues reporting the
elapsed time at regular intervals from that new point, but without resetting the

clock time to 0. The clocker object’s minimum interval time is 0.02 second.

Inright inlet: The number is the time interval, in milliseconds, at which clocker
will report the elapsed time. A new number in the right inlet does not take effect
until the next time output is sent.

In left inlet: Starts clocker. If the clocker object is not running, a bang message will
start the count. If the clocker object is running, a bang message will reset the count.

In left inlet: Stops clocker.

The word clock, followed by the name of an existing setclock object, sets the clocker
to be controlled by that setclock rather than by Max’s internal millisecond clock.
The word clock by itself sets clocker back to using Max’s regular millisecond clock.

In left inlet: Resets the elapsed time to 0 without stopping or restarting the clock;
clocker continues to report the new elapsed time at the same regular interval. This
message is meaningless when the clocker is not running, since it always resets to 0
anyway when stopped.

Optional. The first argument sets an initial value for the time interval at which
clocker sends out its output. If there is no argument, the initial time interval is set
to 5 milliseconds.

The time elapsed, in milliseconds, since clocker was started. The first output is
always 0, sent immediately each time clocker is started.

69

clocker

Report elapsed time,
at regular intervals

Examples

See Also

metro
setclock
tempo
timer
Tutorial 31

clocker 100 clocker 100
\él | |

£ 1000, £ 750,
L J IF\

7.1 expr pow($£14,2)

\h\
send stopwatch ctlout
Get the elapsed time Generate numbers as a function of time

Output a bang message at regular intervals

Control the clock speed of timing objects remotely
Output numbers at a metronomic tempo

Report elapsed time between two events

Using timers

70

Send a bang when patcher
Closebang window is closed

Input

There are no inlets. Output occurs when the patcher window is closed.
Arguments

None.
Output

bang Sentautomatically when the patcher window is closed.
Examples
closebang closebang
\h
| 0
[f1ush | [0 64]
J_]
| metro | noteout | ctlout |
Stop a process when window ...or turn off held notes
is about to be closed and sustain pedal

See Also
active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
loadbang Send a bang automatically when patch is loaded
Tutorial 40 Automatic actions

1

coll

Store and edit a collection
of different messages

Input
list

int or float

bang
(GetInfo...)

assoc

clear

deassoc

delete

dump

end

filetype

The first number is used as the address (the storage location within coll) at which
to store the remaining items in the list (coll can store a list of up to 250 items). The
address will always be stored as an int.

The number refers to the address of a message stored in coll. If a message is stored
at that address, the stored message is sent out the 1st outlet.

Same effect as the next message.

A coll object can be set to save its contents as part of the patch that contains it.
When the patcher window is unlocked, select the coll object, choose Get Info...
from the Object menu, and check Save coll with patcher.

The word assoc, followed by a symbol and a number, associates the symbol with
the address specified by the number, provided that the number address already
exists. From then on, any reference to that symbol will be interpreted by coll as a
reference to the number address. Each number address can have only one symbol
associated with it, except 0, which cannot have an associated symbol. (Note: If the
symbol was already being used as an address, or was already associated with a
number address, the message that was stored at that address is removed.)

Erases everything from the collection.

The word deassoc, followed by a symbol and a number, removes the association
between the symbol and the number address. The symbol no longer has any
meaning to coll.

Functions similarly to the word remove, except that if the specified address is a
number, all addresses of a greater number are decremented by 1.

Sends all of the stored addresses out the 2nd outlet and all of the stored messages
out the 1st outlet, in the order in which they are stored. A bang is sent out the 4th
outlet when the dump is completed.

Sets the pointer (used by the goto, next, and prev messages) to the last address in the
coll.

The word filetype, followed by a symbol, sets the file types which can be read and
written into the coll object. File types are specified are specified using the standard
four-letter type code combination (e.g. filetype ffoo). The message filetype with no
arguments restores the default file behavior—either Max binary or text file for-
mats. File types are mapped to filename extensions on Windows based on the
messages to max contained in the file max-fileformats.txt in the init folder, which
is loaded on startup. If you are defining your own filetype, you may want to
include your own text file in the init folder in order to specify a mapping between
an extension and your four-letter type code.

72

coll

Store and edit a collection
of different messages

flags

goto

insert

length

max

merge

min

next

nstore

nsub

Normally, the contents of coll are not saved as part of the patch when the patcher
window is closed. The message flags 1 0 sets the coll object to save its contents as
part of the patcher that contains it. The message flags 0 0 causes the contents of the
coll not to be saved with the patcher that contains it.

The word goto, followed by a number or a symbol, sets a pointer at the address
specified by the number or symbol. If no such address exists, the pointer is set at
the beginning of the collection. The pointer is set at the beginning of the collec-
tion initially, by default.

The word insert, followed by a number and a message, inserts the message at the
address specified by the number, incrementing all equal or greater addresses by 1
if necessary.

Counts the number of messages contained in coll and sends the number out the
1st outlet. This message works well in conjunction with the grab object.

Determines the maximum single numerical value (i.e. not a list or symbol) stored
in the coll and sends the number out the 1st outlet. This message works well in
conjunction with the grab object.

The word merge, followed by an address and a message, appends its message at the
end of the message already stored at that address. If the address does not yet exist,
it is created.

Determines the minimum single numerical value (i.e. not a list or symbol) stored
in the coll and sends the number out the 1st outlet. This works well in conjunction
with the grab object.

Sends the address pointed to by the pointer out the 3rd outlet, and sends the mes-
sage stored at that address out the 1st outlet, then sets the pointer to the next
address. If the address is a symbol rather than a number, 0 is sent out the 3rd out-
let. If the pointer is currently at the last address in the collection, it wraps around to
the first address. (Note: Number addresses are stored in ascending order. Symbol
addresses are stored in the order in which they were added to the collection, after
all of the number addresses.) If the message received immediately prior to next was
prev, next sends out the value stored at the address one greater than the one that was
just sent out.

The word nstore, followed by a number and a symbol (or a symbol and a number),
followed by any other message, stores the message at the specified number
address in the coll, with the specified symbol associated. (This has the same effect
as storing the message at an int address, then using the assoc message to associate a
symbol with that number.)

The word nsub, followed by an address, an item number, and another number or
symbol, replaces one item stored at the address. (Example: nsub pgms 4 7 puts the

73

coll

Store and edit a collection
of different messages

nth

open

prev

read

readagain

refer

number 7 in place of the 4th item of the message stored at the address pgms.)
Number values and symbols can both be substituted in this manner.

The word nth, followed by an address and a number, gets the nth item (specified
by the number) from the message at that address, and sends it out the 1st outlet.
(Example: nth pgms 4 outputs the 4th item in the message stored at the address
named pgms.)

Causes a text edit window associated with the coll object to become visible. The
window is also brought to the front.

Causes the same output as the word next, but the pointer is then decremented
rather than incremented. If the pointer is currently at the first address in the col-
lection, it wraps around to the last address. If the message received immediately
prior to prev was next, prev sends out the value stored at the address one less than
the one that was just sent out.

The word read with no arguments puts up a standard Open Document dialog box
for choosing afile to load into coll. If read is followed by a symbol filename argu-
ment, the named file is located and loaded into coll.

Loads in the contents of the most recently read file. If no prior read or readagain
message has been received by the coll, readagain is treated as a read message, and an
Open Document dialog box is displayed.

The word refer, followed by the name of another coll object, changes the coll receiv-
ing the message to refer to the data in the named coll object.

In addition to reading messages in from another file and storing messages via the
inlet, one can also enter messages in coll by typing. Double-clicking with the
mouse on the coll object displays the contents as text in an editing window which
the user can modify.

In order to edit a collection by hand or read in from another file, it is essential to
know the correct text format for the contents of a coll object. Each message is
stored in the coll object on a separate line. The format of each line is as follows: the
address (an int or a symbol), any symbols associated with that address (if the
address is an int),a comma (to separate the address from the data it contains), the
data (anything), and a semicolon to indicate the end of each line. In a line such as

3reset, set4.7;

31is the number of the address, reset is a symbol associated with that address, and
the message it contains is set4.7.

74

coll

Store and edit a collection
of different messages

remove

renumber

sort

store

sub

swap

Here is how we would store the numbers 100, 200, 300, and 400 with the
addresses 1,2, 3, and 4.

1,100:
2,200
3, 300;
4, 400;

The word remove, followed by a number or a symbol, removes that address and its
contents from the collection.

Makes the numbers associated with the data in the coll object consecutive and
increasing. The argument to the renumber message specifies the starting number
address for the data. Here’s a before and after example for coll sent the message
renumber 1.

Before After

4, apple; 1, apple;
6, banana; 2, banana;
3, cherry; 3, cherry;
9, durian; 4, durian;

The sort message takes two arguments. If the first argument is -1, the items in the
coll are sorted in ascending order. If the first argument is 1, the items in the coll are
sorted in descending order.

The second argument specifies what is used to sort the contents of the coll. If the
second argument is -1, the index (or symbol) associated with the data is used. If
the second argument is not present or 0, the first item in the data is used. If the
second argument is 1 or greater, the second (or greater) item in the data is used.

The word store, followed by some symbol (usually a word), followed by a message,
stores the message at an address named by the symbol. (Example: store triad 04 7
will store the list 04 7 at an address named triad.)

Same as nsub, except that the message stored at the specified address is sent out
after the item has been substituted.

The swap message takes two symbols or two numbers as addresses, and exchanges
the data associated with each address. For example, if the coll contains

1, 400;
2,700

swap 12 would change the coll to

1,700;
2, 400:

75

coll

Store and edit a collection
of different messages

subsym

symbol

weclose

write

writeagain

Inspector

Arguments

any symbol

Changes the symbol associated with data. The first argument to subsym is the new
symbol to use, and the second argument is the symbol associator to replace. For
instance, if the coll contains

jill, 40 50 60;
subsym jack jill will change the coll to
jack, 4050 60;

The symbol refers to the address of a message stored in coll. If a message is stored
at the address named by the symbol, the message is sent out the 1st outlet. The
symbol may, but need not necessarily, be preceded by the word symbol.

Closes the window associated with the coll object.

Calls up the standard Save As dialog box, enabling the user to save the contents of
coll as a separate file. If the word write is followed by a symbol, the contents of the
coll are saved immediately in a file, using the symbol as the filename.

Saves the contents of the coll into the most recently written file. If no prior write or
writeagain message has been received by the coll, writeagain is treated as a write mes-
sage, and a Save As dialog box is opened.

The behavior of a coll object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any coll object displays the coll Inspector in the
floating window. Selecting an object and choosing Get Info... from the Object
menu also displays the Inspector.

Checking Save coll with patcher sets the coll object to save its contents as part of the
patch that contains it.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Optional. Name of a file to be read into coll automatically when the patch is
loaded. The information in the file must be in the correct format in order to be
read in by coll. All coll objects which share the same name always share the same
contents. You can use the file name as an identifier for the purpose of sharing data

76

coll

Store and edit a collection
of different messages

Output
anything

int
int or symbol

bang

Examples

recall messages
|

pamin 1

p_———

I

between multiple coll objects, without there needing to be an actual file with the
specified name.

An optional second argument will cause the coll object not to search for afile with
the named symbol.

Messages stored in coll are sent out the 1st outlet. If the message consists of only a
single symbol, it will be preceded by the word symbol when it is sent out.

Out 1st outlet: The number of messages contained in coll is sent out in response to
the length message.

Out 2nd outlet: The address is sent out whenever a message out the 1st outlet is
triggered by bang, dump, next, prev, or sub.

Out 3rd outlet: Sent out when coll has finished loading in or writing a file of data.

Out 4th outlet: Sent out when coll has finished sending all of the stored addresses
and messages in order out the 1st and 2nd outlets in response to a dump message.

store MmZZages Ztoxe 3 mZzage

1 Strings, store setup S5 pgm

2 Marimba, start

SEEENEY recall it by name

symbol setup I frema| [r pam

; ‘midiout“pgmout
$2 $1;
cmd $3

Complex messages can be recalled with a single number or word

7

coll

Store and edit a collection
of different messages

See Also

bag

table

funbuff

Tutorial 37
Data Structures

sucessive "next" and "prev" messages

1. 2. 3. 4.
goto 4] [pext]
| |

coll coll coll coll

wove the po] pi]

peinter to
address 4 value at value at value at
address 4 address 3 address 4

Results for successive next and prev messages

Store a collection of numbers
Store and graphically edit an array of numbers

Store x,y pairs of numbers together
Data structures
Ways of storing data in Max

8

colorpicker using a modal il

The colorpicker object uses an Operating System color picker dialog that lets you choose a color to
be output as a Max RGB color. On the Mac OS, the Color Picker dialog that lets you choose colors
in several different color spaces—red-green-blue (RGB), hue-saturation-value (HSV), web-safe
colors, and the nostalgia-inducing crayon mode. On Windows, you are presented with a standard
color picker dialog, including a selection of basic colors, custom colors, a color swatch and numer-
ical input for red-green-blue (RGB), hue-saturation-luminance (HSL)

Input

(mouse) Double-clicking the object opens the Color Picker dialog box. If the patcher is
unlocked, hold down the Command key on Macintosh or the Control key on
Windows while double-clicking to open the dialog.

bang Same as double-clicking the object.

list Alistof three numbers between 0 and 255 specifies the RGB color components of
the default color which initially appears in the Color Picker dialog box when it is
opened.

setprompt ~ The word setprompt, followed by a text string, sets the Color Picker dialog box text
label. This change will take effect the next time the dialog box is opened.

Arguments

None.

Output

list After you open the Color Picker dialog box and make a selection, clicking on the
OK button will send a list of the RGB equivalents of the color you selected out the
outlet. If you click the Cancel button, no messages are sent.

Examples

start with green

E] (02000 | [setprompt "It ain't easy being green”

F:olorpicker | colorpicker

works very much

like swatch
Display a color, or retrieve selected RGB color values

79

colorpicker

See Also
panel Colored background area
swatch Color swatch for RGB color selection and display

80

comment tassnaes Explanatory note or label

Input
anything

Inspector

Arguments

Output

The comment object has no inlets and receives no input. Text is typed directly into
the comment box when the patcher window is in Edit mode. When the patcher
window is locked, the outline of the comment box disappears, and only the text is
shown. The appearance of acomment can be modified by changing the font and
by resizing its box. Note: If you want to include carriage returns in your text, use
the Inspector to set two-byte compatibility mode.

The font and size of acomment can be changed with the Font menu.

The appearance of acomment object can be edited using its Inspector. If you have
enabled the floating inspector by choosing Show Floating Inspector from the
Windows menu, selecting any comment object displays the comment Inspector in
the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The comment Inspector lets you set the following attributes:

You can set acomment to display text in languages such as Japanese or Chinese
that use a two-byte character representation system by checking the Two-byte
Compatible option (the default is unchecked). Checking the two-byte compatibil-
ity option will also allow you to include carriage returns in comment boxes.

The Color option lets you use a swatch color picker or RGB values used to display
the comment text. The default text color is black (00 0).

The Revert button undoes all changes you’ve made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

A comment has no outlets, sends no output, and does not affect the functioning of
the patch.

81

comment tassnaes Explanatory note or label

Examples

This patcher may need OfOn Click here!

an explanatory note |J—
patcher endigma -
| | |
po [po [po |p0 | metro 1000
Elucidate Label Make functional (covered with a ubutton)

See Also
ubutton Transparent button, sends a bang
Tutorial 5 toggle and comment

82

conformpath

Convert paths of one pathtype
and/or pathstyle to another

Input

any symbol

pathstyle

pathtype

A file name or path as a symbol. The conformpath object converts paths of one
pathstyle (i.e., file paths that use colons or slashes as separators) and/or pathtype
(paths that are absolute, relative, boot volume-relative, or Cycling 74 folder-rela-
tive) to another. It provides a superset of the functionality of the absolutepath and
relativepath objects.

The word pathstyle, followed by a word that specifies a pathstyle, will conform the
output pathname to the chosen styles. The possible styles are:

colon

max

native

native_win

slash

The colon style will use colons as separators when passing paths
between objects. This style was used in Max versions 4.2 and ear-
lier on Macintoshes

Note: Since the native Macintosh pathstyle is the same as the
colon path style, there is no native_mac pathstyle.

(default) The max style will use whatever style the currently run-
ning version of Max uses to pass paths between objects.

The native style will use whatever format is used by the currently
running operating system to specify paths.

Note: When working with native paths, only absolute paths will
be valid for the operating system.

The native_win style will use native Windows OS format (i.e.,
backslashes as separators) to specify paths.

Note: The use of the native_win style paths is not advised
except for display purposes—In MaxMSP, the backslash char-
acter is used as an escape character and could lead to problems if
used in conjunction with message boxes, sprintf, coll, and other
objects which parse text into atoms.

The slash style will use slashes as separators when passing paths
between objects.

The word pathtype, followed by a word that specifies a pathtype, will conform the
output pathname to the chosen type. The possible types are:

absolute

boot

The absolute type will output the absolute pathname of the file or
folder as a symbol.

The boot type will output the pathname of the file or folder rela-
tive to the boot volume as a symbol. If the file is not relative to the

83

conformpath

Convert paths of one pathtype
and/or pathstyle to another

Arguments

symbol

symbol

C74

ignore

relative

boot file, the conformpath object will send a zero out the right
outlet and send the output path out the left outlet unchanged.

The C74 type will output the pathname of the file or folder rela-
tive to the Cycling 74 folder as a symbol. If the file is not relative to
the Cycling 74 folder, the conformpath object will send a zero out
the right outlet and send the output path out the left outlet
unchanged.

(default) The ignore type will perform no path type conversion.

The relative type will output the pathname of the file or folder rel-
ative to the Max application folder as a symbol. If the file is not
relative to the Max application folder, the conformpath object will
send a zero out the right outlet and send the output path out the
left outlet unchanged.

Optional. An optional symbol argument specifies the pathtype to be used as out-
put. The possible pathtype arguments are:

ahsolute

boot

Cr4

ignore

relative

Specifies the output of the absolute pathname of the file or folder
asasymbol.

Specifies the output of the pathname of the file or folder relative
to the boot volume as a symbol.

Specifies the output of the pathname of the file or folder relative
to the Cycling 74 folder as a symbol.

Specifies that no pathtype conversion is performed.

Specifies the output of the pathname of the file or folder relative
to the Max application folder as a symbol.

Optional. An optional symbol argument specifies the pathstyle to be used as out-
put. The possible pathstyle arguments are:

colon

max

native

Specifies that the colon pathstyle is used for output (See descrip-
tion in Input section for more details).

Specifies that the max pathstyle is used for output (See descrip-
tion in Input section for more details).

Specifies that the native pathstyle is used for output (See descrip-
tion in Input section for more details).

84

Convert paths of one pathtype
CO nfo m path and/or pathstyle to another

native_win Specifies that the native_win pathstyle is used for output (See

slash

Output

description in Input section for more details).

Note: The use of the native_win style paths is not advised
except for display purposes.

Specifies that the slash pathstyle is used for output (See descrip-
tion in Input section for more details).

symbol The pathname of the folder or file conformed to the specified pathstyle and/or
pathtype.

int Outright outlet: If the input file or folder is conformed to specified pathtype and/
or pathtype, the output is 1. if the filepath cannot be conformed (e.g., if the file is
not relative to a requested path type), the output is 0.

Examples

‘loadbangl

r whereami

max getsystem whereami

|
sel macintosh windows

Icolonl Islashl

I"MyDlsk Secret stuff:sauce.ext" ||prepend pathstyle

conformgath

absolute

|prepend set

|"MyDisk:/Secret stuff/sauce.ext" |

Use the getplatform message to Max to automatically conform file pathnames across platforms

See Also

absolutepath
opendialog
relativepath
savedialog
strippath

Convert a file name to an absolute path
Open a dialog to ask for afile or folder
Convert an absolute to a relative path

Open a dialog to ask for a filename for saving
Get afilename from a full pathname

85

COS Cosine function

Input

float Inputtoacosine function.

bang Inleftinlet: Calculates the hyperbolic cosine of the number currently stored. If
there is no argument, cos initially holds 0.

Arguments

floatorint Optional. Sets the initial value for the cosine function.

Output
float The cosine of the input.

Examples
* floating point input
p1. | p-1. |
‘c‘ ‘cos 0. | ‘c‘
P0.540202 | P1. | pos4nz02 |
* cosine of the input.

See Also

acos Arc-cosine function

acosh Hyperbolic arc-cosine function

asin Arc-sine function

asinh Hyperbolic Arc-sine function

atan Arc-tangent function

atan2 Arc-tangent function (two variables)

atanh Hyperbolic arc-tangent function

cosh Hyperbolic cosine function

sin Sine function

sinh Hyperbolic sine function

tan Tangent function

tanh Hyperbolic tangent function

86

COSh Hyperbolic cosine function

Input

floatorint Inputto a hyperbolic cosine function.

bang Inleftinlet: Calculates the hyperbolic cosine of the number currently stored. If
there is no argument, cosh initially holds 0.

Arguments

flatorint ~ Optional. Sets the initial value for the hyperbolic cosine function.

Output
floatorint ~ The hyperbolic cosine of the input.

Examples
* floating point input
p1. | ! p-1. |
‘cosh | cosh 0. ‘cosh |
P 1542021 | P1. | p1.543081 |
* hyperbolic cosine of the inpur.

See Also

acos Arc-cosine function

acosh Hyperbolic arc-cosine function

asin Arc-sine function

asinh Hyperbolic Arc-sine function

atan Arc-tangent function

atan2 Arc-tangent function (two variables)

atanh Hyperbolic arc-tangent function

€0S Cosine function

sin Sine function

sinh Hyperbolic sine function

tan Tangent function

tanh Hyperbolic tangent function

87

cou nte I Count the bang messages received,

output the count

Input
bang

int

float

float

carrybang

In left inlet: Sends out the current count of the bang messages received in the left
inlet.

In left-middle inlet: Changes the direction of the count.

In middle inlet: Resets the count to its specified minimum value, which will be
sent out the next time a bang is received in the left inlet.

In right-middle inlet: Resets the count to its specified minimum value, and sends
out that value immediately.

Inright inlet: Resets the count to its specified maximum value, which is sent out
immediately.

In left inlet: Same effect as bang.

In left-middle inlet: Sets the direction of the count. 0 causes counter to count up, 1
causes it to count down, and 2 causes it to count up and down.

In middle inlet: The number sets the counter to a new value, to be sent out the
next time a bang is received in the left inlet. If the number is less than the current
minimum value, the minimum will be reset to that number. If the number is
greater than the current maximum value, the counter will be set to that number,
but the maximum value actually remains the same and the minimum is set equal
to the maximum.

In middle-right inlet: The number sets the counter to a new value and sends it out
immediately. If the number is less than the current minimum value, the minimum
will be reset to that number. If the number is greater than the current maximum
value, the number is sent out, but the maximum value actually remains the same
and the minimum is set equal to the maximum.

In right inlet: Resets the maximum value sent out by counter. If the number is less
than the current minimum, the maximum is equal to the minimum. If the mini-
mum is subsequently changed to a value below the maximum value you input, the
counter objects retains the correct maximum value it received through this inlet.
Unlike a bang message, an int in this inlet does not cause the counter object to out-
put anything.

In left inlet: Same effect as bang.
In all other inlets: Converted to int.

In left inlet: Causes counter to send a bang out the right-middle outlet when the
count is going upward and reaches its maximum limit, and causes counter to send
abang out the left-middle outlet when the count is going downward and reaches

88

cou nte I Count the bang messages received,

output the count

carryint

dec

down
goto

inc

jam

min

max

next

set

setmin

up

updown

its minimum limit. (By default, counter sends out the number 1 in those situa-
tions, instead of bang.) The state of the carrybang message is saved along with the
patcher it is used in, and this behavior can also be set using the Inspector.

In left inlet: Undoes the effect of a previously received carrybang message. Resets
the counter to send the numbers 1 and 0 out the left-middle and right-middle
outlets (instead of bang) to signal when the counter reaches and leaves its mini-
mum and maximum values. The state of the carryint message is saved along with
the patcher it is used in, and this behavior can also be set using the Inspector.

In left inlet: Decrements the counter (downward) and sends out the new value,
regardless of the direction in which the object has been set to count ordinarily.

In left inlet; Sets the counter to count in a downward direction.
In leftinlet; Same effect as set.

In left inlet: Increments the counter (upward) and sends out the new value,
regardless of the direction in which the object has been set to count ordinarily.

In left inlet: The word jam, followed by a number, sets the counter to that number
and sends the number out immediately. If the number is outside the minimum
and maximum count range, this message is ignored.

In left inlet: The word min followed by a number, resets the minimum value of
counter to that number, and causes the counter object to set itself to that number
and output immediately. If the number is greater than the current maximum
value, the minimum is set equal to the maximum.

In left inlet: The word max followed by a number, resets the maximum value of
counter to that number. If the number is less than the current minimum value, the
maximum is considered to be equal to the minimum, although the actual maxi-
mum value you set is stored inside the counter object.

In left inlet: Same as bang.

In left inlet: The word set, followed by a number, sets the counter to that number,
which will be sent out the next time abang is received in the left inlet.

In left inlet: The word setmin, followed by a number, sets the counter object’s mini-
mum count without affecting its current count value or causing any output.

In left inlet: Sets the counter to count in an upward direction.

In left inlet: Sets the counter object’s direction so that it counts upward until it
reaches the specified maximum, then counts down until it reaches the specified
minimum, then up, then down, and so on.

89

cou nte I Count the bang messages received,

output the count

Inspector

Arguments

Output

int

int

The behavior of an counter object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any counter object displays the
counter Inspector in the floating window. Selecting an object and choosing Get
Info... from the Object menu also displays the Inspector.

The Underflow/Carry Mode attribute provides two options correspond to the
carrybang and carryint messages described above. Sending 1 or 0 out outlets 2 and 3
is the default mode.

The Reset Minimum Mode attribute lets you choose between temporarily overrid-
ing the min count (the default behavior). Sending an int to the third and fourth
inlets of the counter object will cause it to perform in the manner described in the
Input section above. The Change the Min count permanently option provides
back-compatibility with the counter object distributed with Max 3.x and earlier.
In this mode, sending an int to inlets 3 and 4 will change the min count instead of
just resetting it temporarily (which causes the fourth inlet to behave exactly as
thought the min message were sent to the counter object).

The Revert button undoes all changes you’'ve made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Optional. If there is only one argument, it sets an initial maximum count value for
counter. If there are two arguments, the first number sets an initial minimum
value, and the second number sets an initial maximum value. If there are three
arguments, the first number specifies the direction of the count, the second num-
ber is the minimum, and the third number is the maximum. If there are no argu-
ments, the direction is up, the minimum is 0, and the maximum is 2,147,483,647
(the largest possible 32-bit signed integer).

Out left outlet: When bang, next, inc, dec, or a number is received in the left inlet, the
current count is sent out, within the minimum and maximum limits specified. If
the direction of the count is both up and down, the count is folded back in the
other direction when it reaches the specified limits. If the count is in only one
direction, up or down, the count is wrapped around to the opposite extreme when
it reaches its limit.

90

coun te I Count the bang messages received,

output the count

When the direction is up, or up and down, counter, begins counting from the
specified minimum value. When the direction is down, counter begins from the
maximum value.

Out left-middle outlet: When the count is moving downward and reaches the
minimum limit, the number 1 is sent out. When the count leaves the minimum
limit, 0 is sent out.

Out right-middle outlet: When the count is moving upward and reaches the max-
imum limit, the number 1 is sent out. When the count leaves the maximum limit,
0issent out.

Out right outlet: An additional count is kept of the number of times counter
reaches its maximum limit. Each time the maximum is reached, that count is sent
out.

bang Out left-middle outlet: If a carrybang message has been received in the left inlet,

then when the count is moving downward and reaches the minimum limit, abang
is sent out (instead of the number 1 which is sent out by default). When the count
leaves the minimum limit, nothing is sent out.
Out right-middle outlet: If a carrybang message has been received in the left inlet,
then when the count is moving upward and reaches the maximum limit, a bang is
sent out (instead of the number 1 which is sent out by default). When the count
leaves the maximum limit, nothing is sent out.

Examples

| I
set the counter's next value metro 1000
|
counter 1 0 127 counter 0 1 16
count down, cyele continuously _ _ count the
from 127 to 0 from 1to 16 completed cyeles
Keep track of how many events have occurred, or create a continuous loop

See Also

tempo Output numbers at a metronomic tempo

Tutorial 31 Using timers

Loops Using loops to perform repeated operations

91

cthin

Output received
MIDI control values

Input
(MIDI)

port

set

enable

(mouse)

Arguments

a-z
(MIDI name)

int

ctlin receives its input from a MIDI control change message received from a MIDI
input device.

The word port, followed by a letter a-z or the name of a MIDI input port or device,
sets the port from which the object receives incoming control messages. The word
port is optional and may be omitted.

The word set, followed by a number from 0 to 127, specifies a single controller
number to be paid attention to by ctlin. This message is appropriate only if a spe-
cific controller number was originally typed in as an argument; it is ignored by
ctlin if no controller number argument was originally typed in.

The message enable 0 disables the object, causing it to ignore subsequent incoming
MIDI data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by an
enable message to a pcontrol object.

Double-clicking on actlin object shows a pop-up menu for choosing a MIDI port
or device.

Optional. Specifies a single port from which to receive incoming control mes-
sages. If there is no letter present as an argument, ctlin can receive from all ports.

Optional. The name of a MIDI input device may be used as the first argument to
specify the port.

Following the (optional) port argument, the next argument is a single controller
number to be recognized by ctlin. If there is no controller number, or if the argu-
ment is a negative number, ctlin recognizes all controller numbers. If a single con-
troller number is specified in the argument, the outlet which normally sends the
controller number is unnecessary, and is not created.

Following the controller number argument is a single channel number on which
to receive control messages. If the channel argument is not present, ctlin receives
control messages on all channels. In order for this argument to be used, a control-
ler number argument must precede it. To specify a channel number without spec-
ifying a controller number, use -1 for the controller number.

If a single channel number is specified as an argument, the outlet which normally
sends the channel number is unnecessary, and is not created. If a port has been
specified with a letter argument, channel numbers greater than 16 will be wrapped
around to stay within the 1-16 range. If no port argument is present, a channel
number can be used in place of a letter and number combination. The exact

92

I Output received
Ctl | n MIDI control values

meaning of the channel number argument depends on the channel offset speci-
fied for each port in the MIDI Setup dialog.

Output
int Out left outlet: The number is the control value of an incoming MIDI control
change message.
If a specific controller number is not specified as an argument, the controller
number is sent out the 2nd outlet.
If a specific channel number is not included in the argument, the channel number
is sent out an additional, right, outlet.
Examples
Receive all Receive only Receive all controller Receive only
controller numbers, controller number 64, numbers, only from controller number 1,
from amywhers from anywhere port b, channel 4 from port &, channel 4
ctlin ctlin 64 ctlin -1 20 ctlin a 1 4
| | | | | | | |
p127 | ped | pe | p127 | P4 | p127| ped | P127|
ctl. value ctl. no chan ctl. value chan. ctl. value ctl. no. ctl. value
Control messages can be filtered in a variety of ways
See Also
bendin Output received MIDI pitch bend values
ctlout Transmit MIDI control messages
midiin Output received raw MIDI data
notein Output received MIDI note messages
rtin Output received MIDI real time messages
xbendin Interpret extra precision MIDI pitch bend messages
MIDI MIDI software protocol
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

93

ctlout

Transmit MIDI
control messages

Input

int

float

list

enable

port

(mouse)

Arguments

a-Z

(MIDI name)

int

In left inlet: The number is used as the control value, and ctlout transmits a MIDI
control change message. Numbers are limited between 0 and 127.

In middle inlet: The number is stored as the controller number of the control
change messages transmitted by ctlout. Numbers are limited between 0 and 127.

Inright inlet: The number is stored as the channel number on which to transmit
the control messages.

Converted to int.

In left inlet: The first number is the control value, the second the controller num-
ber, and the third the channel number. ctlout transmits a MIDI control change
message using these values.

The message enable 0 disables the object, causing it not to transmit MIDI data. The
word enable followed by any non-zero number enables the object once again, even
if the entire patcher window has had its MIDI disabled by an enable message to a
pcontrol object.

In left inlet: The word port, followed by a letter a-z or the name of a MIDI output
port or device, specifies the port used to transmit MIDI control messages. The
word port is optional and can be omitted.

Double-clicking on a ctlout object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port for transmitting MI1DI control messages. If there is no
argument, ctlout initially transmits out port a, on channel 1. When a port is speci-
fied by a letter argument, channel numbers greater than 16 received in the right
inlet will be wrapped around to stay within the 1-16 range.

Optional. The name of a MIDI output device may be used as the first argument to
specify the port.

Following the (optional) port argument, the next argument is an initial value for
the controller number to be used in control messages transmitted by ctlout. Con-
troller numbers are automatically limited between 0 and 127. If there is no con-
troller number specified, the initial controller number is 1.

Following the controller number argument is an initial value for the channel
number on which to transmit control messages. If the channel argument is not
present, ctlout initially transmits control messages on channel 1. In order for this
argument to be used, a controller number argument must precede it.

94

ctlout

Transmit MIDI
control messages

Output
(MIDI)

Examples

If a port has been specified with a letter argument, channel numbers greater than
16 will be wrapped around to stay within the 1-16 range. If no port argument is
present, the channel number specifies both the port and the channel. The exact
meaning of the channel number argument depends on the channel offset speci-
fied for each port in the MIDI Setup dialog.

There are no outlets. The output is a MIDI control message transmitted directly
to the object’s MIDI output port.

Wil transmit Will transmit
,-12_—7| ouk port &, O ,-12_—?| out pott b, on Lo T

channel 13 channel 13
ctlout a 7 29 ctlout 7 29 [ctiout |
Letter argument transmits to only one port Otherwise, number specifies
both port and channel
See Also
bendout Transmit MIDI pitch bend messages
ctlin Output received MIDI control values
midiout Transmit raw MIDI data
noteout Transmit MIDI note messages
xbendout Format extra precision MIDI pitch bend messages
MIDI MIDI overview and specification
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

95

cycle

Send a stream of data
to individual outlets

Input
anything

set

thresh

Arguments

int

Output
anything

Examples

The stream of ints, floats, or symbols to be directed to successive outlets.

The word set, followed by a number, specifies an outlet to which the next input
should be directed, if in cycle mode. Outlets are numbered beginning with 0; if an
outlet number is specified that does not actually exist, the message is ignored.
(This message has no effect when cycle is in event-sensitive mode, in which case
each message is always sent out beginning at the leftmost outlet.)

The word thresh, followed by a number, sets the output mode, in the same way as
the second typed-in argument. If the number is non-zero, cycle will detect sepa-
rate “events”and restart at the leftmost outlet whenever a new event occurs. If the
number is 0, each number received will be directed to the next outlet in the cycle.

Optional. The first argument determines the number of outlets. If there is no
argument, there will be one outlet. The second argument sets the output mode. If
it is non-zero, cycle detects separate “events”and restarts at the leftmost outlet
when a new event occurs. Examples of separate events include messages with
delays between them, and messages triggered by successive mouse clicks or MIDI
events. A stream of items separated by commas in a message box is considered a
single event. If this argument is not present or is 0, the values cycle through all the
outlets, regardless of whether they are attached to separate events or not.

Outany outlet: In cycle mode, each successive int, float, or symbol received, either
separately or as part of a list, is directed to an outlet to the right of the previous
number. When the cycle reaches the rightmost outlet, the next number is sent out
the left outlet.

In event-sensitive mode, any int, float, or symbol which is a new event restarts the
output at the left outlet.

spell
\T=I
cycle 7 1

| | | | | | |
pi14 |p111 |p108 |97 | Pp10S | p100 | p11S |
Using cycle to get ASCI relief

9%

cycle

Send a stream of data
to individual outlets

See Also

bucket
counter
spell

spray

Pass a number from outlet to outlet, out each one in turn
Count the bang messages received, output the count

Convert input to ASCII codes
Distribute an integer to a numbered outlet

97

Report current
date date and time

Input
date Outputs the current date as a list (month/day/year) out the left outlet.

ticks Outputs the current value of Ticks (the number of 1/60ths of a second since sys-
tem startup) out the right outlet.

time Outputs the current time as a list (military hours/minutes/seconds) out the mid-

dle outlet.
Arguments
None.
Output
list Out left outlet: When the date message is received, date sends the current date as a
list.

list Outmiddle outlet: When the time message is received, date sends the current time
asa list.

int Outright outlet: When the ticks message is received, date sends the current value

of Ticks.
Examples
Stant(Stop "clock” unpack 0 0 0
netro 500 pZ0_] pT_|
[time | Ask what time it is | [change] [change] [change]
date i do something on i do something on i do something on
- | the howr the minute the second

For pieces which change slowly, date can be used as a clock to trigger events

See Also
clocker Report elapsed time, at regular intervals
timer Report elapsed time between two events

98

I Choose randomly between
deude on and off (1 and 0)

Input

bang Inleftinlet: Causes a randomly chosen output of 1 or 0.
int Inleftinlet: Same as bang.

Inrightinlet: A given “seed” number causes a specific (reproducible) sequence of
pseudo-random 0 and 1 outputs to occur. The number 0 uses the time elapsed
since system startup (an unpredictable value) as the seed, ensuring an unpredict-
able sequence of 0 and 1 outputs.

Arguments

int Optional. Sets a“seed” value to cause a specific (reproducible) sequence of
pseudo-random 0 and 1 outputs to occur. If there is no argument, the time
elapsed since system startup (an unpredictable value) is used as the seed, ensuring
an unpredictable sequence of 0 and 1 outputs.

Output

int Alora0,chosen at random.With certain seed values, the output may seem at
first to follow a“non-random” pattern, but over the course of many iterations the
sequence becomes unpredictable and the balance between 1 and 0 becomes even.

Examples
‘decide | metro S000
‘=I \é\
select 0 1 decide
[Heads! [[Tails! |
‘_!_'
print "The winner is" metro 125
Simulate a coin toss; switch randomly between on and off
See Also
drunk Output random numbers in a moving range
random Generate a random number
toggle Switch between on and off (1 and 0)
urn Generate random numbers without duplicates

99

decode

Send 1 or 0 out
a specific outlet

decode acts as a hierarchical switchboard. The right inlet is the master switch, which can turn off
(send 0 out) all outlets. The middle inlet is a submaster switch, which can turn on (send 1 out) all
outlets, provided they have not all been turned off by the master switch. The left inlet can turn on
one of the outlets exclusively, provided neither the submaster switch nor the master switch is

active.

Input

int

float

Arguments

int

float

Output

int

In left inlet: The number specifies an outlet out to turn on, turning off all other
outlets. (Whenever an outlet is turned on that was previously turned off,alis
sent out. Conversely, whenever an enabled outlet is disabled, a0 is sent out.) The
outlets are referred to by number, beginning with 0 on the left,and numbers
received in the left inlet are automatically limited between 0 and the number of
outlets minus 1.

In middle inlet: Any number other than 0 enables all disabled outlets (sends a1
out them), unless all outlets are disabled. When 0 is received, decode turns off all
outlets except the one that had previously been on.

In right inlet: Any number other than 0 disables all enabled outlets (sends a0 out
them). Once all outlets have been disabled in this manner, no outlet can be
enabled until a0 is received in the right inlet. When a0 is received, decode re-
enables all outlets that it had just disabled.

Converted to int.

Optional. Sets the number of outlets. The default is one outlet.

Converted to int.

When an outlet is enabled that was previously disabled, a1 is sent out that outlet.
When an outlet is disabled that was previously enabled, a0 is sent out that outlet.
The left outlet is initially enabled.

100

decode

Send 1 or 0 out

a specific outlet
Examples
All Off: All On: One On: If
Overrides Owverrides other inlets
other inlets left inlet are inactive
01 {2

decode 4

00 O

See Also

bucket
gate
toggle

[

L

decode is a hierarchical on/off switch

P T T

decode 4

00X O

Pass a number from outlet to outlet, out each one in turn
Pass the input out a specific outlet
Switch between on and off (1 and 0)

101

De-prioritize
d Efe r a message

Input

anything If the message received in the inlet was triggered by a MIDI object (such as notein)
or atiming object (such as metro or seq), and the Overdrive option is on, Max
normally gives the message priority over activities that are not so critical in their
timing (such as printing in the Max window). The defer object removes that spe-
cial priority from a message, allowing it to be superseded by messages for which
precise timing is more critical. This is useful for de-prioritizing time-consuming
messages which may interfere with musical rhythm, or for messages to objects
that may not function well with Overdrive on.

Arguments
None.
Output
anything ~ Same as the input.
Examples
notein a
| e
>c3 | P 120 | stripnote
I I - L
noteout b ! These numerous compk xcaleulatons could
‘defer I—Illzi 1024 |Ctavse anotceabl dekorof the numbers to
p— ™ noteout, so theyare deferred [de-prioriteed)
Ihl .
- 1 exXpr

= |int(64.+pow($£1/128.%,3.0)*$£2/2.
table | *sin(8. 0%atan(1.)*12.+$£1/128.))
Overdrives priority given to MIDI or timing messages can be overridden with defer

See Also

uzi Send a specific number of bang messages

102

Delayab
d e I ay / d e I before pgs?i);]g itagr%

Input
bang Inleftinlet: A bang is delayed a certain number of milliseconds before being sent
out the outlet.
stop Inleftinlet: Stops delay from outputting the bang it is currently delaying.
intorfloat Inleftinlet: Sets the number of milliseconds to delay a bang, then triggers the bang
to be delayed.
intorfloat Inrightinlet: The number is stored as the number of milliseconds to delay a bang
received in the left inlet. A number received in the right inlet changes the delay
time of the next bang received—it does not modify the time of a bang currently
being delayed.
Arguments
intorfloat Setsan initial value for the number of milliseconds to delay abang received in the
left inlet. If there is no argument, the initial value is 0.
Output
bang Abang received in the left inlet is delayed by the number of milliseconds specified
by the right inlet, then is sent out the outlet. Only one bang at a time can be delayed
by delay. If abang is already in delay when a new bang is received in the left inlet, the
first bang is forgotten.
Examples
===l }\1g 2.34 . .
‘delay | ceconds later delay 300000 | |delay 200000
Bang is delayed for a certain time Can be used to send triggers at specific times
See Also
pipe Delay numbers or lists
Tutorial 22 Delay lines

103

detonate Sraphic soore o

Input

int

After a record message has been received, all numbers received are treated as
parameters of a note event.

In left inlet: The delta time (delay), in milliseconds, since the previous recorded
event. This denotes the “inter-onset interval —the time between the beginnings
of notes—which effectively determines the rhythm in which the events are
recorded. This need not necessarily be the true time in which they occur; deto-
nate believes any (non-negative) delta time it receives.

In 2nd inlet: The number is treated as the key number (pitch) of the note. If no
key number has ever been received, 60 is used by default.

In 3rd inlet: The velocity of the note. If the velocity is 0—indicating a note-off—
the event will be treated as the end of an earlier note-on the same key, and will
determine the duration of that earlier note. If no velocity number has ever been
received, it is 64 by default.

In 4th inlet: In lieu of a note-off message, a note duration can be supplied as part
of the note-on event. If no duration value has ever been received, and no note-off
event is received to end the note, a duration of 10 milliseconds is used by default.

In 5th inlet: The number of a track on which to record the note event. Overdub
recording is not possible with detonate, but each recorded note can be tagged
with a track number for storing separate tracks of notes internally. If no track
number has ever been received, notes are recorded on track 1.

In 6th inlet: The MIDI channel of the note. If no channel has ever been specified,
notes are recorded on channel 1.

In 7th inlet: An“extra” number, which can be used for any purpose, attached to
the note event. This number can be used to provide an additional event parame-
ter, or to serve as a control value in sync with the note. If no number has ever been
received in this inlet, it is recorded as 0 by default.

Inright inlet: A second “extra” number.

When detonate receives a number in the left inlet while recording, it treats the
number as the inter-onset interval (the time elapsed since the previous event),
combines it with the numbers most recently received in the other inlets, and
records them together as a note event. As with most Max objects, the numbers
received in the other inlets are stored for use in subsequent note events triggered
by the receipt of a number in the leftmost inlet.

When detonate has received a follow message (see below), a subsequent number in
the 2nd inlet is treated as the key number (pitch) of a note. If the number is the

104

detonate Sraphic soore o

float

list

start

next

nth

clear

follow

followat

record

same as the pitch of the current note in the score (or a nearby note), the informa-
tion recorded for that note—except for the delta time—is sent out.

When detonate is neither recording nor following, a number in the left inlet has
the same effect as the nth message (see below).

Converted to int.

The first number in the list is used as the delta time, and the other numbers are
treated as if they had been received in the other inlets, respectively from left to
right.

Begins playing back the score, by simply sending out the first delta time. Once
playback of the score has been started, next messages can be used to send out the
next event information.

Once playback of the score has been started with a start message, next sends out the
event information (except the delta time) for the current note in the score, then
sends out the delta time for the next note. That delta time can in turn be used as a
delay time before sending another next message to detonate. When next is received
on the last note of the score, there is no note following that one, so a unique value
of -1is sent out the left outlet to signal the end of the score. If a next message is
received while the score is not being played back, detonate simply prints the mes-
sage not playing in the Max window.

The word nth, followed by a number, sends out the note information of the event
in the score indicated by the number. (Events are numbered beginning with 0.) In
place of the delta time for the event, the (cumulative) starting time of the event is
sent out the left outlet.

Erases the contents of detonate.

Causes detonate to behave like a score reader, comparing incoming pitch infor-
mation to the events stored in its score. When a key number is received in the 2nd
(pitch) inlet, and it is the same as the pitch of the current note in the score, deto-
nate sends out the information recorded for that event—except for the delta
time—and then moves ahead to the next note event.

The word followat, followed by a pitch, a velocity, and a MIDI channel number,
causes detonate to look for a note event with those attributes in its stored score. If
such a note is found, detonate commences score-following from the next event
onward. If not, it simply prints detonate: note not found in the Max window.

In left inlet: Begins recording numbers coming in the inlets, treating them as
parameters of note events to be recorded in a graphic score. The onset of an event
is recorded each time a number is received in the left inlet.

105

detonate Sraphic soore o

startat

stop

mute

unmute

unmuteall

params

write

read

The word startat, followed by a pitch, a velocity, and a MIDI channel number,
causes detonate to look for a note event with those attributes in its stored score. If
such a note is found, detonate sends out the delta time of the next event,and a
subsequent next message will refer to that next event. If no such note is found, det-
onate simply prints detonate: note not found in the Max window.

Stops detonate from recording, playing, or following. It is not necessary to stop
detonate before switching directly between record, start, and follow.

Permits the selective muting of note events that meet specific criteria. The word
mute must be followed by an event parameter number, a parameter value, and a
value of 1 or 0 signifying “mute” or “unmute”. Event parameters are numbered
beginning at 0 for delta time, 1 for pitch, etc. For example, the message mute 4 10 1
mutes notes on MIDI channel 10 (channel is parameter 4), preventing their note
information from being sent out; those notes can later be unmuted by the mes-
sage mute 4100.

The word unmute, followed by an event parameter number and a parameter value,
undoes an earlier mute of the same criterion. For example, unmute 4 10 has the same
meaning as mute 4 100.

Undoes the effects of all previous mute messages.

The word params, followed by three numbers, modifies the score-following behav-
ior of detonate for cases when the received pitch does not match the pitch of the
current note in the score. The first number tells detonate how many errors to tol-
erate before moving ahead in the score. The second number tells how many milli-
seconds to move ahead in the score when too many errors have occurred. The
third number, if non-zero, tells detonate to treat a received pitch that is an octave
too high or too low as if it were a match. For example, the message params 3 1000 1
means to allow three successive errors (with octave displacements considered to
be a match) before moving ahead one second in the score and resuming. By
default, detonate allows 2 errors before moving ahead 200 milliseconds, and does
not consider octave pitch displacements to be a match for the stored note.

Opens a dialog for saving the contents of detonate as a standard MIDI file. The
word write may optionally be followed by up to two numbers. If the first number is
non-zero, the file will be saved with time represented in milliseconds rather than
as bars, beats, and ticks in a certain tempo. If the number is 0 or not present, the
file is saved as beats. The second number indicates the MIDI file format: 0 (all
notes on asingle track) o multi-track format, using the track parameter to sepa-
rate the notes). The contents of detonate are also saved as part of the patch, when
the patch is saved.

The word read by itself opens a dialog for loading in a standard MIDI file as con-
tents of the detonate score. If read is followed by the name of a MIDI file in Max’s
search path, that file is read in directly without opening a dialog box. The read

106

detonate Sraphic soore o

export
import

(mouse)

Arguments

symbol

message can also be followed by a number which—if non-zero—causes the time
values in the file to be interpreted as milliseconds rather than as bars, beats and
ticks at a certain tempo. If the number is 0 or not present, the times are read as
bars and beats.

Same as write.
Same as read.

Double-clicking on detonate in a locked patcher opens an editor window to dis-
play a graphic representation of the note events. The editor window can show the
event information in various ways, and contains a small palette of tools for editing
the notes or entering new notes.

selection tool

tweak tool

You can draw new notes with the pencil tool. The starting time of note events is
always represented on the x axis of the graph. The default parameters of the drawn
notes are shown in (and can be changed by dragging upon) the number boxes at
the top of the editor window. You can change the meaning ascribed to the y axis,
and to the length of the drawn note, by clicking on the icons to the left of the
parameter names. By default the y axis is pitch and the horizontal length of the
note shows its duration.

You can select existing notes with the selection tool, and drag them either verti-
cally (by clicking in the middle of a note) or horizontally (by clicking on the left
side of note). Dragging on the right side of a note enables you to lengthen or
shorten it. The parameters of selected notes can also be changed with the number
boxes at the top of the editor window.

The tweak tool works the same as the selection tool, but allows for finer resolution
dragging adjustments. Clicking on the graph with the zoom tool enlarges that
area of the graph for more precise editing. Option-clicking on Macintosh or Alt-
clicking on Windows on the graph with the zoom tool zooms back out.

Supplies a name to be shown in the title bar of detonate’s graphic editor window.
Any detonate objects with the same name argument will share the same event
data. They will also share event data with any edetonate timeline editor that has
the same name.

107

detonate Sraphic soore o

Output

int

When detonate receives a start message or a startat message in the left inlet, it sends
out the delta time of its starting note event (or of the note after the found note, in
the case of startat). After that, each time detonate receives a next message, it sends
out all the other note data for that event, and the delta time of the next event, pro-
gressing through the score. Thus, the numbers coming out the left outlet can be
used to control the playback rhythm, by delaying for the specified time and then
triggering the next next message.

When detonate receives an nth message (or receives a number, while stopped) in
the left inlet, it uses that information as an index number (starting at index num-
ber 0 for the first note event) and sends out all note data for the indexed event.
Instead of sending the note’s delta time out the left outlet, however, it sends the
start time of the note—the total time since the beginning of the score.

After detonate has received a follow or followat message in the left inlet, if a number
is received in the 2nd inlet that matches the pitch of the current note in the score
(or one of the two notes immediately after it), all the data for the matched note is
sent out, except for the delta time.

Out left outlet: When a start, startat, or subsequent next message is received in the
left inlet, the delta time of the next note event is sent out. When the last event in
the score is played by a next message, there is no note following that one, so a
unique delta time of -1 is sent out to signal that the last note has been played.

When an nth message is received in the left inlet (or an int if detonate is stopped),
the starting time of the specified note is sent out.

Out 2nd outlet: In response to an nth message, or an int while detonate is stopped,
or anext message while playing back, or a matched pitch while following, the pitch
of the note is sent out.

Out 3rd outlet: The velocity of the note.

Out 4th outlet: The duration of the note.

Out 5th outlet: The MIDI channel of the note.

Out 6th outlet: The track number of the note.

Out 7th outlet: An extra value associated with the note.

Out right outlet: A second extra value associated with the note.

108

detonate Sraphic soore o

Inspector

Examples

You can change the depiction of the detonate object’s parameters (corresponding
to the object’s inlets) by reassigning the way each parameter is shown. The menu
at the top of the inspector lets you select which of the eight parameters (numbered
0 through 7) will be displayed in the Display.

You can change the name of the parameter using the Parameter Name field. The
default names are Time, Pitch, \el, Dur, Chan, X1 and X2. The Display Mode
menu lets you set how the parameter is displayed in the detonate graphic editor.
Parameters can be displayed along the X-axis, Y-axis, Length (along the x-axis) or
asa Number. Setting the menu to No Display, naturally causes the parameter not
to be displayed.

Each parameter’s Minimum Value and Maximum Value can be set using the fields
with those names. The Default Value sets the value which will be used for that
parameter in notes where it is left unspecified.

Graph Interval affects the view only if the parameter is displayed on the y axis; it
controls how often numbers will be shown along the y axis (every 12 semitonesin
the above example). Default Scaling is a factor that determines the default zoom of
the axis on which the parameter is being displayed. 1 is maximum zoom, and
larger numbers are successively smaller scales. The start time (the leftmost
parameter) is an exceptional case because it can only be displayed on the x axis;
so, for that parameter Graph Interval and Default Scaling refer only to the x
axis.The Display MIDI Note Numbers checkbox can be used to display values on
the y axis as MIDI notes instead of decimal numbers only for parameter 1 (pitch);
this option is disabled for all other parameters.

Record ineoming note data and the Use delta time a5 de oy before playing the next note

time elpsed between note messages

tart ||st
notein a Isl 1 ”s OPI
Istop ”xl'ecord | o il detonate
— \E-l\ ‘ l ‘ﬁ 1 1
3 | t b i||makenote
ltlmer | e :
,— delay ||noteout a 1
 —— | |
detonate

Note events are recorded with a delta time, which can be used to play notes back in rhythm

109

detonate Sraphic soore o

See Also

follow Compare a live performance to a recorded performance
seq Sequencer for recording and playing MIDI

timeline Time-based score of Max messages

Detonate Graphic editing of a MIDI sequence

Sequencing Recording and playing back MIDI performances

110

dial

) Output numbers by
s moving a dial onscreen

Input

int

float
bang
brgh

color

frgh

min

mult

rgh2

rgb3

rgb4

rgh5

set

The number received in the inlet is displayed graphically by dial, and is passed out
its outlet. Optionally, dial can multiply the number by some amount and add an
offset to it before sending it out the outlet.

The dial will also send out numbers in response to clicking or dragging on it
directly with the mouse.

Converted to int.
Sends out the number currently stored in dial.

The word brgb, followed by three numbers between 0 and 255, sets the back-
ground color of the dial in RGB format. The default is gray (221 221 221).

The word color, followed by a number from 0 to 15, sets the color of the center cir-
cle of the dial to one of the object colors which are also available via the Color
command in the Object menu.

The word brgb, followed by three numbers between 0 and 255, sets the color of the
center dial in RGB format. The default is light gray (170 170 170).

The word min, followed by a number, sets value that will be added to the dial
object’s value before it is sent out the outlet. The default is 0.

The word mult followed by a number, specifies a multiplier value. The dial object’s
value will be multiplied by this number before it is sent out the outlet. The multi-
plication happens before the addition of the Offset value. The default value is 1.

The word rgh2, followed by three numbers between 0 and 255, sets the center dial
(Foreground) of the dial in RGB format. The default is dark grey (120 120 120).

The word rgh3, followed by three numbers between 0 and 255, sets the highlighted
border around the center dial in RGB format. The default is off-white (225 225
225).

The word rgh4, followed by three numbers between 0 and 255, sets the color of the
dial indicator (needle) in RGB format. The default is black (0 0 0).

The word rgh5, followed by three numbers between 0 and 255, sets the color of the
frame/border of the dial in RGB format. The default is black (00 0).

The word set, followed by a number, changes the displayed value of the dial, with-
out triggering output.

111

dial

) Output numbers by
s moving a dial onscreen

size

Inspector

Output

int

The word size, followed by a number, sets the range of the dial object. The default
value is 128. Setting the size to 1 disables the dial visually (since it can only display
one value). Any specified size less than 1 will be set to 2.

The behavior of a dial object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any dial object displays the dial Inspector in
the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The dial Inspector lets you enter a Dial Range value. Numbers received in the inlet
are automatically limited between 0 and the number 1 less than the specified
range value. The default range value is 128. You can specify an Offset value which
will be added to the number, after multiplication. The default offset value is 0. The
dial Inspector also lets you specify a Multiplier. The dial object’s value will be mul-
tiplied by this number before it is sent out the outlet. The multiplication happens
before the addition of the Offset value. The default multiplier value is 1.

The Colors options let you use a swatch color picker or RGB values to specify the
colors used for the dial object’s display. Foreground sets the color for the face of the
dial (default 170 170 170), and Background sets the color for the square area in
which the dial appears (default 221 221 221). The Frame attribute sets color for
the border around the dial object’s square frame (default 0 0 0). The“lit”and
“shaded” edges of the dial are set by the Highlight (default 255 255 255) and
Shadow (default 120 120 120) attributes. The Needle attribute sets the color of the
position indicator for the dial (default 00 0).

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Numbers received in the inlet, or produced by clicking or dragging on dial with
the mouse, are first multiplied by the multiplier, then have the offset added to
them, then are sent out the outlet.

112

d | al : Output numbers by
;{ moving a dial onscreen

Examples
| [bendin 1]
j | J
v
ctlout 7 1
Produce output by dragging onscreen... or use to display numbers passing through
See Also
hslider Output numbers by moving a slider onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

113

dialog

Open a dialog box
for text entry

Input

symbol

bang

int

Arguments
anything

Output

symbol

In left inlet: The word symbol, followed by any word, opens a dialog box prompt-
ing the user to enter text. The word following symbol is shown as the default text. If
you want more than one word to appear as the default text, you must enclose the
words in double quotes.

In left inlet: Opens the dialog box with the previous text displayed as the default.
In left inlet: Same as symbol.

Inright inlet: The number 0 sets dialog so that whatever the user types into the
dialog box is sent out as a symbol preceded by the word symbol. A nonzero number
sets dialog so that the typed-in text is sent out exactly as is if it begins with a word,
or preceded by the word list if it begins with a number. If no number is received, it
is considered 0 by default.

Optional. Sets the prompt which will appear above the text entry box in the dialog
window.

If the user clicks OK, dialog makes a symbol out of the entered text (even if its a
number or it's more than one word) and sends it out its outlet with the word symbol
prepended. If a nonzero number has been received in the right inlet, the typed-in
message is sent out as is (without being preceded by the word symbol). This mes-
sage can be displayed by prepending the word set and sending it to a message box
(as shown in the example). If the user clicks Cancel, nothing is sent out.

Since your patch continues to run while waiting for the user to type text into your
dialog box, you can't count on getting the typed-in symbol immediately after
sending the message that opens the dialog box.

114

dialog

Open a dialog box

for text entry
Examples
=
default entry
this bang is sent -
whileagjog Fa— I?ymbol Untitled I Instrument Nomp
: [vntities]
clocker 100 dialog Instrument Name m
i IS . prompt n
£ 1000, prepend set [ok J [cencer)
|
p6.4 | [Slow Strings |typed-in entry
Typed-in message is sent out when OK button is clicked; A dialog box is opened
other processes continue while dialog box is open by the dialog object
See Also
message Send any message
opendialog Open a dialog to ask for a file or folder
savedialog Open a dialog to ask for a filename for saving

sprintf

Format a message of words and number

115

I Define a region for
d o pfl Ie dragging and dropping a file

Input
(drag)

types

border

Arguments

Output

symbol

any symbol

Objects

When afile icon is dragged from the Finder onto a dropfile object in a locked
patcher window, the object checks the file’s type against those that it has been told
to accept. If the file is of an acceptable type, the outline of the dropfile box is high-
lighted. If the mouse button is released while the cursor is inside the dropfile box,
the dropfile object outputs the type and full pathname of the file out its outlets.

The word types, followed by one or more four-letter type codes, sets the file types
that will be accepted by the dropfile object. Example type codes for files are TEXT
for text files, maxb for Max binary format patcher files, and AIFF for AIFF format
audio files. types with no arguments makes the object accept all file types, which
is the default setting.

The word border, followed by a 1 or 0, sets whether the dropfile object draws a bor-
der around its box. The default is no border.

None.

Out left outlet: When an acceptable file icon has been dragged onto dropfile and
the mouse released within its box, the absolute pathname of the file is sent out as a
single symbol. The output pathnames contain slash separators.

Absolute pathnames look like this:
“C:/Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

When aliases of folders are dragged onto dropfile, the aliases are resolved to create
the output path.

If you want to use the dropfile object to cause a file to be read by another object
that accepts the read message with a filename argument, put a prepend read object
between dropfile and the object that will open a file, as shown in the example
below.

Out right outlet: The four-letter type code of the acceptable file is sent out the
right outlet.

dropfile - 116

" Define a region for
d o pfl Ie dragging and dropping a file

Examples

types message lets you
specify the file types
which can be dropped
omto dropfile. |types maxb TEXT|

the dropfile is transparent, so you can place
other objects (e.g. comment boxes, panels)
on top of it.

coll |"MyDisk: /My Documents/collfile.txt"

dro P vour

file here!

the file dropped onto the dropfile
is read into the coll.

See Also

absolutepath Convert a file name to an absolute path
relativepath Convert an absolute to a relative path
strippath Get filename from an absolute pathname
opendialog Open a dialog to ask for afile or folders

117 - dropfile Objects

Output random numbers
drunk in a moving range

Input

bang Inleftinlet: Causes drunk to take a step of random size up or down fromits cur-
rently stored value. It updates the stored value and sends it out the outlet.

int Inleftinlet: The number replaces the stored value and is sent out the outlet.

In middle inlet: The number is stored as the maximum value that can be output
by drunk. (Note: If the specified maximum is less than O it is set to 0.)

Inrightinlet: The number limits the step size taken in response to abang in the left
inlet. The step (up or down) will always be less than the absolute value of this
number.

float Converted toint.

list Inleftinlet: The second number in the list sets the maximum value output by
drunk, and the third number (if present) limits the step size, then the first number
replaces the stored value and is sent out the outlet.

set Inleftinlet: The word set, followed by a number, sets the stored value of drunk to
that number without triggering output. The stored value is initially set in the cen-
ter of the total range (1/2 the maximum value).

seed Inleftinlet: The word seed, followed by a number, “seeds” the drunk objects ran-
dom generator, which causes a specific (reproducible) sequence of pseudo-ran-
dom numbers to occur. The number 0 uses the time elapsed since system startup
(an unpredictable value) as the seed, ensuring an unpredictable sequence of
numbers. This unpredictable seed is used by default when the drunk object is cre-
ated.

Arguments

int Optional. The firstargument sets an initial value for the maximum number which
can be output by drunk. The second argument sets an initial limit on the size of
random steps taken by drunk; the absolute value of the step size will always be less
than the absolute value of this limit. If there are no typed-in arguments, the maxi-
mum value is set to 128 and the step size limit is set to 2 (movement up or down
by no more than 1).

Output

int The number sent out the outlet is automatically limited between 0 and the speci-
fied maximum value, and differs from the previously stored number by less than
the maximum step size.

118

Output random numbers
drunk in a moving range

Examples
(]
drunk metro 250
1
Range is from 0 to 100, . .
in steps no larger than 10 drunk 127 13| [drunk 127 64
] random melod
= makenote 127 250 ¥
generator
Numbers vary aimlessly in small steps taken within the total range
See Also
decide

Choose randomly between on and off (1 and 0)
random Output a random number

urn Generate random numbers without duplicates

119

Script-configurable
env envelope editor

Input

bang Same asdump. Sends out a series of two-element lists, showing the array index and
the value at that index for the horizontal and vertical position of each point the
env, as specified in the object’s script.

float Converted toint.

set The word set, followed by an array index number and a value to be stored at that
index, sets the value of that array index and redraws the point, without sending
anything out the outlet.

embed The word embed, followed by any non-zero number, causes the contents of the
script file to be saved as part of the patch that contains the env object—the next
time the patch is saved—so that the env no longer needs to find the script file. The
message embed 0 causes the env to forget the contents of the script file when the
patch is closed. In either case, the patch must be saved after the embed message has
been received in order for a change to take effect.

open Causes the window associated with the env object to become visible. The window
is also brought to the front. Double-clicking on the env object in a locked patcher
has the same effect.

wclose Closes the window associated with the env object.

The env object is a script-configurable user interface for function editing, oriented toward the task
of editing envelope data in synthesizer patch editors.

There are two flavors of this object—env displays and edits the envelope in its own windows, while
envi (pronounced “envy”) is a user interface object which allows an envelope to be seen inside a
patcher window. Unless otherwise noted, both objects will be referred to generically in the docu-
mentation as the env object.

The env object is configured by a script—a text file—which defines the number of points in an
envelope and associates them with some number of data values. If the script is read in successfully
(i.e.it contains no syntax errors), the user should be able to change displayed data points in the
env window. env saves the name of the last script file read and will try to locate it the next time its
owning patch is loaded.

Arguments

symbol The env object takes an optional argument which is a symbol that names a script
file to be read in which will define the behavior and appearance of the envelope.

Since the envi object is a user interface object, it doesn’t have a typed-in argument. However, in
both the env and envi objects, the name of the last script file read in is saved in the patcher file con-
taining the object.

120

Script-configurable
env envelope editor

A new script file can be opened with the read message. And selecting the envi object and choosing
Get Info... from the Object menu puts up Open Document dialog box for selecting a new script
file to be read in.

Structure of an Envelope

The envelope is defined by a set of hierarchically arranged script messages. Both env and envi use
identical format for script files.

Each env object consists of awindow (technically in envi, a box in a patcher window), a number of
groups, each of which contain points which are logically connected. Each point contains horizon-
tal and/or vertical aspects, and each aspect can contain one or more display scales, which map
internal data values to those displayed on the legend of the envelope window.

Script Messages

The format of a script file consists of #E followed by a message keyword (such as group or point), fol-
lowed by that message’s arguments. See the Script Examples section below for examples.

The window message
Defines parameters applying to the entire env object and its display.

symbol 1. Title of the envelope window (doesn't apply to envi). To use spaces in the title,
use single “smart” quotes (option-right bracket and option-right brace).

int 2. Horizontal size. Size of the window (or box, in the case of envi) in pixels. For
the window, the size will be actually be 15 pixels larger to accommodate the scroll
bars.

int 3.\ertical size.

int 4. Number of groups. Each group will be defined in subsequent group messages
(see below).

int 5. Number of data values that define the envelope(s).

int 6. Left margin. Distance in pixels from left edge of the window (box) where the
envelope and text legend is drawn.

int 7.Bottom margin. Distance in pixels from bottom edge of the window (box)
where the envelope is drawn.

int 8. Top margin. Distance from the top of the window (box) where the envelope is
drawn. This should take into account the legend (which is 15 pixels), so a value of
20 or more pixels is suggested.

121

env

Script-configurable
envelope editor

The group message

Defines a group of logically connected points, what would usually be thought of as an “enve-
lope”—Dut the env object allows an arbitrary number of groups in a single window.

int 1. Group number. Specifies the group (starting at 1) being defined.
symbol 2. Group name. Precedes the name of any specific parameter and value in an

envelope legend display. The word none can be used to indicate that no group
name is desired.

int 3. Number of points in this group. Each will be defined below with a point mes-
sage.

int 4.Visible. 1if this group is initially visible, O if it isn't.

int 5. Display flags. 1 if you only want the parameter names and values of a point
being dragged. 0 if you want all the parameter names and values displayed when a
point in the group is being dragged. Other display flags may be defined later.

int 6. (Optional) Color. 1-15 as an index into the color palette and correspond to the
colors set in the Edit Colors... patch accessed via the Options menu.

The point message

Defines the appearance of a“point”in an envelope.

int
int

int

int

1. Point number being defined. The first point in any group is number 1.
2. Button size (in pixels) of the round or square “button” centered at this point.

3. Button flags. The rightmost bit (i.e. 0 or 1) is 0 if the button is to be square and 1
if the button is to be round. Bit 1 (i.e. 0 or 2) is 1 if the button is solid, O if it is
transparent. Bits 2-6 (inclusive) specify an index for a black and white pattern.
Use ResEdit to examine the System File and look at PAT# ID 1 for the indices of
common black and white patterns.

4. Line-from point. If non-zero, specifies another point, which should always be
numbered less than this point, which is to be connected to this point with a line.
This connection is only a display property. Logical dependencies between points
are specified in the horiz and vert messages below.

The horiz and vert messages

These messages define the two directional aspects of each point. Most of the “meat” of the enve-
lope specification is contained in these messages. If you wish to keep one of the directions fixed,
you need not define that direction for a particular point. The arguments to horiz and vert are identi-
cal, except where noted.

122

env

Script-configurable
envelope editor

symbol

int

int
int
int
int

symbol

int

1. Parameter name. The name (e.g.‘Rate 1") associated with moving the point in
this direction. none can be used if there is no parameter name associated with this
point.

2. Data index. The index into the array of data values (starting at 0) correspond-
ing to the value of this parameter. If there is no data associated with this direction,
use -1 (this will not be uncommon for one or more directions of one or more
points in an envelope). When a list containing this data index and a value is sent
to the env object, this point will move accordingly.

Note that all data values are stored as integers. You can display a floating point
number in the legend for this parameter by defining a scale expression or table
(see the scale message below).

3. Minimum value of this parameter.

4. Maximum value of this parameter.

5. Initial value of this parameter.

6. Increment of this parameter. Not currently supported, should be set to 1.

7. Unit name. The units of this parameter (e.g. ms for milliseconds or % for per-
centage). none may be used if the units are not tied to any particular units, such as
the rate and level units on Yamaha synthesizers).

When two points are “tied together” in the horizontal or vertical direction it
means that changes in one point are linked to others. Ties are expressed in terms
of higher numbered points being tied to lower numbered ones. There are two
types of ties—absolute and relative. An absolute tie means that a point changes its
position on the screen to assume the exact value of another point. A relative tie,
which is very common for horizontal aspects, means that the location of any
point on the screen is based on a distance from another point. The common
envelope shown in the second Script Example section below has point 2 with a
relative horizontal tie to point 1, point 3 with a relative horizontal tie to point 2
(and hence to point 1), and point 4 with a relative horizontal tie to point 3. If
point 1 is allowed to move left and right (as for example if there were an initial
delay for the envelope, all the other points would move as well. None of the points
are vertically tied to each other, although in a DX7 envelope which has a non-zero
final level, it is customary to tie points, points 1 and 4 would be absolutely verti-
cally tied. You cannot tie the horizontal direction of one point to the vertical
direction of another.

8. Absolute tie point. Point number that this point is absolutely tied to (must be
less than this point number). This point will appear at the exact same horizontal
or vertical position as the point it is tied to. Use 0 if this point is not tied.

123

Script-configurable
env envelope editor

int 9. Fixed. If this point is fixed at a particular position on the screen, use 1. Other-
wise use 0. This may be true for the horizontal or vertical direction of the first
(leftmost) point in an envelope.

int 10. Relative tie point. Point number that this point is relatively tied to (must be
less than this point number) in this direction. This point’s position will be an off-
set (depending on its value) from the position of the point being tied to in the
horizontal or vertical direction. Use 0 if this point is not relatively tied to other
points in this direction (commonly true for the vertical direction).

int 11.Positive direction. Sets which direction the value of a point increases. For the
vertical direction, 0 indicates that the value increases as the cursor is moved to the
top of the screen, while 1 indicates that the value increases as the mouse is moved
to the bottom of the screen. For the horizontal direction, 0 indicates that the value
increases as the cursor is moved to the right, while 1 indicates that the value
increases as the cursor is moved to the left.

int 12. Coverage size. Determines how many pixels the range of the parameter is
mapped into. For a garden variety envelope, you generally use most of the entire
vertical space for the vertical direction, so you would use a formula like:
<window vertical size> - <legend height> - <top margin> - <bottom margin>
For the horizontal direction, the amount of space you use should be determined
by the number of points in the envelope, and how much scrolling you want to
require the user to do if the envelope is stretched to its maximum width.

The scale message

Defines a conversion between the internal values (integers) used to store the data in an envelope
and their displayed values, which may be floating point numbers. When envelope parameters rep-
resent physical quantities, manufacturers often use scale factors. In the scale message, you can
specify a mathematical expression to convert the internal format to another integer or floating
point number which is displayed in the legend.

A scale can be expression in the form of the arguments to the expr object, or it can be a list of values
(including symbols) to which the internal data values map.

Each direction can have an arbitrary number of scales, each of which is applicable over a specified
range. If there is no scale which applies to a data value, the legend will display the internal data
value. One use of a scale in this context might be if the lowest value of an envelope signified
“Off”—you could have a scale that mapped 0 to the word “Off” but left the other values
unchanged.

int 1. Minimum. Lowest value for which this scale applies.

int 2. Maximum. Highest value for which this scale applies.

int 3.Floating-point digits. Number of digits after the decimal point used to display
floating-point numbers in the legend.

124

Script-configurable
env envelope editor

symbol 4. The word is or table. Determines whether what follows is interpreted as a math-
ematical expression or a table of values used for mapping.

5. Additional data. For expressions: $il represents the internal data being mapped
to the legend. Examples:

is $i1 * .07;Multiplies the internal value by a scale factor
is $i1 - 1;Subtracts 1 from the internal value

is ($i1-1)*.07;Compound expression

i 100 - $i1;Inverting an internal value

For tables: a list of values which map successive values of the internal data sepa-
rated by spaces. The table can contain up to 240 elements. Use additional scale
messages for larger tables. Example:

table Off 10 20 30 40;

Here, the minimum value will be mapped to the word “Off”, next value to 10,
next value to 20 etc.

Other Example scale messages:
#E scale 00 0 table Off; (Maps the minimum value to the word “Off”)

#E scale 110 2is $il1 * .04;(Scales additional values by .04 and prints as floating-point
number with 2 decimal places.)

The phase message

This message specifies that the previously defined vert aspect of a point has a signed component.
Either the parameter of the envelope can be a negative number, or there is a separate data value
that represents the phase (0 for negative, 1 for positive). The phase message must immediately fol-
low the vert message it modifies.

The comment message

This message begins a comment in the envelope script, which must be contained on a single line
and terminated with a semicolon.

The end message

This message is required at the end of an envelope script. It reconfigures the env object and
changes the display in its window or box if necessary. It has no arguments.

125

env

Script-configurable
envelope editor

Script Examples

The following script defines an envelope which consists of 4 groups of individual points which are
used in an early reflection tap editor. The horizontal position of the point determines a delay and
the vertical position determines a percentage of the original signal to repeat. A picture is shown
after the script.

#E
#E
#E
#E
#E
#E

#E
#E
#E
#E
#E

#E
#E
#E
#E
#E

#E
#E
#E
#E

#E

wi ndow ERFEnv 400 148 4 96 8 8 24;

group 1 EarlyReflectionl 1 1 1;

point 1 81

0;

horiz time 0 1 50011 nms 000

10102401 %000

scale 0 1024 2 is $il1l * .0977;

group 2 EarlyReflection2 1 1 1;

horiz tine 2 1500 11 nms 00O

vert |evel
point 1 8 1 0;
vert |evel

30102401 %000O0

scale 0 1024 2 is $il1l * .0977;

group 3 EarlyReflection3 1 1 1;

point 181

0;

horiz time 4 150011 nms 000

501024 01 %000

scale 0 1024 2 is $il1l * .0977;

group 4 EarlyReflectiond 1 1 1;

horiz tine 6 1 500 1 1 ns 0 0 O

701024 01 %0 00

scale 0 1024 2 is $il1l * .0977;

vert |evel
point 1 8 1 0;
vert |evel
end;

0
0

oo

100;
100;

100;
100;

100;
100;

100;
100;

EarlyReflectiond time: 446 ms, level

16272 %

O

%

Picture of object for Script Example #1

126

Script-configurable
env envelope editor

The following script defines a two groups with more traditional synthesizer amplitude envelopes

that have three points. The first point is fixed in the vertical direction but moves horizontally. The
other two points move in both directions, and all three points are connected by a line. A picture is
shown after the script.

#E wi ndow Test Env 400 148 2 10 8 8 24;

#E group 1 Thingl 3 1 O;
#E point 1 8 0 O;
#E horiz Delay 0 099 0 1 ns 0 0 O O 100;

#E vert none -1 0 99 0 0 none 1 0 O O 100;
#E point 2 8 0 1;

#E horiz Ratel 1 0 99 50 1 ns8 0 0 1 1 100;
#E vert Levell 2 0 99 50 1 ns8 O O O O 100;
#E point 3 8 0 2;

#E horiz Rate2 3 0 99 50 1 ns8 0 0 2 1 100;
#E vert Level2 4 0 99 50 1 ns 0 O O O 100;

#E group 2 Thing2 3 1 0;
#E point 1 8 3 O;
#E horiz Delay 5099 0 1 ns 0 0 O O 100;

#E vert none -1 0 99 0 0 none 1 0 0 O 100;
#E point 2 8 3 1;

#E horiz Ratel 6 0 99 50 1 ns 0 O 1 1 100;
#E vert Levell 7 0 99 50 1 ns 0 O O O 100;
#E point 3 8 3 2;

#E horiz Rate2 8 0 99 50 1 ns 0 O 2 1 100;
#E vert Level2 9 0 99 50 1 ns 0 O O O 100;

#E end

Thing! Delay: 47 ms, Ratel : 0 ms, Levell : 83 ms, Rate2: 24 ms, Level2: 0 ms

Picture of Object for Script Example #2

Input Messages

Because it can have an arbitrary number of data values, the env object has only one inlet. The
envelope data is stored in an array. The script file specifies how array indices correspond with hor-
izontal and vertical aspects of the points in an envelope.

list Alistreceived by env stores a new value in a data point. The first number in the list
specifies the location (array index), and the second number is the data value to

127

env

Script-configurable
envelope editor

int

show

hide

open

read

dump

Output

list

store at the location. The env object limits the range of its input values, according
to the minimum and maximum of each data point specified in the script file.

The funnel object takes a number in one of its inlets and outputs a list with the first
element being the index of the inlet and the second element being the incoming
number. It was designed to be used to prepare the lists required by the env object.

If the number is between 0 and the maximum array index, env outputs a list con-
taining the index followed by the data value at the array index.

The word show, followed by a group number, makes that group visible. Followed
by two numbers, makes a range of groups visible from the first to the second
number.

The word hide, followed by a group number, makes that group invisible. Followed
by two numbers, makes a range of groups invisible from the first to the second
number.

Opens the env object’s display window if its closed, or brings it to the front.
Doesn't apply to the envi object.

Puts up a standard Open Document dialog for the user to select a new script file
for configuring the object.

Outputs all the current data values of the envelope, as successive two element lists.
The first number is the data index and the second is the data value.

When the mouse button is released or a number is received in its inlet, env sends
lists outs its outlet which consist of two numbers. The first is an array index and
the second is the new value at that index. Only newly modified values are output.
When env receives the dump message in its inlet, all data values are sent out in this
list format.

The spray object takes a list as input and sends the second element out the outlet
number specified by the first element. It was designed to distribute the lists output
by the env object to individual outlets for display by number boxes or to send to
librarian editor objects such as libto.

Using an Envelope Window or Box

The envelope display has two areas separated by a horizontal line—the upper area of 15 pixels
contains a legend of text in 9 point Geneva that indicates the names and values of the points the
user is currently changing. The lower area contains the actual groups of points which may or may
not be connected by lines.

128

Script-configurable
env envelope editor

The use of the env object’s window (or the envi object’s box) is simple—just click on one of the vis-
ible points. With no modifier keys held down, data values are incremented by a pixel’s worth of
movement. How much this amounts to is determined by the ratio of each direction’s Coverage size
argument to its parameter range (difference between maximum and minimum values). For exam-
ple, in the first example script above, there are 1024 data points and a Coverage size of 100, so
moving the cursor one pixel changes the value by 1024/100, or about 10.

With the Shift key down, movement of a point being dragged is constrained to the direction the
cursor moves in first. Releasing the Shift key at any time removes the constraint.

With the Command key on Macintosh or Control key on Windows held down, mouse movement
is in“fine mode”—no matter what the ratio of parameter range to Coverage size, the parameter
data is changed by 1 with each pixel you move the mouse.

Fine mode can be entered or left instantaneously by pressing or releasing the Command key on
Macintosh or Control key on Windows while dragging the mouse.

See Also

envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together

funnel Tag data with a number that identifies its inlet

line Output numbers in a ramp from one value to another
multislider Multiple slider and scrolling display

spray Distribute an integer to a numbered outlet

129

I = Script-configurable envelope
envi r"'{__ in a patcher window

The envi object is the patcher window version of the env object. The discussion of the env object
covers both objects.

130

error

Max window errors
as messages

Input

int

float

Arguments

Output

symbol

Examples

See Also
print

The error object allows you to catch errors and output them as Max messages. A
non-zero number starts the error object “listening” for Max errors. The error
object must be listening to produce any output. A 0 turns off listening.

Converted to int.
None.

Any Max error generated by any object in any patch while the error object is lis-
tening is sent out the outlet preceded by the symbol error. The messages are output
as individual words so you can check for specific failures.

If you want to strip off the initial error message from the object’s output, use aroute
error object. If you want to use the error object’s output as a message, put a prepend
read object between route error and the object that will process the error message.

! turn it on zend nunber a symbol
| 1

erroy love

L J

|prepend setl m

Ierror nunber: doesn't understand "lowve"

Intercept error messages

Print any message in the Max window

131

expr

~ Evaluatea
mathematical expression

Input
int
float

symbol

bang

list

set

Arguments

int or float

$i or $f

$s

The number received in each inlet will be stored in place of the $i or $f argument
associated with it. (Example: The number in the second inlet from the left will be
stored in place of the $i2 and $f2 arguments, wherever they appear.)

The number in each inlet will be stored in place of the $f or $i argument associated
with it. The number will be truncated by a $i argument.

The word symbol, followed by the name of a table, will be stored in place of the $s
argument associated with that inlet, for accessing values stored in the table.

In left inlet: Evaluates the expression using the values currently stored.

In leftinlet: The items of the list are treated as if each had come in a different inlet,
and the expression is evaluated. If the list contains fewer items than there are
inlets, the most recently received value in each remaining inlet is used.

Any of the above messages in the left inlet will evaluate the expression and send
out the result. If a value has never been received for each changeable argument,
that value is considered 0 when the expression is evaluated.

The number of inlets is determined by how many changeable arguments are
typed in. The maximum number of inlets is 9.

In left inlet: The word set, followed by one or more numbers, treats those numbers
as if each had come in a different inlet, replacing the stored value with the new
value, but the expression is not evaluated and nothing is sent out the outlet. If
there are fewer numbers in the message than there are inlets, the stored value in
each remaining inlet stays unchanged.

Obligatory. The argument is a mathematical expression, in a format resembling
the C programming language. The expression is made up of numbers, arithmetic
operators such as + or *, comparisons such as < or >, C functions such as min() or
pow(), names of table objects, and changeable arguments ($i, $f, and $s) for ints,
floats, and symbols received in the inlets.

Numbers can be used as constants in the mathematical expression.

A changeable int argument is specified by $i or $f and an inlet number (example:
$i2). The argument will be replaced by numbers received in the specified inlet.

The argument $s and an inlet number is replaced by the name of a table to be
accessed. The argument should be immediately followed by a number in brackets
specifying an address in the table. (Examples: $s2[7] or $s3[$i1].)

132

expr ~ EBvaluatea

mathematical expression

(other) Arithmetic operators understood by expr are: +, -, *,/, %. Other operators are ~
(one’s complement), ~ (bitwise exclusive or), &, &&, |,||,and ! (not).

Many C language math functions can be understood by expr. A function must be
followed immediately by parentheses containing any arguments necessary to the
function. If the function requires a comma between arguments, the comma must
be preceded by a backslash (\) so that Max will not be confused by it. For exam-
ple: pow($i1\,2).

C language functions understood by expr are: abs, min, max, sin, cos, tan, asin,
acos, atan, atan2, sinh, cosh, tanh, int (convert to integer), float (convert to float),
pow, sgrt, fact (factorial), exp (power of e to x), 1og10 (log), In or log (natural
log), and random. Additional functions can be added by means of external code
resources placed in Max’s startup folder.

Output
intorfloat The output is the result of the evaluated expression.

Examples

5] prza e
expr $i1*+$£2+abs($i3) expr pow($s2[$il1]N,2) tahle x|

get the value stored at

>11.5 D address 3 in table x D

and square it

Combine many calculations into one object, even using functions not available in other objects

See Also

if Conditional statement in if/then/else form

vexpr Evaluate a math expression for a list of different inputs
Tutorial 38 exprand if

133

filedate Report the modification date

of afile

Input

symbol A file pathname as a symbol. An absolute pathname looks like this:

"MyDisk:/Max Folder/extras/filename’

Arguments
None.
Output
list Sends the date that the file was last changed as a list (month, day, year, hours, min-
utes and seconds).

Examples

select & mast patch or text file.

opendialog maxb TEXT

‘ filedate‘ filedate looks wp the modification

T deonthefil

vnpack 0 0 0 0 0 O

[[[l I [

Be | pe | pzoo1) pi7 | piz | pE]

outpuk format is & list: month ¢ day ¢ year { howrs { minures

{ seconds of when the file was last changed.

filedate displays how recently a file has been changed

See Also
date Report current date and time
filein Read in afile of binary data
filepath Report information about the current search path
folder List the files in a specific folder
opendialog Open a dialog to ask for a file or folder

134

filein

Read in afile
of binary data

Input

int

list

read

spool

fclose

Arguments

symbol

Output

int

bang

Specifies a byte offset in a binary file, and outputs the data stored at that point in
the file.

In left inlet: The byte contained at that offset in the file is sent out the left outlet.

In middle inlet: The 16-bit word contained at that byte offset in the file is sent out
the left outlet as an unsigned (short) integer.

Inright inlet: The 32-bit word contained at that byte offset within the file is sent
out the left outlet as an unsigned (long) integer.

In left inlet: The second number in the list is received in the middle inlet, then the
third number in the list (if present) is received in the right inlet, and then the first
number in the list is received in the left inlet. Output is sent out the left outlet in
the corresponding order.

Displays a standard file dialog to select a file to be read into memory. If the word
read is followed by a filename found in Max’s search path, that file will be automat-
ically read into memory.

Displays a standard file dialog to select a file, which will be accessed from disk
whenever an intis received. If the word spool is followed by a filename found in
Max’s search path, that file will be automatically pointed to for future access. This
method of accessing a file occupies less RAM, but does not output data immedi-
ately at interrupt level in response to an int message.

Closes the file being read, making filein no longer respond to int or list messages.

Optional. Specifies a filename to be read into the filein object automatically when
the patch is loaded. If the filename is followed by a second argument, spool, the file
will be accessed from disk rather than read into memory.

Out left outlet: An unsigned integer representing the 8, 16, or 32 bits stored in the
file at the location specified by the inputint.

Out middle outlet: When a number greater than or equal to the number of bytes
in the file is received in an inlet, a bang is sent out signifying that the end of the file
(EOF) has been reached.

Out right outlet: Signifies that a read or spool operation has been completed. This

bang indicates that the file has been accessed successfully and that filein is ready to
receive int messages.

135

Read in afile

filein of binary data

Examples
m look up a specific byte
_ by its address in the file.

argument lets you
specify & file to read in.

P46 | yalue of that byte in

filein mydataset

}
Retrieve data from any binary file

metro is started when file is read,
stopped when EOF is reached.

metro 250

b automatically count
through the file

word-by-word until
the EOF is reached.

2ero the
accumulator.

=

read 16-bit word
ak this index.

is read in. middle ourlet bangs
when the EOF is reached.

P110000110000111 |
ourput from file in binary.

Output the content of a file in 8-, 16-, or 32-bit chunks

See Also
text Format messages as a text file

136

fl Iepath Report information about

the current Max search path

Input

any symbol

bang
append

set

revert

clear

Arguments

symbol

int

Output

symbol

The pathname of afile in the search path as a symbol. Input pathnames can con-
tain slashes, colons, or backslashes as separators.

A pathname looks like this:

“drive:/folder/filename.ext” (absolute pathname)
“ mypatches/steaksauce.ext” (relative pathname)

A bang causes the currently saved path name(s) to be output as a list.

The word append, followed by a symbol which specifies a folder, adds the folder to
the list of paths (but does not save it in the Preferences file).

The word set, followed by the name of a Max search path type (search, startup, help,
action, or default), sets the current search path to the type specified.

Causes the pathnames to be reset to the last set of Max file preferences to be saved.

Causes the currently specified search path to be cleared.

Obligatory. Specifies one of the Max search path types (search, startup, help, action,
or default)

Optional. A number greater than zero specifies a slot in the Preferences file. If the
argument is 0 or no number is supplied, the path will not be saved in the Prefer-
ences file—you can use this feature to create temporary search paths for a patch.
The action, help, and startup paths only have one slot. The search path can have
up to 256 slots (normally there are about 8). The default path is never saved in the
Preferences file.

The currently stored path name in response to a bang.

137

filepath

Report information about
the current Max search path

Examples
. ‘ add & folder on & CD-ROM
bang to find out where loadbang
your help patches are : to the search path
[filepath help 1 ["Luke's CDROM: /My Max Stuff/lib" |

|prepen==d set] Lr=prepend Nt path slot 0 isn't saved in the max
preferences, so you can set & path

|. /max-help

temporarily for a specific patch

I ‘filepath search 0

Use filepath to check your search path or temporarily set search path slots for a patch

See Also

conformpath
filedate
filepath
folder
opendialog

Convert paths of one pathtype and/or pathstyle to another
Report the modification date of a file

Report information about the current search path
List the files in a specific folder
Open a dialog to ask for afile or folder

138

float/ f

_ Store a
decimal number

Input
float Inleftinlet: The number replaces the currently stored value and is sent out the
outlet.
Inright inlet: The number replaces the stored value without triggering output.
bang Inleftinlet: Sends the stored value out the outlet.
set Inleftinlet: The word set, followed by a number, replaces the stored value without
triggering output.
send Inleftinlet: The word send, followed by a name of a receive object, sends the num-
ber stored in the float object to all receive objects with that name, without sending
it out the float object’s outlet.
int Converted to float.
Arguments
float ~ Optional. Sets an initial value to be stored in float. If there is no argument, the ini-
tial value is 0.0. A float argument by itself, without the word float, is another way of
creating and initializing a float object.
Output
float A number isstored in float as a single-precision floating point number. The preci-
sion possible in the decimal portion of the number decreases as the integer part
increases. Note: Because of the way decimal numbers are stored, a float value
saved in a patcher file might be slightly altered when the file is reopened.
Examples
[10.6]
[float | [float | [10.6|
p10.6] p10.6 | p10.6|
Output the stored value Replace stored value and output it Initial value is given

139

float/ f

_ Store a
decimal number

See Also
int

pv

value

Tutorial 21
Data Structures

Store an integer value
Share variables specific to a patch and its subpatches

Share a stored message with other objects
Storing numbers
Ways of storing data in Max

140

flush

Provide note-offs
for held notes

Input

int

list

bang

clear

Arguments

Output

int

Examples

A note-off is

note before the
note-on is sent

provided for e.z«uchxt ‘change |
ne lemmnls plem—

In left inlet: The number is treated as the pitch value of a pitch-velocity pair and
the note is sent out.

Inright inlet: The number is stored as the velocity to be paired with numbers
received in the leftinlet.

In left inlet: The numbers must be ints. The first number is treated as the pitch,
and the second number is treated as the velocity, of a pitch-velocity pair, and the
numbers are sent out the outlets.

In left inlet: Immediately sends note-offs for any pitches that have passed through
as note-ons but not as note-offs by sending 0 out its right outlet followed by a
pitch value out its left outlet.

In left inlet: Erases any numbers held by flush, without sending any note-offs.
None.

Out left outlet: The output is the pitch of the note-on or note-off.
Out right outlet: The number is the velocity of the note-on or note-off.

The flush object keeps track of the notes that have passed through it. When a bang
is received in the inlet, note-off messages are provided for any notes that have
passed through as note-ons only.

Pﬁh Valoeky Twns off any held notes

r whenever the channel is
changed, so that note-ofts
will be on the comect channel

notein

Assign notes to &
| w MIDI channel

I ‘ flush tib
‘ flush ‘ Syl]
T noteout

Make sure all notes are turned off by providing note-offs for held notes

141

flush

Provide note-offs
for held notes

See Also

bag

borax
makenote
midiflush
offer
stripnote
sustain
Tutorial 13

Store a collection of numbers

Report current information about note-ons and note-offs
Generate a note-off message following each note-on

Send note-offs for hanging note-ons in raw MIDI data
Store x,y pairs of numbers temporarily

Filter out note-off messages, pass only note-on messages
Hold note-off messages, output them on command
Managing note data

142

folder

List the files
in a specific folder

Input
bang

symbol

types

int

Arguments

symbol

Output

clear

append

int

Gets the names of all files of a specific type within a specific folder, and outputs
those names to be placed in a message object or a pop-up umenu object.

Specifies the pathname of a folder in the search path, and causes the contents of
that folder to be output for storage in a umenu or a message. Input pathnames can
contain slashes, colons, or backslashes as separators.

A pathname looks like this:

“drive:/folder/filename.ext” (absolute pathname)
“ /mypatches/steaksauce.ext” (relative pathname)

If the pathname contains any spaces, you will need to enclose the pathname in
double quotes in order to cause folder to understand the pathname as a single
argument. Alternatively, you can precede each space with a backslash (\) so that
folder won't treat that space as a special character.

The word types, followed by one or more four-letter type codes, sets the file types
that the folder object will look for in the specified folder. Example four-letter type
codes for files are TEXT for text files, maxb for Max binary format patcher files, and
AIFF for AIFF format audio files.

By default, the folder object looks for TEXT and maxb (Max binary) files.

Same as bang.

Optional. Specifies the absolute path to a folder on any mounted volume.

Out left outlet: When a pathname or a bang is received in the inlet, the first mes-
sage that is sent out the left outlet is clear, which is intended to erase the contents of
a receiving message or umenu object.

Out left outlet: Immediately following the clear message, each filename in the
specified folder is sent out in alphabetical order preceded by the word append.

Out right outlet: When a pathname or a bang is received in the inlet, the number
of items in the folder is sent out the right outlet.

143

fO I der List the files

in a specific folder

Examples

bang to list all matching pick a folder to search.
files in the folder.

o opendialog fold)
E‘j set search eriteria to | look for text files only.
1

types maxb : .

I E I i Rixay iles relativepath |types TEXT
argument to folder l
folder . /max-hel;d specifies relative path L
[to & default folder | folder |
[abs.help @ %] |

[cuelist. txt]

you can send the outpuk directly to a wmenu.
menw. of text files found.

Read in filenames from a folder, then call them up from a pop-up menu

See Also

conformpath Convert paths of one pathtype and/or pathstyle to another
filein Read in afile of binary data

filepath Report information about the current search path
opendialog Open a dialog to ask for afile or folder

pcontrol Open and close subwindows within a patcher

144

follow

Compare a live performance
to a recorded performance

Input

record
bang

start

follow

stop

next
append

int

Starts recording integers received in the inlet.
Starts playing back the sequence stored in follow.

The word start by itself has the same effect as bang. The word start, followed by a
number, plays the stored sequence at a tempo determined by the number. The

message start 1024 indicates normal tempo. If the number is 512, follow plays the
sequence at half the original recorded speed, start 2048 plays it back at twice the
original speed, and so on.

The follow message is the main feature that distinguishes follow from seg. In effect,
follow is like a score reader, comparing a live performance with the one previously
stored.

The word follow, and a number, causes follow to begin comparing incoming num-
bers to its own stored numbers, beginning at the specified index (the specified
event in its own stored sequence). When follow is following, and a number is
received that matches the number recorded infollow, it sends out the index of that
number.

The follow object is a forgiving score reader, and will try to follow along even if the
incoming numbers do not exactly match the recorded sequence. If a number
arrives that does not match the next number, or either of the two subsequent
numbers in the sequence, follow does nothing. If a number arrives that matches a
number up to two notes ahead in the sequence, follow assumes that the performer
simply missed a note or two, and jumps ahead to the matched number.

Stops follow from recording, playing, or following. A stop message need not be
received before switching directly from recording to playing, following to record-
ing, etc.

Causes follow to send out the index and the stored number it is currently trying to
match, and move on to the next number.

Starts recording at the end of the stored sequence, without erasing the existing
sequence.

When follow is recording, the numbers received in its inlet are recorded as a
sequence. The numbers may be bytes of MIDI messages (from midiformat or
midiin), exactly as with the seq object. However, follow differs from seq in its abil-
ity to record individual integers; with follow you can record notes as a single pitch
value.Whether the performance is recorded as complete MIDI messages or just as
note-on pitches, follow can effectively step through the note-on pitch numbers
later, when following a performance.

145

follow

Compare a live performance
to a recorded performance

float

delay

hook

write

read

print

dump

Arguments

any symbol

Output

int

When follow is following, numbers received in its inlet are compared to the num-
bers recorded in the sequence. When a number is received that matches the num-
ber in the sequence, follow sends out the index of that number.

Converted to int.

The word delay, followed by a number, sets the onset time, in milliseconds, of the
first event in the recorded sequence.

The word hook, followed by a float, multiplies all the event times in the stored
sequence by that number. For example, if the number is 2.0, all event times will be
doubled, and the sequence will play back twice as slowly. Multiplications can even
be performed while the sequence is playing.

Opens a standard Save As dialog box to save the follow sequence as a file.

The word read with no arguments puts up a standard Open Document dialog box
for choosing a sequence file to load into follow. If read is followed by a symbol file-
name argument, the named file is located and loaded into follow.

Prints the first few events of the recorded sequence in the Max window.

Calls up the standard Open Document dialog box, so that a previously recorded
sequence or standard MIDI file can be opened as text and displayed in a new
Untitled text window. This in fact has no direct effect on the follow object, but
does allow you to view or edit a sequence, save your changes in afile, then load the
new file into follow with a read message.

Optional. The argument is the name of a file containing a previously recorded
sequence, to be read into follow automatically when the patch is loaded.

Out left outlet: When follow is following, and the number received in the inlet
matches the next number in the stored sequence (or one of the two numbers after
that), the index of the matched number is sent out. The index of the next number
is also sent out when a next message is received.

Out right outlet: When follow receives a bang or a start message, the recorded num-
bers are played back. When follow is following, and a next message is received, the
next number in the recorded sequence is sent out.

146

fo I I ow Compare a live performance
to a recorded performance

Examples

notein 1

1 1 [start | |follow 27 |

stripnote | [follow 0 [stop]| | [mext |

follow

' | follow

EEHIII Start metronome

Moo o7 When the 27th p2? | p78 |

\T=—\ note is matched Index Value

metro 200

A note that matches the recorded note can trigger a
process, or the notes can be stepped through

See Also

seq Sequencer for recording and playing MIDI
detonate Graphic score of note events

Tutorial 35 seg and follow

Sequencing Recording and playing back MIDI performances

147

fO rward Send remote messages

to a variety of objects
Input
anything Sends any message to all receive objects which share the name currently referred
to by forward.
send The word send, followed by the name of a receive object, sets the destination for
any subsequent messages received by the forward object. This ability to change the
destination of messages on the fly distinguishes forward from the send object.
Arguments
anysymbol Optional. Sets the name for the receive object which will receive messages. This
name can later be changed with the send message.
Output
anything There are no outlets. A message (other than send) received in the inlet of forward is
sent out the outlet of each receive object of the same name, even if the receive is in
another patch.
Examples
Specify the destination, .
P e vy A Y
, ¥ s argum A equivalent method, vsing
send somewhere, set $1, icolons i b
send elsewhere, 1 E:l semicolons 1n a message box
o — ; somewhere set $1
forward send elsewhere||send somewhere||; elsewhere 1
receive somewhere receive elsewhere

Using forward to send messages The same thing, The message box can perform
to multiple objects at once with two send objects the same function
See Also
message Send any message
receive Receive messages without patch cords
route Selectively pass the input out a specific outlet
send Send messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive

148

prC %." Display a picture

from a graphics file

Note: The fpic object requires that Quick Time be installed on your system to open any files other
than PICT files. If you are using Max on Windows, we recommend that you install QuickTime
and choose a complete install of all optional components.

Input

(mouse) Inan unlocked patcher, you can change the offset of the picture by holding down
the Shift and Command keys on Macintosh or Shift and Control keys on Win-
dows and dragging on fpic; the current offset of the picture is shown in the Assis-
tance portion of the patcher window as you drag.

autoerase The word autoerase, followed by a nonzero number, causes the picture to erase
after a new picture is loaded. This mode is disabled by default (autoerase 0).

autofit ~ The word autofit, followed by a nonzero number, scales the graphic to fit in the
bounding rectangle of the fpic object.

erase The word erase will erase the current picture and then redraw it.

link The word link, followed by symbol which specifies a filename, it will check to see if
the graphic has already been loaded by another fpic object. If the object has
already been loaded into RAM, the fpic object will reference the image loaded ear-
lier, conserving memaory resources.

matrix ~ The word matrix, followed by nine floating point numbers, reloads the current file
into RAM after performing a transformation matrix operation on the image. This
transformation is the same one used for the mapping in QuickTime of points
from one coordinate space (i.e, the original image) into another coordinate space
(ascaled, rotated, or translated version of the original image).

The transform matrix operation consists of nine matrix elements

tx ty w

ifuandvare0.,andwis 1., we have the following translation formula.
X =a*x+c*y+t_x;
y=b*x+d*y+t y

The following formulas are used for scaling/rotation:

a=xscale*cos(6)

149

fpic

raieeen Display a picture
'%); from a graphics file

b=yscale*sin(6)
c=xscale*(-sin(6))
d=yscale*cos(6)

For more on the transformation matrix, consult the Apple QuickTime Developer
documentation found at:

http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/igMovieToolbox.c.htm#18006

noscale

offset

pict

read

readany

rect

scalemode

The word noscale disables image scaling.

The word offset, followed by two numbers, specifies the number of pixels by which
the left upper corner of the picture is to be offset horizontally and vertically from
the left upper corner of the fpic box. By default the left upper corner of the picture
is located at the left upper corner of fpic (that is, with an offset of 0,0). With suc-
cessive slightly different offset messages, a picture can be moved inside fpic, and
fpic can window different portions of a large picture. (In order to give the appear-
ance of smooth transitions when moving an image, the old image is not erased
when using the offset message. This may cause an undesired appearance if your
picture contains a blank background that doesn’t cover up what’s beneath it.)

The word pict, followed by the name of a graphics file in Max’s search path, opens
the file and displays the picture, replacing whatever picture was previously dis-
played. The fpic object accepts PICT files and, if QuickTime \ersion 3.0 or later is
installed, other picture file formats that are listed in the QuickTime appendix.

The word read, followed by a symbol which specifies a filename, looks for a Quick-
Time graphic file with that name in Max’s file search path, and opens it if it exists,
displaying it in a graphic window. If the filename contains any spaces or special
characters, the name should be enclosed in double quotes or each special charac-
ter should be preceded by a backslash (\). The word read by itself puts up a stan-
dard Open Document dialog box and displays the common graphics files
supported by QuickTime.

The word readany, followed by a symbol which specifies a filename, functions in
the same manner as the read message, except that the Open Document dialog box
does not filter its display by the currently supported filetypes.

The word rect, followed by four numbers that specify the size of scaling rectangle
to apply to fit the input image within, loads the graphics file from disc into RAM
and displays it. The first two numbers specify the placement in the graphic win-
dow as offset values, and the second two numbers specify the width and height, in
pixels, of the rectangle.

The word scalemode, followed by number in the range 0-3, sets the scaling mode
used by the fpic object.

150

fpic

raieeen Display a picture
'%); from a graphics file

storage

time

Inspector

If the fpic object is set to scaling mode 0, no scaling is performed; the image is dis-
played as read into memory.

If the fpic object is set to scaling mode 1, scaling is performed using the Quick-
Time transformation matrix (see the matrix message for more information); the
image will be scaled and rotated according to the current or default settings of the
transformation matrix. The matrix variables can be changed using the fpic
object’s Inspector or by using the matrix message.

If the fpic object is set to scaling mode 2, rectangular scaling is performed (see the
rect message for more information). The image will be loaded and displayed
according to the current or default settings of the rect message.

If the fpic object is set to scaling mode 3, the image is autosized; the fpic object
scales the graphic to fit in the window currently displayed.

The word storage, followed by two numbers which specify horizontal and vertical
distances in pixels, will load only a portion of the graphic image into RAM, which
can be used to conserve memory resources.

Note: if either of the arguments are 0, fpic will not limit its storage.

The word time, followed by a number which specifies a time in QuickTime time
units, loads an individual frame from a QuickTime movie and displays it. Typi-
cally, QuickTime movies display at a rate of 600 units/second. The default is 0
(i.e., frame one).

The behavior of a fpic object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any fpic object displays the fpic Inspector in
the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The fpic Inspector lets you set the following attributes:

Picture Offset specifies the number of pixels by which the left upper corner of the

picture is to be offset horizontally and vertically from the left upper corner of the
fpic box. By default the left upper corner of the picture is located at the left upper

corner of fpic (that is, with an offset of 0,0). This offset can be changed by entering
new pixel values into the number boxes. The default is no offset (i.e. 0 horizontal,
0 vertical).

Time Offset mode allows you to specify a frame offset in QuickTime time units
and load an individual frame of a movie as a graphic. The defaultis 0 (i.e., frame
one).

151

fpic

raieeen Display a picture
'%); from a graphics file

Arguments
(GetInfo...)

Output

The Scaling Mode pop-up menu can be used to select the type of scaling used by
the fpic object. There are four scaling modes available: The None option (the
default) performs no image scaling. Choosing the Matrix option will open a
patcher window and let you input matrix values for image scaling and rotation. If
you have not previously specified matrix values, the defaults will be used. The
Rectangular option also brings up a patcher window which lets you specify the
position of the rectangle within the graphic window, in relative coordinates, and
the width and height, in pixels, of the rectangle (the default values are all set to 0).
The Auto-Fit option will automatically scale the image to fit the display area.

Internal Storage can be used to conserve RAM by only loading a portion of the
graphic file into RAM. The area is specified by horizontal and vertical pixel val-
ues. Note: if either value is entered as 0, fpic will not limit its storage.

The Picture File option lets you choose a picture file for the fpic object to display by
clicking on the Open button. The current file's name appears in the text box to the
left of the button. You can also choose a file by typing its name in this box, or by
dragging a file icon from the Finder into this box.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

After placing an fpic object in a patcher window, while it is still selected, choose
the Get Info... command from the Object menu. This brings up the Inspector
window for the fpic object, where you can choose a graphics file to display inside
the fpic object’s box. The picture appears at 100% size, and the fpic object’s box
may then be resized manually to accommodate it. The lower right part of the pic-
ture will be cropped by an fpic box which is smaller than the size of the picture.

The fpic object is simply for displaying pictures in patcher windows. The same
visual effect can be achieved by choosing the Paste Picture command from the
Edit menu, but that includes the picture in the patcher file, often making the file
slow to save and load. Instead, fpic just references the graphics file on disk.
Another advantage of using the fpic object is that it may reduce disk space and
memory usage, since the same picture file may be referenced in many patcher
windows, rather than being saved in each one. The external graphics file must be
in Max’s search path, however, in order to be automatically displayed the next
time the patch is opened.

None.

152

prC %"‘ Display a picture

from a graphics file

Examples

ﬁ Record Stop Stant
4 — - I

Irecord| |stop| |start|
| | J

\ﬁ‘
seq
ace a picture in a patc ...or make it functiona acin
Pl pict patch ke it functional by placing
(for the sheer beauty of it)... ubutton objects over it.
[pict Imaget | Dragrepestedly to the kt _*-i-=1—t
p— —
T lgi
[pict Inage2 | | . [offset $1 0]
il @ metro 33 T
:w.; counter 0 29

Make a slide show by changing pictures, or move a picture by changing its offset

See Also

imovie Play a QuickTime movie in a patcher window
Icd Draw graphics in a patcher window
matrixcrtrl Matrix-style switch control

panel Colored background area

pictctrl Picture-based control

pictslider Picture-based slider

ubutton Transparent button, sends a bang

Menus Explanation of commands

153

frame

Draw framed rectangle
in a graphic window

Input

Arguments

any

Objects

bang

int

frgb

priority

symbol

int

In left inlet: Draws a framed rectangle using the current screen coordinates, draw-
ing mode, and color.

In left inlet: Sets the left screen coordinate of the rectangle and draws the shape.
In 2nd inlet: Sets the top screen coordinate of the rectangle.

In 3rd inlet: Sets the right screen coordinate of the rectangle.

In 4th inlet: Sets the bottom screen coordinate of the rectangle.

In 5thinlet: Sets the drawing mode of the rectangle.The following are drawing
mode constants; not all modes will be available on all operating systems.

Copy 0 blend 32
or 1 addPin 33
Xor 2 addOver 34
Bic 3 subPin 35
NotCopy 4 transparent 36
NotOr 5 adMax 37
NotXor 6 subOver 38
NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the frame according to the
graphics window’s current palette. \WWhen the monitor is in black and white mode,
any nonzero index is black, and 0 is white.

In left inlet: The word frgh, followed by three numbers between 0 and 255, sets the
RGB values for the color of the frame the next time it is drawn.

In left inlet: The word priority, followed by a number greater than 0, sets a frame
object’s sprite priority in its graphics window. Objects with lower priority will
draw behind those with a higher priority.

Obligatory. The first argument to frame must be the name of a graphics window
into which the rectangle will be drawn. The window need not exist at the time the
frame object is created, but the rectangle will not be drawn until the name
matches that of an existing and visible window.

Optional. Sets the initial sprite priority of the frame. If no priority is specified, the
default is 3.

frame - 154

frame

Draw framed rectangle
in a graphic window

Output

(visual)

Examples

See Also

graphic
Icd

oval

rect

ring
Graphics

155 - frame

When the frame object’s associated graphics window is visible, and a bang message
or number is received in its left inlet, a shape is drawn in the window, and the
object’s previously drawn rectangle (if any) is erased.

See examples under oval or rect. frame can be directly substituted for oval, rect, or
ring.

Window for drawing sprite-based graphics
Draw graphics in a patcher window

Draw solid oval in a graphic window

Draw solid rectangle in a graphic window

Draw framed oval in a graphic window
Overview of Max graphics windows and objects

Objects

Transform a symbol into
fromsym bOI individual numbers or messages

Input

symbol The fromsymbol object accepts a symbol for input, and outputs a list of numbers
or messages correspond to the “contents” of the symbol. The fromsymbol object is
useful for parsing a text symbol composed of numbers, (e.g.,“3.556.520”) or
dividing a symbol up into individual messages.

Arguments

None.

Output

messages, lists, A list of numbers or messages which correspond to parsed contents of the original
ornumbers symbol.

Examples
"resume 500 200" | STt quotes place text and
numbers into one symbol
fromsymbol
fromsymbol turns it into & list
unpack s 0 0
prepend set psoo | »>200
resume I
See Also
sprintf Format a message of words and numbers
tosymbol Convert messages, numbers, or lists to a single symbol
zl Multi-purpose list processor

156

fswap

Reverse the sequential order
of two decimal numbers

Input
float

int

list

bang

Arguments

int or float

Output

int

float

Examples

In left inlet: The number is sent out the right outlet, then the number in the right
inlet is sent out the left outlet.

Inright inlet: The number is stored to be sent out the left outlet when a number is
received in the left inlet.

If there is a float argument, the numbers are converted to float. If there isan int
argument or no argument, the number received in the right inlet is stored as an
int.

In left inlet: The numbers are stored in fswap. The first number is sent out the
right outlet, then the second number is sent out the left outlet.

In left inlet: Swaps and sends out the numbers currently stored in fswap.

Optional. Sets an initial value for the number which is to be sent out the left out-
let. If there is no argument, the initial value is 0. If there is an int argument or no
argument, an int is sent out the left outlet. (The number sent out the right outlet is
always a float.)

When a number is received in the left inlet, the number in each inlet is sent out the
opposite outlet. If there is an int argument or no argument, an int is sent out the
left outlet.

The number sent out the right outlet is always a float. The number sent out the left
outlet is a float only if there is a float argument.

[23.4] [5.6] [23.4] [5.6]

l-f=0.\ \-f=4. fswap 0 2!
=== — P56 | pz=.4
5.6 | p23.4] e I P pack 00|

Numbers are sent out in reverse order from the order in which they were received

157

fswap Reverse the sequential order

of two decimal numbers

See Also

pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
unpack Break a list up into individual messages

158

S Vpai
fu n b U ff of num%)erfs)éoégt?:gls'

Input
list

int

bang

float

clear

copy

cut

delete

dump

embed

In left inlet: x and y values for a data pair stored in funbuff. If the x value is the
same as an x value already stored in funbuff, the previously stored pair is replaced
by the new pair.

In left inlet: The number is the x value of an x,y pair. If ay value has been received
in the right inlet, the two numbers are stored together in funbuff. Otherwise, the x
value causes the corresponding y value stored in funbuff to be sent out the left out-
let.

If there is no stored x value which matches the number received, funbuff uses the
closest x value which is less than the number received, and sends out the corre-
spondingy value.

Inright inlet: The number is ay value which will be paired with the next x value
received in the left inlet, and stored in funbuff.

In left inlet: Prints information in the Max window concerning the current status
of funbuff’s contents: how many elements it contains, the minimum and maxi-
mum x and y values it contains, and its domain and range (the maximum minus
the minimum, for the x and y axes respectively).

In either inlet; Converted toint.
Erases the contents of funbuff.

Copies the current selection (made by using the select message) into the global
funbuff clipboard. The data stored on this clipboard can then be pasted into
another funbuff object using the paste message.

Copies the current selection (made by using the select message) into the global
funbuff clipboard and deletes it from the funbuff object. The data stored on this
clipboard can then be pasted into another funbuff object using the paste message.

In left inlet: The word delete, followed by two numbers, looks for such an x,y pair
in funbuff, and deletes it if it exists. If delete is followed by only one number, only
the x value is sought, and deleted if it is present.

In leftinlet: Sends all the stored pairs out the middle and left outlets in immediate
succession. The y values are sent out the middle outlet, and the x values are sent
out the left outlet, in alternation. The pairs are sent out in ascending order based
on the x value.

The word embed, followed by a non-zero number, causes the funbuff data to be
stored inside the patcher. The default setting is not to store the funbuff data inside
the patcher.

159

fu N b Uff Store X,y pairs

of numbers together

find

goto

interp

interptab

max
min

next

paste

read

select

The word find, followed by a number, will output (out the left outlet) all x values
(indexes) whose y value is equal to the number indicated.

The word goto, followed by a number, sets a pointer to the x value (index) speci-
fied by the number. A subsequent next message will return the y value at the speci-
fied x.

In left inlet: The word interp, followed by a number, uses that number as an x value,
measures its position between its two neighboring x values in the funbuff, and
then sends—out the left outlet—the y value that holds a corresponding position
between the two neighboring y values. If the received number is already the x
value in a stored x,y pair, the corresponding y value is sent out. If the received
number exceeds the minimum or maximum x values stored in funbuff, the y value
that’s associated with the minimum or maximum x value is sent out. If the funbuff
is empty, 0 is sent out.

In left inlet: The word interptab, followed by a number and the name of a named
table object functions similarly to the interp message (mentioned above), except
that it uses the data in the table as an interpolating function. This allows you to
easily perform non-linear interpolation between consecutive values in a funbuff,

Sends the maximum y value currently stored in the funbuff out the left outlet.
Sends the minimum y value currently stored in the funbuff out the left outlet.

Finds the x value pointed to by the pointer (or, if the pointer points to a number
not yet stored as an x value, to the next greater x value), and sends the correspond-
ing y value out the left outlet. Also, funbuff calculates the difference between that x
value and the value previously pointed to by the pointer, sends the difference out
the middle outlet, and resets the goto pointer to the next greater x value.

The word paste will copy the contents of the global funbuff clipboard into a funbuff
object. The contents of the clipboard are set using the select, copy and cut messages.
These messages provide a handy way of copying data between different funbuff
objects in any open patchers.

Calls up the Open Document dialog box so that afile of x,y values can be read
into funbuff. If the word read is followed by a symbol, Max looks for a file with that
name (in the file search path) to load directly into the funbuff. The funbuff file for-
mat is described on the next page.

In left inlet: The word select, followed by an two integers representing a starting
index and a range will select a region of the funbuff which can be edited using the
cut, copy and paste messages. For example select 2 3 will select the part of a funbuff
fromindex 2 through index 5.

160

S Vpai
fu n b U ff of num%)erfs)éoégt?:gls'

set

undo

write

Arguments

any symbol

Output

int

bang

In left inlet: The word set, followed by one or more space-separated pairs of num-
bers, stores each pair as X,y pair.

The undo message is used to undo the results of the previous cut or paste message.

Calls up the standard Save As dialog box, so that the contents of funbuff can be
saved as a separate file. If the word write is followed by a symbol, the contents of the
funbuff are saved immediately in afile, using the symbol as the filename.

Optional. The argument specifies the name of afile to be read into funbuff when
the patch is loaded. Changes to the contents of one funbuff will not affect the con-
tents of another funbuff object with the same name.

Afile for funbuff can also be created using a text editor window, beginning the text
with the word funbuff, followed by a list of space-separated numbers which specify
alternating x and y values. A funbuff that has been saved as a file can be viewed and
edited as text by choosing Open as Text... from the File menu. Numbers in the
form of text can be pasted in from other sources such as the editing window of a
capture object, or even from another program such as a word processor.

Out left outlet: When an x value is received in the left inlet, the corresponding y
value is sent out. (Or, if there is no such x value yet stored in funbuff, the y value
corresponding to the next lesser x value is sent out.) When the word next is
received in the left inlet, funbuff sends out the y value that corresponds to the x
value pointed to by its pointer (or, if there is no such x value, the y value of the next
greater x value).

Out middle outlet: When the word next is received in its left inlet, funbuff sends
out the difference between the x value pointed to by its pointer, and the x value
previously pointed to, then resets the pointer to the next x value.

Out right outlet: When the pointer reaches the end of a funbuff, no numbers are
sent out in response to a next message, but a bang is sent out to notify that the end
has been reached.

161

funbuff

Store x,y pairs
of numbers together

Examples
Store a5 an x, ¥ pair Store a5 an X,y pair
|60 I |96 | 60 96
m x alone causes ¥
to be sent out
funbuff funbuff

Pairs or lists are stored as X,y pairs; an x value alone, or next, sends out a y value

Store the pairs 0,0 and 10,100 and 30,200

Store as an x, ¥ pair
[next | [60 96 |

Set pointer

funbuff

p% 1p7]

Delkete the pairthat has an xvahe of 10 [10,100)

[set 0 0 10 100 30 200 delete 10
e
: Compare 13 to its xvalue : Compare 18 to its 3 value
R . ichbors 10 and 80] b hors 0 and 30
[funbus | [fonbusf |

| 140 i5 409 of the wayErom 100 to 200
h b
just as 18 is 409 of the way from 10to 30 m

Interpolating between points stored in funbuff

See Also

coll

envi
funbuff
line

table
Tutorial 27
Timeline

Store and edit a collection of different

120 & 60% of the wayfrom 0 to 200,
just as 18 is 60% of the way from 0to 30

messages

Script-configurable envelope in a patcher window

Store X,y pairs of numbers together

Output numbers in a ramp from one value to another
Store and graphically edit an array of numbers

Your object

Graphically edit a score of Max messages

162

Tag data with a number
fun nel that identifies its inlet

Input

int Inanyinlet: The number of the inlet and the received number are sent out asa list.
float Converted toint.

list Inany inlet: The number of the inlet is prepended to the list, and the new list is
sent out. In a list floats are not converted to ints. The list may contain ints, floats,
and symbols (provided that the first element of the list is not a symbol).

bang Inany inlet: The number of the inlet and the stored (most recently received)
number in that inlet are sent out as a two-item list.

Arguments

int Optional. The first arguments sets the number of inlets in the funnel. If there is no
argument there will be two inlets. The second argument specifies an offset for the
firstinlet number. If no second argument is present, the inlets are numbered
beginning with 0.

Output

list Whenanumber or listis received in any inlet, funnel outputs a list consisting of
the inlet number followed the input. funnel is designed for “funneling” many
streams of numbers into the env or envi objects, but it can be useful in conjunc-
tion with other objects such as coll, funbuff and table.

Examples
[79 112 2000 |
60 61 62 63
Inlets are numbered from O |35 I |61 I funnel 4 60
0 1 2 3 4 — Store data according
funnel S ?011 to inlet number
: makenote
unpack " "
! ! > 79 > 112
P 1 p=] b | b1z |
noteout
Use funnel to tag incoming data, or to store data into a coll object
See Also
env Script-configurable envelope editor
envi Script-configurable envelope in a patcher window
spray Distribute an integer to a numbered outlet

163

gate

Pass the input out
a specific outlet

Input

int

float

bang

anything

Arguments

int

Output
anything

In left inlet: The number specifies an open outlet through which to pass all mes-
sages received in the right inlet. A number in the left inlet does not trigger any
output itself.

In left inlet; Converted to int.

In left inlet: Reports the current open outlet, or 0 if closed, out the left outlet. This
message is designed to be used in conjunction with the grab object.

Inright inlet: All messages are passed out the open outlet, which is specified by
the number in the left inlet.

Optional. Specifies the number of outlets. Limited between 1 and 10. If there is no
argument, there is only one outlet.

Messages received in the right inlet are passed out the outlet specified by the num-
ber in the left inlet. If the number in the left inlet is 0, or if no outlet number has
been received yet, all messages are ignored. If the number in the left inlet is less
than 0, messages are sent out the leftmost outlet. If it is greater than the number of
existing outlets, messages are sent out the rightmost outlet.

164

Pass the input out
g ate a specific outlet

Examples
L?__l L?tl IAny message I
|
gate 3 Oft gate 2
— | —
po |p127 [po | send one |[send two
Message is passed out the specified outlet This one closes the door behind itself
See Also
Ggate Pass the input out one of two outlets
Gswitch Receive the input in one of two inlets
onebang Traffic control for bang messages
route Selectively pass the input out a specific outlet
send Send messages without patch cords
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

165

gestalt

Inquire about
current system

Input

various

Arguments

Output

int

Examples

The gestalt object accepts a four-letter symbol specifying a Gestalt selector (a
term originating from the Macintosh OS). Examples of useful four-letter codes
include sysv for system version and qgtim for Quick Time version. For a complete list
of Gestalt selectors refer to Apple developer documentation (http://devel-
oper.apple.com). On Mac OS, the object uses the Macintosh Gestalt feature to get
aresponse to the selector. On Windows this feature is emulated, and may conse-
quently report slightly different, though meaningful, information. The response
and an error code are sent out the object’s outlets.

None.

Out left outlet If there was no error in obtaining the response to a selector to the
object, the response is sent out the left outlet. Binary or hex display and/or the use
of the bitwise and operator & may aid in interpreting the response.

Out right outlet: If there was an error in obtaining the response to a selector, an
error code is sent out the right outlet. Refer to Apple developer documentation for
a complete list of error codes. If the input selector was undefined, -1 is sent out. If
there was no error, 0 is sent out.

find out system version

gestalt

1
204 | resulr displayed in hex
|

|sp1it 0 2303 eliminate systems older than OS 9

& 3840 & 240 mask major and minor version

s 2] > 4| convert to single decimal digits
IF\ \F\

] b

pack 0 . O

print SystemToo0ld

gestalt can tell you information about the system in use, plus information about hardware features

166

Inquire about
QEStaIt cur?ent system

See Also

screensize Output the monitor size

167

Ggate

HP= Pass the input out

g | one of two outlets
Input
int Inleftinlet: The number specifies which one of the two outlets is to be open.0
specifies the left outlet, any number other than 0 specifies the right outlet. The
arrow on Ggate points to the open outlet.
bang Inleftinlet: Causes the arrow to point to the other outlet. Clicking on Ggate with
the mouse has the same effect.
float Inleftinlet: Converted toint.
anything Inrightinlet: All messages are passed out the open outlet.
Arguments
None.
Output
anything Messages received in the right inlet are passed out one of the two outlets. If the
number in the left inlet is 0, incoming messages are sent out the left outlet. If the
number in the left inlet is not 0, messages are sent out the right outlet.
Examples
notein 1
A
— ——T>
D 0 I [> 127 I send keyup ||send keydomm
Specify one of two outlets Any comparison can be used as a criterion
See Also
gate Pass the input out a specific outlet
Gswitch Receive the input in one of two inlets
onebang Traffic control for bang messages
pictctrl Picture-based control
route Selectively pass the input out a specific outlet
send Send messages without patch cords
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

168

grab

Intercept the output
of another object

Input
anything

set

Arguments

int

symbol

Output
anything

The message is sent out the right outlet, or if a second argument is present the
message is sent to receive objects named by the second argument.

If a second argument has been typed into grab specifying the name of a receive
object, then the word set, followed by a symbol, specifies the name of a (different)
receive object via which grab can grab messages from remote objects.

Optional. The first argument sets the number of outlets, in addition to the right
outlet. If there is no argument, grab has 1 additional outlet.

Optional. If asymbol is present as a second argument, the message received in the
inlet is sent to all receive objects named by the symbol, instead of being sent out
the right outlet. In this case the rightmost outlet, which would normally send out
the incoming message if no second argument were present, will not exist.

Out right outlet: The right outlet should be connected only to the leftmost inlet of
other objects. The message received in the inlet is sent out to the left inlet of all
objects connected to the right outlet. WWhatever goes out their outlets, however, is
then intercepted by grab.

Out other outlets: Whatever would normally be sent out the outlets of the objects
connected to the right outlet, is sent out grab’s outlets instead, in response to a
message from grab. Whatever would be sent out the leftmost outlet of the other
objects is sent out the leftmost outlet of grab, and so on. Note: Only the output
that is sent out the outlets of other objects can be intercepted by grab. Other types
of output, such as transmission of MIDI messages or printing in the Max window,
cannot be intercepted by grab. Also, grab does not intercept the output of timing
objects such as seq, metro, and clocker.

Connecting the right outlet of grab to the inlet of a patcher object, however, will
not grab the output of the subpatch. It will simply grab the output of the inlet
object inside the subpatch, which is exactly the same as its input. However, grab
can communicate with remote objects via a receive object named as the second
argument to grab.

If asecond argument is present, the message received in the inlet is sent directly to
receive objects named by the argument instead of being sent out the right outlet.
Any such receive objects should be connected only to the leftmost inlet of other
objects. The rightmost outlet, which would otherwise be used to grab the output
of other objects, does not appear if the second argument is used.

169

grab

Intercept the output
of another object

Note that if grab is connected to other objects remotely via numerous receive
objects of the same name, the order in which grab communicates with those other
objects is undefined, so the order in which their output will be sent out of the grab

object’s other outlets is unpredictable.

Examples
length l'
't
o T — e,
1&[I=I P ’
table change 0 print
IPI Y Y |}
pzE] pi] B7 1 BT] b7 B0]
Get an object’s output by “grabbing” it before it comes out the outlet
COmMMmUnicate via communicate via & receive oneplace
arecedve object diffe re nt receive object o e—
+ 63

|set anotherplace, 64 h———d]
|

grab 1 oneplace grab 1 oneplace

receive anotherplace

See Also

preset
table

grab can communicate with any receive object specified by a set message

Store and recall the settings of other objects
Store and graphically edit an array of number

170

I Window for drawing
g raph IC sprite-based graphics

Input

open
weclose

Arguments

symbol

int

Output

Examples

Causes the graphics window associated with the graphic object to become visible.
The window is also brought to the front. Double-clicking on the graphic object in
alocked patcher has the same effect.

Causes the window associated with the graphic object to become invisible.

Optional. Identifies the graphic object’s window. Drawing and animation objects

use this symbol to tell Max which window to draw in. If no argument is typed in,
the window will be named Graphics—1 (and subsequent graphics windows will

be numbered sequentially).

Optional. Following the name of the graphic object, four coordinates can be spec-
ified for the location of the window on the screen. The numbers represent the
screen coordinates of the left, top, right, and bottom corners (respectively) of the
drawing area. Note that when you save a patch containing a graphic object with no
coordinate arguments, the current window location is saved. The coordinate
arguments are useful in the case where you want the object’s window to be guar-
anteed to appear in a certain position each time the patch is opened, regardless of
where it may have been dragged in the past.

Optional. Following the name of the graphic object, but preceding the four coor-
dinate arguments, a fifth non-zero number argument may be inserted, which will
cause the graphics windowss title bar to be hidden. A graphics window without a
title bar can still be dragged by Command-clicking on it on Macintosh or Con-
trol-clicking on Windows.

None. Other objects draw into a graphic object’s window.

Iopen ”close I I3 . PiclureThis

graphic PictuwreThis
[40 20 140 S0 |
1

oval PictureThis

The graphic object creates a window for the output of graphics objects. The window can be
resized by dragging in the lower right corner where you'd expect the grow box to be.

1

graphic

Window for drawing
sprite-based graphics

See Also

frame
graphic

Icd

oval

pict

rect

ring
Graphics
Tutorial 42

Draw framed rectangle in a graphic window
Window for drawing sprite-based graphics
Draw graphics in a patcher window

Draw solid oval in a graphic window

Draw picture in a graphic window

Draw solid rectangle in a graphic window

Draw framed oval in a graphic window
Overview of Max graphics windows and objects
Graphics

172

GSWltCh . Receive the input in
. one of two inlets
Input
int Inleftinlet: The number specifies which one of the other two inlets is to be open.
0 specifies the middle inlet, any number other than 0 specifies the right inlet. The
arrow on Gswitch points to the open inlet.
bang Causes the arrow to point to the other inlet. Clicking on Gswitch with the mouse
has the same effect.
float Inleftinlet: Converted toint.
anything Inmiddle or right inlet: Messages received in the open inlet are passed out the
outlet, while messages received in the other inlet are ignored.
Arguments
None.
Output
anything If the number in the left inlet is 0, all messages received in the middle inlet are
passed out the outlet, and messages received in the right inlet are ignored. If the
number in the left inlet is not 0, messages received in the middle inlet are ignored,
and all messages received in the right inlet are passed out the outlet.
Examples
X [== 7] [ct1in 1t |[ctlin 7]
IEI lréﬁw
x g
Specify one of two inlets Any comparison can be used as a criterion
See Also
gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets
pictctrl Picture-based control
receive Receive messages without patch cords
route Selectively pass the input out a specific outlet
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

173

hint

" Pop-up style
Jﬁl;l hint text

Input

(mouse)
(Font menu)
delay

brgh

frgh

set

Inspector

When the cursor moves within the hint object’s rectangle, its text message will
appear in a colored area beneath the rectangle after the specified delay.

The appearance of the hint object can be altered by selecting it and choosing a dif-
ferent font or size from the Font menu.

The word delay, followed by a number, sets the delay in milliseconds until the hint
appears. The default is 1000 (i.e., one second).

(Windows only) The word brgh, followed by three numbers between 0 and 255,
sets the RGB values for the background color of the hint object. The default value
is white (brgh 255 255 255).

(Windows only) The word frgh, followed by three numbers between 0 and 255,
sets the RGB values for the text displayed by the hint object. The default value is
black (frgb 000).

The word set, followed by any message, will replace the message stored in hint.
This message will be displayed when the mouse is positioned over the hint object
after an interval of time specified by the delay message.

The behavior of a hint object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any hint object displays the hint Inspector in
the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The hint Inspector lets you set the following attributes:

Type the text you want displayed when the mouse is positioned over the area
bounded by the hint object into the Set Hint Text box.

The Pop-up Delay lets you set the delay in milliseconds until the hint appears. The
default is 1000 (one second).

Check Interval sets the interval in milliseconds at which the mouse position is
checked. The default is 100.

If the Redraw Behind Hint checkbox is checked, anything in the patcher window
which is underneath the hint will be erased and redrawn. This mode should be
used if the hint message will appear, in an area over something which could
change its appearance while the hint is visible (i.e.,a number box or aslider). The
default is on (checked).

174

hint h P i

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments
None.
Output
message The message stored in the hint object.
Examples
|nOiSE'~ | iTurns hints onloft i
!
él’eed back the output
ivalue of 3 sliderto an
ioverlaid hint for
{display of the value. !
|tosymbol
: |prepend set J
H
dac’
Provide optional hints to Ul objects
See Also
comment Explanatory note or label
umenu Pop-up menu, to display and send commands

175

h

ISto

Make a histogram of
the numbers received

In

Arguments

put

int

clear

bang

Output

int

Examples

histo

|

In left inlet: histo keeps count of how many times it has received a number
between 0 and 127 in the left inlet. When a number is received, histo includes it in
the count, sends the number of times that number has been received out the right
outlet, and passes the number itself out the left outlet. Numbers outside the range
0-127 are ignored.

Inright inlet: Has the same effect as a number in the left inlet, except that the
number is not counted by histo.

Erases the memory of histo, to begin a new histogram.

In left inlet: Using the number most recently received in the left inlet, histo reports
out the right outlet how many times that number has been received, and sends the
number itself out the left outlet. If no number has been previously received in the
left inlet, 0 is sent out both outlets.

None.

Out left outlet: The number received in the inlet.

Out right outlet: The count of the number of times that number has been
received.

pe_ [po

Count th':e Use random "quantile” [notein 1
Don't count the :::n;i:r gl:t* Iessages to make — 7
number this time, the coufnx probabilistic chpl.ces stripnote
, but report how many , based on past history ol
| times it has been [pisto | [pisto |
received previously T=T . I
| e |pa | [taple]

Store a histogram of the numbers received; display it in a table

176

histo

Make a histogram of
the numbers received

See Also

anal

prob

table
Tutorial 33
Quantile

Make a histogram of number pairs received
Make weighted random series of numbers
Store and graphically edit an array of numbers
Probability tables

Using table for probability distribution

177

hslider

P Output numbers by
| ' moving a slider onscreen

Input

int

float
bang

color

local

min

mult

resolution

set

size

Inspector

The number received in the inlet is displayed graphically by hslider, and is passed
out the outlet. Optionally, hslider can multiply the number by some amount and
add an offset to it, before sending the number out its outlet.

The hslider will also send out numbers in response to mouse clicking or dragging.
Converted to int.
Sends out the number currently stored in hslider.

The word color, followed by a number from 0 to 15, sets the color of the center por-
tion of the hslider to one of the object colors which are also available via the Color
command in the Object menu.

The word local, followed by a non-zero number, enables object response to mouse
clicks (the default). The message local 0 disables the object’s response to the
mouse; the hslider object will respond only to input in its inlet and ignore all
mouse clicks.

The word min, followed by a number, sets value that will be added to the hslider
object’s value before it is sent out the outlet. The default is 0.

The word mult followed by a number, specifies a multiplier value. The hslider
object’s value will be multiplied by this number before it is sent out the outlet. The
multiplication happens before the addition of the Offset value. The default value
isl.

The word resolution, followed by a number, sets the sampling interval in millisec-
onds. This controls the rate at which the display is updated as well as the rate that
numbers are sent out the hslider object’s outlet.

The word set, followed by a number, resets the value displayed by hslider, without
triggering output.

The word size, followed by a number, sets the range of the hslider object. The
default value is 128. Setting the size to 1 disables the hslider visually (since it can
only display one value). Any specified size less than 1 will be set to 2.

The behavior of an hslider object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any hslider object displays the
hslider Inspector in the floating window. Selecting an object and choosing Get
Info... from the Object menu also displays the Inspector.

178

l pe— Output numbers by
hSI |der I_r moving a slider onscreen

The hslider Inspector lets you enter a Slider Range value. Numbers received in the

inlet are automatically limited between 0 and the number 1 less than the specified
range value. The default range value is 128. You can specify an Offset value which

will be added to the number, after multiplication. The default offset value is 0. The
hslider Inspector also lets you specify a Multiplier. The hslider object’s value will be
multiplied by this number before it is sent out the outlet. The multiplication hap-
pens before the addition of the Offset value. The default multiplier value is 1.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments

None.

Output

int Numbers received in the inlet, or produced by clicking or dragging on hslider with
the mouse, are first multiplied by the multiplier, then have the offset added to
them, then are sent out the outlet.

Examples
[i ctlin 7 1 |From volume pedal
. |
Omnsereen volume slider | _'
ctlout 7 1
Produce output by dragging onscreen... or use to display numbers passing through
See Also
kslider Output numbers from a keyboard onscreen
multislider Multiple slider and scrolling display
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

179

If

Conditional statement in
if/then/else form

Input

int

float
symbol

bang

list

set

Arguments

then, else

$i1,$1,$s1

The number in each inlet will be stored in place of the $i or $f argument associated
with it. (Example: The number in the second inlet from the left will be stored in
place of the $i2 and $f2 arguments, wherever they appear.)

The number in each inlet will be stored in place of the $f or $i argument associated
with it. The number will be truncated by a $i argument.

In left inlet: The word symbol, followed by a symbol (a word), will be stored in
place of the $s1 argument.

In left inlet: Evaluates the conditional statement using the values currently stored.

Any of the above messages in the left inlet will evaluate the conditional statement
and send out the result. Any inlets which have not yet received a value have the
value 0 by default.

The number of inlets is determined by how many different changeable arguments
are typed in. The maximum number of inlets is 9.

In left inlet: The items of the list are treated as if each had come in a different inlet,
and the conditional statement is evaluated. If the list contains fewer items than
there are inlets, the most recently received value in each remaining inlet is used.

In left inlet: The word set, followed by one or more numbers, treats those numbers
as if each had come in a different inlet, replacing the stored value with the new
value, but the conditional statement is not evaluated and nothing is sent out the
outlet. If there are fewer numbers in the message than there are inlets, the stored
value in each remaining inlet is left unchanged.

Obligatory. The arguments for the if object start with a conditional statement that
uses the same syntax as expr. Refer to the description of the expr object for details.
The word then follows the conditional statement, which is then followed by a mes-
sage expression described below. After the message expression, there is an
optional else and a second message expression.

if evaluates the conditional expression, and if the result is non-zero, evaluates the
message expression after the word then. Otherwise, it evaluates the second mes-
sage expression after the word else (or does nothing in the case where no else and
second message expression have been typed in.

Message expressions are similar to what you type into a message box, with the fol-
lowing differences:

You use $i1, $f1, or $s1 instead of $1 for changeable arguments.

180

Conditional statement in
if/then/else form

send

out?

Output
anything

Examples

No commas or semicolons are allowed. Messages can be sent to remote receive
objects by preceding the message expression with send, followed by the name of
the receive object.

The keyword out2 in a message expression creates a second, right outlet for the if
object. If out2 precedes a message expression, the result of the expression is sent
out the right outlet instead of the left outlet.

The message after the then or else portion of the arguments is sent out the outlet. If
the word out2 is present as an argument, there will be two outlets, and messages
following out2 will be sent out the right outlet. If the word send is present as an
argument, the word that follows it is the name of a receive object, and the message
that follows it will be sent to receive objects with that name.

notein 1

|63 127|

if $i2/3 » $it

if $i2 »= 112

then out2 start

then set Loud else $i2
else set
Loud »127 ’;eq

See Also

>=
expr

select
Tutorial 38

Complex comparisons and results can be described in a single object

Compare two numbers, output 1 if they are not equal
Is less than, comparison of two numbers

Is less than or equal to, comparison of two numbers
Compare two numbers, output 1 if they are equal

Is greater than, comparison of two numbers

Is greater than or equal to, comparison of two numbers
Evaluate a mathematical expression

Select certain inputs, pass the rest on

exprand if

181

Imovie

Play a QuickTime movie
in a patcher window

Note: The imovie object requires that Quick Time be installed on your system. If you are using Max
on Windows, we recommend that you install Quick Time and choose a complete install of all
optional components.

Input

(see movie)

border

Arguments
(Get Info...)

Output

int

All messages recognized by the movie object are similarly recognized by imovie.

The object is initially shown with a black line border drawn around its movie. The
message border 0 erases the black line border; border 1 redraws the border.

Optional. Selecting the object (when the patcher window is unlocked) and
choosing the Get Info... command from the Object menu opens a standard file
dialog, allowing you to select a QuickTime movie to be read into the object auto-
matically when the patch is loaded. The movie must be located in Maxs file search
path (specified with the File Preferences... command in the Options menu) in
order for imovie to find it automatically.

Out left outlet: The end time of the movie is sent out in response to the length mes-
sage; the current time in the movie is sent out in response to the time message; 0 is
sent out in response to the start message.

Out middle outlet: The horizontal position of the mouse, relative to the left edge
of the movie, is sent out when the mouse is clicked or dragged inside the movie.

Out right outlet: The vertical position of the mouse, relative to the top edge of the
movie, is sent out when the mouse is clicked or dragged inside the movie.

182

. : Play a QuickTime movie
Imovie H in a patcher window

Examples
— |
split 0 160||split 0 120
é b
! 2.66 - 127
— _—
+ 36 agg
makenote 127 100
‘noteout

A movie can be displayed within a patch, and mouse motion can be detected within it

See Also

Icd Draw graphics in a patcher window
movie Play a QuickTime movie in a window
playbar QuickTime movie play controller

183

IncDec

Buttons that
increment/decrement a value

4|k

Input

int

(mouse)

(Font menu)

Arguments

Output

int

Examples

See Also

counter
number box
hslider
umenu
uslider

A number sent to the IncDec object’s inlet sets the value that will be incremented or
decremented by clicking on the top or bottom of half of the object. The number is
not sent out the outlet. IncDec is designed to be used with user interface objects
such as the number box, dial, and the various sliders.

A mouse click increments or decrements the stored value (depending on which
arrow is clicked) and sends it out the outlet.

The height of an IncDec object can be altered by selecting it and choosing a differ-
ent font or size from the Font menu.

None.

When you click on the top half of an IncDec object, it sends out a value that is one
greater than the last value received at its inlet or sent out its outlet, whichever hap-
pened most recently. Holding the mouse button down continues to increment the
output, gradually increasing in rate of output.

The same is true for the bottom half of IncDec, except that the values are decre-
mented.

Standard arangement You can also arvange the patch
with & Number box cords in an X (and then hide them)

-

IncDec works well in combination with number box and hslider

Count the bang messages received, output the count
Display and output a number

Output numbers by moving a slider onscreen
Pop-up menu, to display and send commands
Output numbers by moving a slider onscreen

184

Inlet

Receive messages from
E outside a patcher

Input
(patcher)

Inspector

Arguments

Output
anything

Each inlet object in a patcher will show up as an inlet at the top of an object box
when the patch is used inside another patcher (as an object or a subpatch). Mes-
sages sent into such an inlet will be received by the inlet object in the subpatch. A
patcher can have a maximum of 250 signal inlets. The number of data inlets is a
much bigger number than that.

A descriptive Assistance message can be assigned to aninlet object and can be
edited using its Inspector. If you have enabled the floating inspector by choosing
Show Floating Inspector from the Windows menu, selecting any inlet object dis-
plays the inlet Inspector in the floating window. Selecting an object and choosing
Get Info... from the Object menu also displays the Inspector.

Typing in the Describe Outlet text area specifies the content of the Assistance mes-
sage.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

In a subpatch inlet sends out whatever messages it receives through patch cords
from the patch that containsiit.

185

I Receive messages from
In Iet B outside a patcher

Examples

notein 1 pitch ads of inversion

inlet objects pass @

> C-2 > C-2 ; ;

é Contents of the ol incoming data

patcher invert “invert" subpatch |expr 2*$i2-$il

subpatch with inlets look Like this:
E Cc-2 I inverted pitch
Inlets of the subpatch... correspond to the inlet objects in the subpatch

See Also
bpatcher Embed a visible subpatch inside a box
outlet Send messages out of a patcher
pcontrol Open and close subwindows within a patcher
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 26 The patcher object

186

|nt/ | ~ Storean
integer value
Input
int Inleftinlet: The number replaces the currently stored value and is sent out the
outlet.
Inright inlet: The number replaces the stored value without triggering output.
float Converted toint.
bang Inleftinlet: Sends the stored value out the outlet.
set Inleftinlet: The word set, followed by a number, replaces the stored value without
triggering output.
send Inleftinlet: The word send, followed by the name of a receive object, sends the
value stored in int to all receive objects with that name, without sending it out the
outlet of the int.
Arguments
int Optional. Setsan initial value to be stored inint. If there is no argument, the initial
value is 0. An int argument by itself, without the word int, is another way of creat-
ing and initializing an int object.
float Converted toint.
Output
int Anumber is stored in (and output from) int as a long (32-bit) integer.
Examples
i
fint] int | These are slso P29 [127 |
h——] | | 1t Ob]QC[S \T=\ \T=\
piz7] piz7 |
Output the stored Replace the stored value Initial value is given
value and output it
See Also
float Store a decimal number
pv Share variables specific to a patch and its subpatches
value Share a stored message with other objects
Tutorial 21 Storing numbers

187

" Break a list up into
|ter a series of numbers

Input

list ~ The numbers in the list are sent out the outlet in sequential order.
intorfloat The number is sent out the outlet.

bang Sends the number or list most recently received, in sequential order.

Arguments

None.

Output

int The numbers received in the inlet are sent out one at a time.

Examples

All notes off

. Numbers are sent as

‘iter | Each number is used as
— a pitch, to make a chord

_iter | individual bytes of & makenote 127 1000
MIDI message | []
midiout noteout 1

Numbers in a list pass through iter one at a time

See Also

cycle Send a stream of data to individual outlets

thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages

Zl Multi-purpose list processor

Tutorial 30 Number groups

188

key

Report key presses
on the computer keyboard

Input
(keyboard)

Arguments

Output

int

The input to key comes directly from the computer keyboard. There are no inlets.

None.

Output is sent each time a key is depressed on the computer keyboard. (Holding
the key down does not produce repeated output.)

Out left outlet: The ASCII value of the typed key.

Out middle outlet: The key code of the typed key.

Out right outlet: The output values can be sent through the & object to create tog-
gles set by each modifier key. The numerical output of the right outlet is listed
below along with the argument to the & object that will create a toggle.:

Modifier Key Output
key events 128
Windows Control key 384

Macintosh Command key 384

Shift key 640
Caps Lock key (on) 1152
Windows Alt key 2176
Macintosh Optionkey 2176

Windows R. Mouse Button 4224
Macintosh Control key 4224

189

Toggle

& 128 (reports 0 on Windows if a mouse
button is down, always reports 0 on Mac-
intosh

& 256 (system uses this so it is not
reported)

& 256 (system uses this so it is not
reported)

& 512

& 1024

& 2048 (on Windows the system uses this
so it is not reported)

& 2048

& 4096

& 4096

key

Report key presses
on the computer keyboard

Examples
key
key
ASCII x s p (for play)
e L * select 114 115 112
select 120 r s P Anything else
0 123 All notes off lrecord ||stop | |start Invalid key
I I] command
ctlout *=\ T
e 22 print Warring

See Also

keyup
numkey
spell
sprintf
Tutorial 20

Keys typed on the computer keyboard can be used to trigger messages

Report key releases on the computer keyboard
Interpret numbers typed on the computer keyboard

Convert input to ASCII codes
Format a message of words and numbers
Using the computer keyboard

190

keyup

Report key releases on the
computer keyboard

Input

(keyboard)

Arguments

Output

int

The input to keyup comes directly from the computer keyboard. There are no

inlets.

None.

Output is sent each time a key is released on the computer keyboard. (Nothing is

sent when the key is first depressed.)

Out left outlet: The ASCII value of the typed key.

Out right outlet: The key code of the typed key.

Out right outlet: The output values can be sent through the & object to create tog-
gles set by each modifier key. The numerical output of the right outlet is listed
below along with the argument to the & object that will create a toggle.:

Modifier Key Output
key events 128
Windows Control key 384

Macintosh Command key 384

Shift key 640
Caps Lock key (on) 1152
Windows Alt key 2176
Macintosh Optionkey 2176

Windows R. Mouse Button 4224
Macintosh Control key 4224

191

Toggle

& 128 (reports 0 on Windows if a mouse
button is down, always reports 0 on Mac-
intosh

& 256 (system uses this so it is not
reported)

& 256 (system uses this so it is not
reported)

& 512

& 1024

& 2048 (on Windows the system uses this
so it is not reported)

& 2048

& 4096

& 4096

keyu p Report key releases on the

computer keyboard
Examples
keyup]l‘e}' down]I{e}'up up
pPS2 | asCHvalue select 116 select 116
select 116 I——.1_=_
timer
"ﬁkey s¢ts the tempo and
\&\ "1'88"5 the metro
ASCII value is sent when key is Used with key to measure how long a key is down
released
See Also
key Report key presses on the computer keyboard
mousestate Report the status and location of the mouse
numkey Interpret numbers typed on the computer keyboard
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
Tutorial 20 Using the computer keyboard

192

I Output numbers from
kS I | d er Im a keyboard onscreen

Input

int Inleftinlet: The number received in the inlet is displayed graphically by kslider if it
falls within its displayed range. The current velocity value (from 1 to 127) that
kslider holds is sent out its right outlet, followed by the received number out the
left outlet.

Inright inlet: The number received in the right inlet sets the output key velocity
without triggering output.

(mouse) kslider also sends out numbers when you click or drag on it with the mouse. The
velocity value is determined by the vertical position of the mouse within each key.
Higher vertical positions produce higher velocities, to a maximum of 127.

If the kslider object is in polyphonic mode, you need to click on a key twice: once
to send a note-on, and once again for a note-off.

Clicking on the very rightmost edge of the kslider sends out the note of the key C
that would be just to the right of the keys that are visible.

float Converted toint.
bang Inleftinlet: Sends out the pitch and velocity values currently stored inkslider.

chord Inleftinlet: The word chord, followed by a list of MIDI note name and velocity
pairs, can be used to play chords on the kslider in polyphonic mode (set by the
mode 1 message). The chord message sends note-offs for currently held notes, fol-
lowed by note-on commands for the specified note and velocity pairs. When the
kslider object's state is saved by a preset object in polyphonic mode, the preset
object will store chord messages.

clear Inleftinlet: The clear message will clear any currently highlighted notes on the
keyboard, but will not trigger any output.

color Inleftinlet: The word color, followed by a number from 0 to 15, sets the color of
the keyboard that is highlighted to one of the object colors that are also available
with the Color submenu of the Object menu.

flush Inleftinlet: When the kslider object is in polyphonic mode (set by the mode 1 mes-
sage), the flush message will send note-offs to currently held notes and clear the
kslider object’s display.

frgb Inleftinlet: The word frgh, followed by three numbers between 0 and 255, sets the
RGB values for the color of the part of the keyboard that is highlighted (default
128128 128).

mode Inleftinlet: The word mode, followed by a 0 or 1, selects monophonic or poly-
phonic operation for the kslider. mode 0 (default) sets monophonic mode. Only

193

I Output numbers from
kS I | d er Im a keyboard onscreen

one key can be selected and displayed at one time. mode 1 sets the kslider to poly-
phonic mode. In polyphonic mode, kslider keeps track of note-ons and note-offs,
so it mirrors which notes are currently held down on your MIDI keyboard. A key
is“turned off” by sending the kslider object a key on message with a velocity of 0.

offset Inleftinlet: The word offset, followed by a number, sets an offset value in octaves
for the kslider object. The default kslider keyboard outputs notes from the lowest
octave of the MIDI keyboard range (c-2). The message offset 5 would mean that
the kslider object’s leftmost key would be C3. The default is 3.

range Inleftinlet: The word range, followed by a number, sets the range of the kslider
object in octaves. The default value is 4.

set Inleftinlet: The word set, followed by a number, changes the value displayed by
kslider, without triggering output.

sizz Inleftinlet: The word size, followed by a 0 or 1, sets the size of the keyboard dis-
play. size 0 (default) sets the large keyboard, and key 0 selects the small keyboard.

Inspector

The behavior of akslider object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any kslider object displays the kslider Inspec-
tor in the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The kslider Inspector lets you enter a Slider Range value (default 4) that sets the
range of the kslider object in octaves. An Offset value (default 3) specifies the
number of octaves the lowest note on the displayed keyboard will from C-2 (the
lowest MIDI C). the Keyboard Size buttons select the size of the keyboard, and the
Keyboard Mode buttons select monophonic or polyphonic modes. The Color
option lets you use a swatch color picker or RGB values to specify the color of the
highlighted portion of the keyboard. The default color is 128 128 128.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments

None.

194

I Output numbers from
kS I | d er Im a keyboard onscreen

Output
int kslider sends its current velocity value out its right inlet, followed by the (display-
able) pitch value out its left outlet, when a number is received in its inlet or you
click or drag on the object.
Examples

notein 1

Ibl

¥ 12

makenote 96 100
| I]

noteout 1

Produce output by clicking on the keyboard... or use to display incoming pitches
See Also
hslider Output numbers by moving a slider onscreen
makenote Generate a note-off message following each note-on
notein Output received MIDI note messages
noteout Transmit MIDI note messages
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

195

Icd

Draw graphics
‘ ’-:? in a Patcher window

In Max 4.0 and later, all Icd object drawing commands are now lower case. For backwards compat-
ibility, old style capitalized message names are still understood; you can use either lineto or LineTo.

Input

(mouse)

ascii

backsprite

border
brgb

clear
clearpicts
clearregions
clearsprites

clipoval

clippoly

cliprect

You can draw freehand in Icd with the mouse (provided this feature has not been
turned off with a local 0 message). The mouse will draw with the current pen and
color characteristics, and the mouse location will be sent out the outlet.

The word ascii, followed by a number between 0 and 255, writes the character cor-
responding to that ASCI1 value at the current pen position, then moves the pen
position to the right of that character. Numbers that exceed the 0-255 range are
restricted to that range with a modulus operation.

The word backsprite, followed by a symbol, sets the named sprite’s drawing order so
that it is drawn first (and displayed last). This command can be used to alter the
order in which sprites are drawn. (Normally, sprites are drawn in the order they
are recorded.)

border 1 sets lcd to draw a border around its window, which is on by default. A mes-
sage of border 0 turns this feature off.

The word brgb, followed by three numbers between 0 and 255, specify an RGB
value sets the current background color of the lcd object.

Erases the contents of Icd.

Deletes all of an Icd object’s named pictures.
Deletes all of an Icd object’s named regions.
Deletes all of an Icd object’s named sprites.

followed by four int arguments specifying the left, top, right, and bottom extrem-
ities of an oval, clips drawing commands to the oval. These extremities are speci-
fied in pixels, relative to the top left corner of the Icd display area.

The word clippoly may be followed by as many as 254 int arguments that would
specify a series of x/y pairs that define a polygon to which lcd will clip drawing
commands. These x/y pairs are specified in pixels, relative to the top left corner of
the lcd display area.

The word cliprect, followed by four int arguments specifying the left, top, right,
and bottom positions of a rectangle, clips lcd drawing commands to the rectangle.
These edge positions are specified in pixels, relative to the top left corner of the lcd
display area.

196

Icd

Draw graphics
‘ 5? in a Patcher window

cliprgn

cliproundrect

closeregion

closesprite

color

deletepict
deleteregion
deletesprite

drawpict

drawsprite

enablesprites

font

The word cliprgn, followed by a symbol, clips drawing commands with the named
region.

he word cliproundrect, followed by six int arguments specifying the left, top, right,
and bottom positions of a rectangle and the amount of horizontal and vertical
roundness in pixels, clips drawing commands to a rounded rectangle. The edge
positions are specified in pixels, relative to the top left corner of the Icd display
area.

The word closeregion, followed by a symbol argument that names the region, turns
off region definition and associates the defined region with the symbol. After the
closeregion message, drawing commands function normally again.

The word closesprite, followed by a symbol argument that names the sprite, turns
off sprite command collection and associates the defined region with the symbol.
After the closesprite message, drawing commands function normally again.

The word color, followed by a number from 0 to 255, specifies a color (from Max's
color palette) for subsequent graphics drawn in lcd. Numbers that exceed the 0-
255 range are restricted to that range with a modulus operation.

The word deletepict, followed by a symbol, deletes the named picture.
The word deleteregion, followed by a symbol, deletes the named region.
The word deletesprite, followed by a symbol, deletes the named sprite.

The word drawpict, followed by a symbol, draws the named picture. Optionally
there may follow four numbers specifying a destination rectangle in which the
picture is scaled and drawn, and source rectangle that specifies the area of the pic-
ture to use in the operation. These rectangles are specified as left, top, width, and
height values in pixels. The destination rectangle is relative to the top left corner of
the Icd display area. The source rectangle is relative to the top, left corner of the
picture. If not present, these rectangles are both set to be the same size as the pic-
ture.

The word drawsprite, followed by a symbol, draws the named sprite. Optionally
this may be followed by a pair of numbers that specify a horizontal and vertical
offset for drawing the sprite.

enablesprites 1 turns on the drawing of sprites. The message enablesprites 0 turns this
feature off (the default). When sprites are enabled, lcd consumes more memory.

The word font, followed by two numbers, specifies a font ID and a font size to be
used when drawing text in response to a write or ascii message. Note that most font
ID numbers depend on what fonts are present in the Fonts folder in the System
Folder, so the effect of a font message may vary from one computer to another.

197

Icd

Draw graphics
‘ 5? in a Patcher window

framearc
frameoval
framepoly
framerect

framergn

frameroundrect

frgh

frontsprite

getpenloc

getpixel

hidesprite
idle

Fonts can alternately be specified by substituting a font name instead of a font 1D.
Same as paintarc except that only the unfilled outline of the arc is drawn.

Same as paintoval except that only the unfilled outline of the oval is drawn.

Same as paintpoly except that only the unfilled outline of the polygon is drawn.
Same as paintrect except that only the unfilled outline of the rectangle is drawn.

Same as the paintrgn message except that only the unfilled outline of the region is
drawn.

Same as paintroundrect except that only the unfilled outline of the rounded rectan-
gleis drawn.

The word frgb, followed by three numbers between 0 and 255, specify an RGB
value sets the current foreground color of the lcd object.

The word frontsprite, followed by a symbol, sets the named sprite’s drawing order
so that it is drawn last (and displayed first). This command can be used to alter
the order in which sprites are drawn. (Normally, sprites are drawn in the order
they are recorded.)

The word getpenloc outputs a message consisting of the word penloc followed by
two numbers, out the Icd object’s right outlet. The numbers represent local coor-
dinates relative to the top-left corner of the Icd display area. The first number is the
number of pixels to the right of that corner, and the second number is the number
of pixels down from that corner.

The word getpixel, followed by two numbers which specify the location of a pixel
in local coordinates relative to the top-left corner of the lcd display area, outputs a
message consisting of the word pixel followed by five numbers out the Icd object’s
right outlet. The first three numbers, in the range 0-255 represent the RGB values
of the pixel at the specified location, followed by two numbers which specify the
relative x and y coordinates of the selected pixel. If a pixel is out of range, the get-
pixel message will output pixel 000 xy w, where x and y are the out of range location
specified.

Turns off the drawing of a named sprite in Icd.

idle 1 turns on the reporting of idle mouse position over an Icd object. The coordi-
nates of the mouse position are sent out the middle outlet as a two-item list as the
mouse moves. The numbers represent local coordinates relative to the top-left
corner of the Icd display area. The first number is the number of pixels to the right
of that corner, and the second number is the number of pixels down from that
corner. idle 0 turns off this feature, which is off by default.

198

Icd

Draw graphics
‘ 5? in a Patcher window

line

linesegment

lineto

local

move

moveto

noclip

onscreen

oprgh

The word line, followed by two int arguments for horizontal and vertical offset, in
pixels, relative to the current pen position, draws a line from the current pen posi-
tion to a point determined by the specified offset, and that point becomes the new
pen position. Positive arguments draw the line to the right or down; negative
arguments draw up or to the left.

The word linesegment, followed by four int arguments that specify the endpoints of
aline segment, draw a line. The numbers represent the horizontal and vertical off-
set of the beginning endpoint, and the horizontal and vertical offset of the finish-
ing endpoint, in pixels, relative to the top left corner of the lcd display area.
Optionally, a color may follow. If there is one additional int argument, the color
specifies a color from Max's color palette in the same way as the color message. If
there are three additional int arguments, the color specifies a color asan RGB
value in the same way as the frgh message.

The word lineto, followed by two int arguments for horizontal and vertical ending
point, draws a line from the current pen position to the position specified by the
arguments.

local 0 turns off drawing in the lcd with the mouse; local 1 turns the feature back on.
In either case, lcd will still report the location of the mouse as it is dragged within
the object's rectangle.

Moves the pen position a certain number of pixels down from, and to the right of,
its current position. The word move must be followed by two int arguments for
horizontal and vertical offset, in pixels, relative to the current pen position. Nega-
tive arguments may be used to move the pen position up or to the left.

Sets the pen position at which the next graphic instruction will be drawn. The
moveto message must include two int arguments for horizontal and vertical offset,
in pixels, relative to the upper left corner of the lcd display area.

Removes any clipping area that may be in place.

onscreen 1 turns on the memory-saving feature of using the onscreen window for
drawing. A message of onscreen 0 turns this feature off. Onscreen mode is off by
default. When not using onscreen mode, Icd consumes more memory, but
remembers its contents so that it is not erased when covered as happens with the
onscreen mode.

The word oprgb, followed by three numbers between 0 and 255, specify an RGB
value used as the opcolor for penmodes that support it. For more information on
on the effects of each drawing mode, refer to the Apple Developer website at

http://developer.apple.com/documentation/Quick Time/INMAC/MACWIN/
imClrQuickDraw.a.htm

199

Icd

Draw graphics
‘ 5? in a Patcher window

paintarc

paintoval

paintpoly

paintrect

paintrgn

paintroundrect

The word paintarc, followed by six int arguments that specify the left, top, right,
and bottom extremities of an oval across which the arc will be drawn, and the
start and end angle in degrees, paints an arc. The extremities are specified in pix-
els, relative to the top left corner of the Icd display area. Optionally, a color may
follow. If there is one additional int argument, the color specifies a color from
Max's color palette in the same way as the color message. If there are three addi-
tional int arguments, the color specifies a color as an RGB value in the same way
as the frgh message.

The word paintoval, followed by four int arguments specifying the left, top, right,
and bottom extremities of an oval, paints an oval. These extremities are specified
in pixels, relative to the top left corner of the lcd display area. Optionally, a color
may follow. If there is one additional int argument, the color specifies a color from
Max's color palette in the same way as the color message. If there are three addi-
tional int arguments, the color specifies a color as an RGB value in the same way
as the frgb message.

The word paintpoly may be followed by as many as 254 int arguments that would
specify a series of x/y pairs that define a polygon to be painted in Icd. These x/y
pairs are specified in pixels, relative to the top left corner of the Icd display area.
Optionally, a color may follow the last x/y pair that is the same as the first one. If
there is one additional int argument, the color specifies a color from Max's color
palette in the same way as the color message. If there are three additional int argu-
ments, the color specifies a color as an RGB value in the same way as the frgh mes-
sage.

The word paintrect, followed by four int arguments specifying the left, top, right,
and bottom positions of a rectangle, paints a rectangle. The edge positions are
specified in pixels, relative to the top left corner of the lcd display area. Optionally,
a color may follow. If there is one additional int argument, the color specifies a
color from Max's color palette in the same way as the color message. If there are
three additional int arguments, the color specifies a color as an RGB value in the
same way as the frgh message.

The word paintrgn, followed by a symbol, paints the named region (filled).
Optionally this may be followed by a pair of integer arguments which specify a
horizontal and vertical offset to which the region's coordinates will be relative,
and a color. If there is one additional int argument for the color, the color specifies
a color from Max's color palette in the same way as the color message. If there are
three additional int arguments, the color specifies a color as an RGB value in the
same way as the frgh message.

The word paintroundrect, followed by six int arguments specifying the left, top,
right, and bottom positions of a rectangle and the amount of horizontal and ver-
tical roundness in pixels, paints a rounded rectangle. The edge positions are spec-
ified in pixels, relative to the top left corner of the lcd display area. Optionally, a
color may follow. If there is one additional int argument, the color specifies a color

200

Icd

Draw graphics
‘ ’-:? in a Patcher window

penmode

pensize

readpict

recordregion

recordsprite

reset

from Max's color palette in the same way as the color message. If there are three
additional int arguments, the color specifies a color as an RGB value in the same
way as the frgh message.

The word penmode, followed by a number in the range 0-7, sets the transfer mode
for subsequent drawing operations. The following are transfer mode constants;

Copy 0
Oor 1
Xor 2
Bic 3
NotCopy 4
NotOr 5
NotXor 6
NotBic 7

For more information on the effects of each drawing mode, refer to the Apple
Developer website at

http://developer.apple.com/documentation/Quick Time/INMAC/MACWIN/
imClIrQuickDraw.a.htm

The word pensize must be followed by an int argument to set the current pensize in
pixels.

The word readpict followed by a symbol which specifies a filename, looks for a
QuickTime graphic file (a .pct file openable on Windows using the QuickTime
Picture Viewer for Windows) with that name in Max’s file search path, and reads
the picture file from disk into RAM. This named picture can then be drawn in lcd
with the drawpict and tilepict messages. In response to the readpict message, the
object sends a message out the right outlet of the lcd object consisting of the word
pict followed by a symbol which specifies the name of the picture file and two
numbers which specify the file's width and height. If the read is unsuccessful, the
error message pict <pictname> error will be sent out the right outlet.

Initiates the recording of drawing commands which will be stored in a named
region. While recording, drawing commands will have no visible effect on the
contents of the Icd object’s window.

Initiates the recording of drawing commands which will be stored in a named
sprite. While recording, drawing commands will have no effect on the contents of
the Icd object’s window.

Erases the contents of Icd and resets pen state to default values. The reset message
Is equivalent to the sequence

clear

201

Icd

Draw graphics
‘ 5? in a Patcher window

scrollrect

size

textface

textmode

tilepict

write

writepict

pensize 1

penmode 0

frgh 0 0 O(black)

brgh 255 255 255(white)
moveto 00

The word scrollrect, followed by six int arguments that specify the left, top, right,
and bottom positions of a rectangle to be scrolled and the number of pixels to
scroll inthe x and y direction, scrolls a rectangle within the Icd object’s display

area.

Changes the size of the Icd object. The word size must be followed by two int argu-
ments which specify the dimensions (horizontal and vertical) in pixels of the new
size.

The word textface, followed by one or more names specifying text style(s), sets the
font style(s) to be used when rendering text. Text style names are normal, bold, italic,
underline, outline, shadow, condense, and extend.

The word textmode, followed by a number in the range 0-7, sets the transfer mode
for subsequent drawing operations. For more information on the effects of each
drawing mode, refer to the Apple Developer website at

http://developer.apple.com/documentation/Quick Time/INMAC/MACWIN/
imClIrQuickDraw.a.htm

The word tilepict, followed by a picture name argument, fills a rectangle by tiling a
picture. Optionally there may follow, four numbers that specify a destination
rectangle in which the picture is tiled and four numbers that specify a source rect-
angle that specifies the area of the picture to use in the operation. These rectangles
are specified as left, top, width, and height values in pixels. The destination rect-
angle is relative to the top left corner of the lcd display area. The source rectangle is
relative to the top, left corner of the picture. If not present, the destination rectan-
gle is set to the same size of lcd, and the source rectangle is set to be the same size
as the picture.

The word write, followed by any symbol, writes that symbol beginning at the cur-
rent pen position, and moves the pen position to the end of the text.

The word writepict, followed by an optional filename argument, writes the current
contents of the Icd display area to a PICT file (a .pct file openable on Windows
using the QuickTime Picture Viewer for Windows). If no filename argument is
present, a Save As dialog will prompt you to choose a filename and location to
write the PICT file.

202

Icd

Draw graphics
‘ 5? in a Patcher window

Inspector

Arguments

Output

list

int

The behavior of an Icd object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any lcd object displays the lcd Inspector in the
floating window. Selecting an object and choosing Get Info... from the Object
menu also displays the Inspector.

The size of the Icd display, in pixels, can be set by typing in the Width and Height
number boxes. The default size of the Icd object is 128 pixels high and 128 pixels
wide.

Checking Local Mousing Mode lets you draw in the Icd display ares with the
mouse. This feature is enabled by default.

The Draw Border checkbox is enabled by default. Checking it creates a border
around the lcd object’s display area.

Checking the Respond to Idle Mousing option will report idle-time mouse posi-
tions over the Icd object. This feature is disabled by default.

Checking the Onscreen Mode option will set the lcd object to remembers its con-
tents so that it is not erased when it is covered. This feature is disabled by default.

Checking the Enable Sprites option will enable the drawing of sprites. This feature
is disabled by default. WWhen sprites are enabled, lcd consumes more memory.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

Out 1st outlet: When you click and drag in the Icd display area with the mouse
button held down, the coordinates of the mouse position are sent out the outlet as
a two-item list as the mouse moves. The numbers represent local coordinates rela-
tive to the top-left corner of the Icd display area. The first number is the number of
pixels to the right of that corner, and the second number is the number of pixels
down from that corner.

Out 3rd outlet: A Lis sent out the 2nd outlet if the mouse button is currently being
held down. A0 is sent, otherwise.

203

Icd

Draw graphics
‘ ’-:? in a Patcher window

list

list

list

update

penloc

Out 2nd outlet: When you click and drag in the Icd display area with the mouse
button held down, the coordinates of the mouse position are sent out the outlet as
atwo-item list as the mouse moves. The numbers represent local coordinates rela-
tive to the top-left corner of the Icd display area. The first number is the number of
pixels to the right of that corner, and the second number is the number of pixels
down from that corner.

Out 1st outlet: When you draw in the Icd with the mouse button held down, the
coordinates of the mouse position are sent out the outlet as a two-item list as the
mouse moves. The numbers represent local coordinates relative to the top-left
corner of lcd. The first number is the number of pixels to the right of that corner,
and the second number is the number of pixels down from that corner.

Out 4th outlet: When mouse idle mode is using the idle message or by enabling the
Respond to Idle Mousing Inspector option, a list of current mouse coordinates is
sent out the third outlet when the mouse is positioned over the Icd object’s display
area.

Out 4th outlet: The word update is output whenever Icd receives an update mes-
sage from Max telling it to redraw itself. This is only done when Icd is in onscreen
mode

Out 4th outlet: In response to the getpenloc message, lcd outputs a message consist-
ing of the word penloc followed by two numbers representing the pen location in
local coordinates relative to the top-left corner of the lcd display area. The first
number is the number of pixels to the right of that corner, and the second number
is the number of pixels down from that corner.

204

Icd

Draw graphics
in a Patcher window

<2

Examples
metro 50 [£rgb 255 0 0 |
I [brgb 255 255 0 |
tbbh 1
L |
. |
random 3
1
gate 2]
- |
drunk 150 75 oy 150 05 =
l —
|_ counter 128
B — |
pack 0 0 [sel 0 |
Eineto $1 $2 I |clear |
L |

See Also

frame
graphic
mousestate
oval

panel

rect

ring
Tutorial 43
Graphics

Draw an angular snake diagram using lcd

Draw framed rectangle in a graphic window
Window for drawing sprite-based graphics
Report the status and location of the mouse
Draw solid oval in a graphic window

Colored background area

Draw solid rectangle in a graphic window

Draw framed oval in a graphic window
Graphics in a patcher

Overview of Max graphics windows and objects

205

led

Display on/off

P .
qu status in color

Input

int

float

bang

blinktime
pict

set

toggle

Inspector

205 - led

If the number is 0, led shows its darkened state, and outputs 0. If the number is not
0, led shows its brightened state and outputs 1.

Converted to int.
Flashes led on and off quickly,and outputs 0.

Clicking on an led toggles it back and forth between bright and dark, outputting 1
and 0.

In left inlet: the word blinktime, followed by a number, specifies the duration (in
milliseconds) that led will flash when it is clicked upon or receives a bang message.

In left inlet: the word pict, followed by an integer from 0 to 4, changes the color
used by led.

The word set, followed by a non-zero number causes led to show its brightened
state, but causes no output; set 0 shows the led object in a darkened state, but
causes no output.

Switches the led from dark to bright and sends 1 out the outlet; or vice-versa, from
bright to dark, sending 0 out the outlet.

The behavior of an led object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any led object displays the led Inspector in the
floating window. Selecting an object and choosing Get Info... from the Object
menu also displays the Inspector.

The led Inspector lets you set the following attributes:

The LED Pict option lets you use from among five colors for the led object’s dis-
play: red (the default), green, blue, yellow, or black and white.

Flash Time specifies the duration (in milliseconds) that led will flash when it is
clicked upon or receives a bang message. The default is 150.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Objects

Display on/off
status in color

led

Arguments

None.

Output

int The output is 1 when led is bright, 0 when it is dark. A bang in the inlet flashes led
on and off and sends 0 out the outlet.

Examples

ctlin 64 1 metro S00

sustain | L | metro

Displays an on/off state, announces activity with a flash, or can be used as a toggle

See Also

button Flash on any message, send a bang
pictctrl Picture-based control

togedge Report a change in zero/non-zero values
toggle Switch between on and off (1 and 0)
Tutorial 40 Automatic actions

Objects led - 206

line

Output numbers in a ramp
from one value to another

Input

list

int or float

clock

stop

Arguments

set

int or float

Output

int

The first number specifies a target value, and the second number specifies a total
amount of time (in milliseconds). In that amount of time, numbers are output
regularly in aline from the currently stored value to the target value.

In left inlet: The number is the target value, to be arrived at in the time specified
by the number in the middle inlet. If no time has been specified since the last tar-
get value, the time is considered 0 and line immediately outputs the target value.

Note: the output type for the line object is set by using the first argument to the
object (see Arguments).

In middle inlet: The number is the time, in milliseconds, in which to arrive at the
target value.

Inright inlet: The number is the interval (in milliseconds) at which intermediary
numbers are regularly sent out.

The word clock, followed by the name of an existing setclock object, sets line to be
controlled by that setclock rather than by Max’s internal millisecond clock. The
word clock by itself sets line back to using Max’s regular millisecond clock.

In left inlet: Stops line from sending out numbers, until a new target value is
received.

In left inlet: The word set, followed by a number, makes that number the new
starting value from which to proceed to the next received target value. The set
message also stops line if it is in the process of sending out numbers.

Optional. The first argument sets the output type for the object—if the first argu-
ment is an int, the line object outputs integer values, and a float will set the line
object to output floating point values. The first argument also sets the initial value
to be stored in line and the output type for the object. If there is no argument, the
initial value is 0 and the output type is int. The second argument sets an initial
value for the grain, the time interval at which numbers are sent out. If the grain is
not specified, line outputs a number every 20 milliseconds. The minimum grain
allowed is 1 millisecond; any number less than 1 will be set to 20.

Out left outlet: Numbers are sent out at regular intervals, describing a straight line
toward a target value. If a new target value and time are specified before the line is
completed, the new line starts from the most recent output value, in order to
avoid discontinuities.

207

line Output numbers in a ramp
from one value to another

If avalue is received in the left inlet without an accompanying time value, it is sent
out immediately (time is considered 0).

bang Outright outlet: When line has arrived at its target value, bang is sent out.

Note: In practice, the target value is arrived at in just under the amount of time
specified (time minus grain).

Examples
[0, 127 So000 | [40 | 127 2016| |32
I - b Start a 0, then progress - I
line to 127 in 5 seconds, line
I sending out a number . oy
- bendout 1 64
ctlout 7 every 40 milliseconds _—
Reset when finished
Output values in a straight line... and bang when finished
See Also
envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
setclock Control the clock speed of timing objects remotely
uzi Send a specific number of bang messages
Tutorial 31 Using timers

208

Send a bang automatically
I Oad ban g when patch is loaded

Input
There are no inlets. Output is triggered automatically when the file is opened, or
when the patch is part of another file that is opened.

Arguments
None.

Output

bang Sentautomatically when the patch is loaded. You can also cause loadbang to send
out a bang by double-clicking on it in a locked patcher, or by sending a loadbang
message to a thispatcher object in the same patcher. Holding down the Shiftand
Command keys on Macintosh or Shift and Control keys on Windows while a
patch is loading prevents loadbang objects in that patch from sending any output.

Examples

loadbang loadbang

llh\ Ih\

1 4
’gate 3 | | pamout | metro 1000
Setinitial values when a patch is loaded... or start a process automatically

See Also
active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
closebang Send a bang when patcher window is closed
thispatcher Send messages to a patcher
Tutorial 40 Automatic actions

209

Generate a note-off message
m ake nOte following each note-on

Input

int

float

list

stop

clear

Arguments

int

float

Output

int

In left inlet: The number is treated as a pitch value for a MIDI note-on message. It
is paired with a velocity value and the numbers are sent out the outlets. After a cer-
tain time, a note-off message (a note-on with a velocity of 0) is sent out for that
pitch.

In middle inlet: The number is stored as a velocity to be paired with pitch num-
bers received in the left inlet.

Inright inlet: The number is stored as the duration (in milliseconds) that
makenote waits before a note-off message is sent out.

Converted to int.

The second number is treated as the velocity and is sent out the right outlet. The
first number is treated as the pitch and is sent out the left outlet. A corresponding
note-off message is sent out later.

Causes makenote to send out immediate note-offs for all pitches it currently
holds.

Erases all notes currently held by makenote, without sending note-offs.

Optional. The first argument sets an initial velocity value to be paired with
incoming pitch numbers. If there is no argument, the initial velocity is0.

The second optional argument sets an initial note duration (time before a note-
off issent out), in milliseconds. If the second argument is not present, the note-off
follows the note-on immediately.

Converted to int.

Out left outlet: The number received in the left inlet is sent out immediately,
paired with a velocity value out the other outlet. After a certain duration, the same
number is sent out paired with a velocity of 0.

Out right outlet: The number in the middle inlet is sent out as a velocity value in
conjunction with a pitch value out the left outlet. After a certain duration, 0 is sent
out paired with the same pitch.

210

m ake N Ote Generate a note-off message

following each note-on

Examples
metro 125 |
1 :
|
e rerate 500 drunk 127 13 j
| — | '
RO makenote 64 120
| —
noteout 1
Supply note-offs for note-ons generated within Max
See Also
flush Provide note-offs for held notes
midiout Transmit raw MIDI data
noteout Transmit MIDI note messages
stripnote Filter out note-off messages, pass only note-on messages
xnoteout Format MIDI note messages with release velocity
Tutorial 13 Managing note data

211

Look for a series of numbers
matCh output it as a list

Input

int If the numbers match the arguments, in the proper order, they are sent out as a
list.

clear Causes match to forget all numbers it has received up to that time.

set The word set, followed by a list of numbers, specifies a new series of numbers
match will look for.

Arguments

list Obligatory. The arguments specify numbers to look for, in the proper order. The
word nn can be used as a wild card that will match any number.

Output

list ~ The numbers received in the inlet are compared with the arguments. If the num-
bers are the same, and in the same order, they are sent out the outlet as a list.

Examples

|62, 63, 64 Imaxch midiin

63, 65, 64 | no match |
match 192 nn | |match 144 60 0

match 63 64
! unpack

unpack ‘ .
| |
D 63 I b 64 | Pro

Numbers must be the same, and in the same order

See Also

iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
select Select certain inputs, pass the rest on

212

matriXCtrI ?_# Matrix switch control

matrixctrl is a user interface object that consists of a rectangular grid of switch-like controls called
cells. All of the cells in a matrixctrl object have the same appearance and behavior. Each cell has two
or more states. By default, the cells have two states, representing “off ” and “on.” You can create cells
with any number of states. Clicking on a cell increases its state by one. After a cell reaches its last
state, it returns to its zero state when clicked again—thus, a cell with only two states will toggle
back and forth between these states with each mouse click.

matrixctrl was originally constructed to control the MSP object matrix~, but is useful for other user
interface applications, such as groups of switches, groups of visual indicators, and drum-
machine-oriented sequencers.

Note: The matrixctrl object requires that QuickTime be installed on your system to open any files
other than PICT files (i.e., files with a.pct extension on Windows). If you are using Max on Win-
dows, we recommend that you install QuickTime and choose a complete install of all optional
components.

Input

(Mouse) A mouse click on a cell will increase its value by one. Values in matrixctrl will wrap
back to 0 once they have reached their maximum possible state. Dragging across
several cells will set their values to that of the first cell clicked. Dragging across
cells while holding down the Shift key will allow you to drag in straight horizontal
or vertical lines only.

bang A bang causes matrixctrl to dump its current state in lists of three values for each
cell pair, in the format

horizontal-coordinate vertical-coordinate value

list Alistof ints sets cells in the matrixctrl object using the format <horizontal-coordi-
nate vertical-coordinate value>. Multiple triplets of values can be used to set
more than one cell. Coordinates for the cells start at 0 in the upper-left hand cor-
ner and the values for each cell start at 0 and go up to the value range minus one,
set by the object’s inspector. Substituting the symbols inc and dec in place of the
value will increment or decrement that cell coordinate by a value of one. Chang-
ing the cell state with a list causes the list to be output from matrixctrl.

set The word set, followed by a list as described above, changes the state of matrixctrl
without echoing the values to the output.

active The word active, followed by a 0 or 1, causes matrixctrl to ignore or respond to
mouse clicks, respectively. By default, matrixctrl responds to mouse clicks.

bkgndpicture The word bkgndpicture, followed by a symbol that specifies a filename, designates
the graphics file that the matrixctrl object will use for the matrix background
image. The matrixctrl object accepts PICT files and, if QuickTime \ersion 3.0 or
later is installed, other picture file formats that are listed in the QuickTime appen-
dix. The symbol used as a filename must either be the name of a file in Max’s cur-

213

matriXCtrI ?_# Matrix switch control

cellpicture

clickedimage

clickvalue

disablecell

enablecell

getrow

getcolumn

rent search path, or an absolute pathname for the file (e.g.“MyDisk:/Documents/Ul
Pictures/CoolBkgnd.pct™). The word bkgndpicture by itself puts up a standard Open
Document dialog box and displays the common graphics files supported by
QuickTime.

The word cellpicture, followed by a symbol that specifies a filename, designates the
graphics file that the matrixctrl object will use for each cell. The matrixctrl object
accepts PICT files and, if QuickTime \ersion 3.0 or later is installed, other picture
file formats that are listed in the QuickTime appendix.The symbol used as a file-
name must either be the name of a file in Max’s current search path, or an absolute
pathname for the file (e.g.*“MyDisk:/Documents/Ul Pictures/Cell.pct™). The word cellpic-
ture by itself puts up a standard Open Document dialog box and displays the com-
mon graphics files supported by QuickTime.

The word clickedimage, followed by a nonzero value, specifies that the graphics file
used by the matrixctrl object contains an additional image to be displayed when a
cell is clicked.

The word clickvalue, followed by a number, toggles the click value mode. If the click-
value message is followed by a 0 or a positive number, clicking on a cell sets its
value to the given number. If clickvalue is followed by a negative number, the
matrixctrl object reverts to its default behavior in which clicking a cell increments
its value. The clickvalue message allows the use of the matrixctrl object to create grid
editors by creating graphics files which contain a sequence of images, each of
which is assigned to a different value; as you click through the sequence of images,
the cell image will change to reflect velocity, note, etc.

The word disablecell, followed by a list of number pairs which specify the horizon-
tal and vertical coordinates of a cell or cells, sets the designated cell or cells so that
they do not respond to mouse clicks. The disablecell message expects at least one
pair of numbers, but more may be added to disable multiple cells (e.g., disable 00 3
4912). Although disabled cells will ignore mouse clicks, their values can be set
using messages.

The word enablecell, followed by a list of number pairs which specify the horizontal
and vertical coordinates of a cell or cells, will set any designated cell or cells which
have been disabled using the disablecell message to respond to mouse clicks again.
The enablecell message expects at least one pair of numbers, but more may be
added to enable multiple cells (e.g.,enable 111222).

The word getrow, followed by a number, sends the values of the cells in the row
designated by the number out its right outlet.

The word getcolumn, followed by a number, sends the values of the cells in the col-
umn designated by the number out its right outlet.

214

matriXCtrI ?_# Matrix switch control

horizontalmargin

horizontalspacing
imagemask

inactiveimage

invisiblebkgnd

one/row

one/column

one/matrix

range
verticalmargin

verticalspacing

Inspector

The word horizontalmargin, followed by a number, sets a horizontal margin (in pix-
els) between the outermost cells and the edge of the matrixctrl object’s bounding
box.

The word horizontalspacing, followed by a number, sets the horizontal distance (in
pixels) between adjacent cells in the matrixctrl object.

The word imagemask, followed by a nonzero value, specifies that the matrixctrl cell
graphics file has additional rows of images for use as image masks.

The word inactiveimage, followed by a nonzero value, specifies that the matrixctrl
cell graphics file has additional rows of images for use in an inactive state (set with
an active 0 message).

The word invisiblebkgnd, followed by a nonzero value, specifies that the matrixctrl
will be drawn without a background image, and its cells will be superimposed
over any underlying Max objects. invisiblebkgnd 0 disables this feature.

The word one/row, followed by a nonzero value, only allows one cell per row to
have a non-zero state. Setting any cell in a row to a non-zero state causes any other
non-zero cells to change to the zero state. one/row 0 removes this constraint.

The word one/column, followed by a nonzero value, only allows one cell per column
to have a non-zero state. Setting any cell in a column to a non-zero state causes
any other non-zero cells to change to the zero state. one/column 0 removes this con-
straint.

The word one/matrix, followed by a nonzero value, only allows one cell in the entire
object to have a non-zero state. Setting any other cell in the matrix to a non-zero
state causes any other non-zero cells to change to the zero state. one/matrix 0
removes this constraint.

The word range, followed by an int, sets the number of possible states each cell can
have. It must be set to a value of at least 2 (for states 0 and 1).

The word verticalmargin, followed by a number, sets a vertical margin (in pixels)
between the outermost cells and the edge of the matrixctrl object’s bounding box.

The word verticalspacing, followed by a number, sets the vertical distance (in pixels)
between adjacent cells in the matrixctrl object.

The behavior of a matrixctrl object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any matrixctrl object displays the

215

matriXCtrI ?_t Matrix switch control

matrixctrl Inspector in the floating window. Selecting an object and choosing Get
Info... from the Object menu also displays the Inspector.

The Cell Spacing number boxes set the horizontal and vertical distance (in pixels)
between adjacent cells in the matrixctrl object.

The Margin number boxes are used to specify horizontal and vertical margins (in
pixels) between the outermost cells and the edge of the object’s bounding box.

Checking the Has Clicked Images option will use an alternate set of image frames
in your graphics file to give the cell a different appearance when the user clicks
and drags it.

The Has Inactive Images checkbox tells the matrixctrl object that your graphics files
have additional images for the cell’s inactive state. Leave this box unchecked if the
picture files used by the control do not have these images.

If you want to use image masks in your cell’s graphics file to draw the cell, select
the Has Image Mask option. Masks can be used to create cells with a non-rectan-
gular shape. If your cell picture has separate images for the clicked and/or inactive
state, you must supply masks for those as well.

Checking the Invisible Background box tells the matrixctrl object not to draw any-
thing for the background of the matrix. The cells will appear to “float” over any
underlying objects.

The One Per Column, One Per Row, and One Per Matrix checkboxes define the
matrixctrl object’s behavior. If checked, matrixctrl only allows one cell per column,
row, or in the entire object to have a non-zero state. Setting any cell to a non-zero
state causes any other non-zero cells to change to the zero state.

Cell Value Range is used to set the number of possible states each cell can have. It
must be set to a value of at least 2 (for states 0 and 1).

Cell Picture File and Background Picture File lets you choose graphics files for the
matrix cells and its background by clicking on the Open buttons. It can open
PICT files and, if QuickTime \ersion 3.0 or later is installed, other picture file for-
mats that are listed in the QuickTime appendix. The current file’s name appears in
the text box to the left each of the buttons. You can also choose a file by typing its
name in this box, or by dragging the file’s icon from the Finder into this box.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

216

maitr | XCtrI *&# Matrix switch control

Arguments

None.

Picture File Format

Background picture files for matrixctrl can be any Macintosh PICT file or, if
QuickTime \ersion 3.0 or later is installed, other picture file formats that are listed
in the QuickTime appendix.If the matrixctrl is larger than the chosen picture, cop-
ies of the picture will be added to fill the object.

Cell picture files must be in the following format:

Clicked
vaue =0

hactive

Clicked
Mask
vaue =0

hactive
Mask
vaue = C

The picture is made up of a grid of images. All images have the same width and
height. Each column of images represents one cell state. The picture must have at
least two columns, since cells must have at least two states.

The first row of images is used for the idle (or “not clicked™) appearance of the
cells. The first row of images is mandatory; all subsequent rows are optional. The
second row are images for the clicked appearance; these images will be used to
draw the cell when it is clicked. The appearance of the cell reverts to its idle image
when the mouse is released. The third row of images are used when the matrixctrl
is in its inactive state, i.e. when it has received an active 0 message.

217

matriXCtrI 1—_&# Matrix switch control

Output
list

Examples

Image masks can be used to create cells with non-rectangular outlines. These
masks are in the lower rows of the picture file. If you wish to use masks for any of
the cell images, you must provide masks for all of them—each row of images will
have a corresponding row of masks. Like all masks for Max’s picture-based con-
trols, black pixels create areas of the corresponding image that will be drawn, and
while pixels create invisible areas.

When a cell changes state in response to a mouse click, a list is sent out the matrix-
ctrl objects left outlet. The list contains the row, column, and value (state) of the
clicked control. Individual cells can also be set by sending lists to the object’s left
inlet. Rows and columns are numbered starting with zero, at the upper-left corner
of the matrix.

The numbers received in the inlet are compared with the arguments. If the num-
bers are the same, and in the same order, they are sent out the outlet as a list.

route the fowr different cells

route 0 1 2 3| toggle separate gakes.

| =I =I

_route 0‘ ‘route 0 route 0 route 0
X| [etlin 2 ctlin 3 [ctlin 4 |
‘gat.e ‘gate | ‘gate |

5 & £

matrixctrl can be used to control multiple gates and switches at once

218

matrixctrl

1__‘# Matrix switch control
1

See Also

dial

hslider
kslider
pictctrl
pictslider
rslider
slider
ubutton
uslider
Tutorial 14

Output numbers by moving a dial onscreen
Output numbers by moving a slider onscreen
Output numbers from a keyboard onscreen
Picture-based control

Picture-based slider

Display or change a range of numbers
Output numbers by moving a slider onscreen
Transparent button, sends a bang

Output numbers by moving a slider onscreen
Sliders and dials

219

I Output the greatest
maX|mum in a list of numbers

Input

int

float

list

bang

Arguments

int or float

Output
int
float

Examples

maximum

p26 |

In leftinlet: If the number is greater than the value currently stored in maximum, it
is sent out the outlet. Otherwise, the stored value is sent out.

Inright inlet: The number is stored for comparison with subsequent numbers
received in the leftinlet.

Converted to int, unless there is a float argument, in which case all numbers are
compared as floats.

In left inlet: The numbers in the list are all compared to each other, and the great-
est value is sent out the outlet. The value stored in maximum is replaced by the next
greatest value in the list. The maximum object accepts lists of up to 256 elements.

In left inlet: Sends the most recent output out the outlet again.

Optional. Sets an initial value to be compared with numbers received in the left
inlet. If the argument contains a decimal point, all numbers are compared as
floats, and the output is a float. If there is no argument, the initial value is 0.

The number received in the left inlet is compared with the value currently held by
maximum (or numbers received as a list are compared with each other), and the
greatest of the numbers is sent out the outlet.

Only if there is an argument with a decimal point.

5] Numbers inalist [9 73 49 56 4 |
, are compared with I The nd

& X1 mom each other, not with |maximum 99 secons greatest
L ’ value [56) becomes

the stored value the new stored value

ﬁ

The output is the greater of two numbers, or the greatest in a list of numbers

See Also

minimum
past
peak

>

Output the smallest in a list of numbers

Report when input increases beyond a certain number
If a number is greater than previous numbers, output it
Is greater than, comparison of two numbers

220

mean

Find the running average
of a stream of numbers

Input

int or float

bang

list

clear

Arguments

Output
float

int

Examples

See Also

accum
anal
bag
histo
prob

The number is added to the sum of all numbers received up to that point, and the
mean is sent out.

Sends out the previous output (the stored average value).

The numbers in the list are added together, the sum is divided by the number of
items in the list, and the mean is sent out. All previously received numbers are
cleared from memory.

Resets the contents of the object to zero.

None.

Out left outlet: The mean (average) value of all numbers received up to that point,
or of all the numbers received together in a list.

Out right outlet: How many numbers have been included in the averaging pro-
cess.

[99.1](98.6|[98.8]| [98.5 | 30 35 40 45
I i I T 55 60 65 70
1
mean [mean]
CaD Average num bers average of all number of
float values received numbers in list items in list

Find the average value of many numbers

Store, add to, and multiply a number

Make a histogram of number pairs received
Store a collection of numbers

Make a histogram of the numbers received
Make weighted random series of numbers

221

menubar e

The menubar object provides control over the Macintosh menu bar. It allows your patch to put up
its own menus, and add items to standard File and Edit menus. When a menu item is chosen, the
item number is sent out the outlet corresponding to the menu containing the item. You configure
the menubar by writing a script in a text editor window available by double-clicking on the object
in alocked patcher.

Input

int

checkitem

enableitem

markitem

(menu bar)

Arguments

int

A nonzero number displays the menubar object’s menus, 0 restores the previous
contents of the menu bar (either the Max menus or the menus of another menubar
object).

Followed by a menu number, an item number, and a code 0 or 1, checkitem puts a
check before the specified item if the code is 1, otherwise it removes the check.

Followed by a menu number, an item number, and a code 0 or 1, enableitem
enables the specified item if the code is 1, otherwise it disables (and grays out) the
item.

(Macintosh only) Followed by a menu number, an item number, and an ASCI|I
character code, markitem places the character next to the specified item. Common
mark character ASCII codes are 18 for the check mark and 19 for the diamond
mark. You may also wish to use the em dash (209) or bullet (165).

When the menubar object has been activated (by a nonzero number in its inlet)
and an item is selected in the menu bar, the menu number and item number are
received by the menubar object, and the item number is sent out the appropriate
outlet.

Optional. The first argument sets the number of menus in the object’s menu bar.
If present, it must be at least 5 (one additional menu). The four default menus,
which are always present, are File, Edit, Windows., and Help. On Macintosh, the
Standard System Menu with the Apple icon and the Max/MSP application menu
will appear to the left of the other menus.

The second optional argument is a numerical code to indicate that certain items
in the default menus are to be removed from those menus. The code isa sum of
the following values assigned to the commands to be suppressed: 1=Overdrivein
the Options menu, 2=Resume, and 4=Midi Setup.... in the File menu For exam-
ple, to eliminate the Overdrive and Midi Setup commands from the Edit menu,
the appropriate second argument is 5 (1+4).

222

menubar e

Script Messages

You define a menubar with a series of script messages, typed into a text editor window opened by
double-clicking on a menubar object in a locked patcher. When you close the script window and
confirm saving the changes, the script file is interpreted. If there are no errors, the customized
menu bar will be ready for use when menubar receives a nonzero number in its inlet.

Each message should be preceded by #X and end with a semicolon (;). The first script message
must be apple and the last end. An example script follows the definition of the messages.

Messages to Modify Standard Menus

Message Arguments
about < Text of the first menu item (i.e. About My Program...).

On the Macintosh the About item appears as the first item in the application
menu (Max/MSP menu). On Windows, it appears as the first item in the Help
menu. The message apple may be used optionally for compatibility with older
Macintosh versions of Max.

file e+ Item number to output
« Text of item to add to file menu

The file message inserts items at the top of the standard File menu (before the
Midi Setup... menu item). Each item has a number associated with it which is
sent out the when the item is chosen. The order in which your additional items
appear in the File menu is determined by their order in the script, not by the
(arbitrary) number associated with each item.

edit e« Item number to output
+ Text of item to add to edit menu

The edit message inserts items into the standard Edit menu after the Clear item
and before the Overdrive and Resume items (which are moved into the Edit
menu when menubar is activated). A blank line separates the custom inserted
items from the default items. Each item has a number associated with it which is
sent out the third outlet of menubar when the item is chosen. The order in which
your additional items appear in the Edit menu is determined by their order in the
script, not by the (arbitrary) number associated with each item.

newitem ¢ ltem number to output.

The newitem message followed by a non-zero number directs Max to send the
specified number out the menubar object’s File menu outlet when the user chooses
the New command from the File menu, instead of opening a new patcher win-
dow. The message newitem 0 (or the absence of any newitem message) causes the
New command to behave normally.

223

menubar e

open

closeitem

Saveas

* Item number to output.

The open message followed by a non-zero number directs Max to send the speci-
fied number out the menubar object’s File menu outlet when the user chooses the
Open...command from the File menu, instead of displaying the Open Document
dialog box. The message open 0 (or the absence of any open message) causes the
Open...command to behave normally.

(No arguments.)
Causes a Close item to appear in the File menu, for closing the active window.
* Item number to output.

The saveas message followed by a non-zero number directs Max to send the speci-
fied number out the menubar object’s File menu outlet when the user chooses Save
or Save As... from the File menu, instead of performing the standard Save
actions. The number sent out the outlet when Save is chosen will be 1 less than the
number sent when Save As... is chosen. The message saveas 0 (or the absence of
any saveas message) causes the Save and Save As...commands to behave normally.

Messages for Creating New Menus and Items

Message
menutitle

item

Arguments

« Menu number (must be at least 5 and must not exceed the number of outlets
specified in the argument to menubar

* Name of menu

The menutitle message adds a new menu before the Window menu. The first addi-
tional menu is number 5. The menu number determines both the order of the
additional menu in the menu bar and the outlet it uses when the user chooses its
itemns. A menutitle message must appear in the script before any item messages that
refer to its menu number.

« Menu number

* [tem number

« Text of item

* (Optional.) “Meta-characters”

The item message adds an item to an additional menu previously defined with a
menutitle message. The order in which your items appear in the menu is deter-
mined by their order in the script, not by the (arbitrary) number associated with
each item. The item number argument only specifies the number which is sent
out the menubar object’s outlet when the user chooses this item. It's a good idea to
start your item numbers at 1 and list the items in the order you want them to
appear in amenu.

224

menubar P oo

You can alter the appearance of a menu item by including “meta-characters”in the
item text. For more on metacharacters, consult the Apple QuickTime Developer
documentation found at:

http://developer.apple.com/documentation/Carbon/Reference/Menu_Manager/
menu_mgr_ref/function_group_4.html

A few of the recognized meta-characters are:

/ followed by a character, assigns that character asa Command-key equivalent
< followed by B, 1,0, S, or U, specifies a font style (such as O for outline)

I followed by a character, marks the menu item with that character

(disables the menu item

Thus, these special characters cannot appear as part of the actual item text. For
example, the text On/Off will appear as“Onff_0", not as“On/Off”.

Completing the Script Definition

Message
end

Output

int

Examples

Arguments
(No arguments.)

The end message builds the menus and reports any errors encountered.

The default menubar object has four outlets. If the menubar object has been acti-
vated (by receiving a nonzero number in its inlet), the leftmost outlet sendsa 1
when the first item in the Apple menu is chosen. The second outlet sends the item
number when an extra item is chosen from the File menu. The third outlet sends
the item number when an extra item is chosen from the Edit menu. The fourth
outlet sends an item number when the user chooses an item from the Windows
menu. If additional menus have been defined, item numbers are sent out the addi-
tional outlets to the right, starting with the fifth one.

Here is an example menubar script:

#X about About Note Al gorithns.,;
#X cl oseitem

#X nenutitle 5 Algorithm

#X item5 1 Transpose;

#X item5 2 Invert;

#X item 5 3 Random ze;

#X end;

Note that we suggest capitalizing each letter in a menu item to maintain a consistent style with
other items in the menu.

225

menubar Put up a custom

menu bar

The above script is used in amenubar in the following example, which uses the extra menu to
switch among three note-processing algorithms.

choosing from the Algorithm
. menw opens one of three gates, =
Apple menu, item 1 l:ienu.bar > w rOUting incoming motes xl\oteln :
I=I 1 .
tib Invert stripnote
) ‘ ——————————m—— T
pcontrol _—— |Jate 3
= i
patcher about ‘Ifl'il
Wote Algorithms| |$1 1|[$1 0 - an L
| | »12 - 127 blng.
: : - - - — — e
checkitem 5 $1 $2 | 1. Transpose [+ 12 abs random 128
— mh&(:k th& pmmusl}f ———— \F\ '
chosen item, and check the I
newly chosen item makenote 64 250
- '
noteout

An implementation of the example menubar script

See Also

umenu

Pop-up menu to display and send commands
Menus

Explanation of commands

226

message B esags

Input

bang

int or float
list
append

color

open

prepend

set

symbol

Inspector

The message object (a box that displays and sends out a message) is often referred
to as the message box, in order to distinguish it from a message (the data that is
actually sent from one object to another).

Sends out the contents of the message box. A mouse click on the message box has
the same effect.

The number replaces the value stored in the argument $1, if such an argument
exists, then sends out the contents of the message box.

Each item in the list is stored in place of its corresponding $ argument, if such an
argument exists, then the contents of the message box are sent out.

The word append, followed by a message, appends that message (preceded by a
space) at the end of the contents of the message box, without triggering output.

The word color, followed by a number from 0 to 15, sets the color of the message
box to one of the object colors which are also available via the Color command in
the Object menu.

Opens the message Inspector window. If the word open is followed by a 1, the con-
tents of the message box will be sent out its outlet when the text field in the Inspec-
tor window is changed or the Inspector window is closed. The second optional
argument to the open message is a symbol which specifies the prompt that will
appear at the top of the dialog box. The default prompt is Set Message Text. Use
double quotes if you want to include spaces in the prompt.

The word prepend, followed by a message, places that message (followed by a
space) before the beginning of the contents of the message box, without triggering
output.

The word set, followed by a message, sets the contents of the message box to that
new message, without triggering output. The word set by itself erases the contents
of the message box.

The word symbol, followed by a symbol, stores that symbol in the $1 argument,
then sends out the contents of the message box.

The contents of the message object can be changed by selecting the object and
choosing Get Info... from the Object menu. You cannot use the Inspector for the
message object in a floating window.

Typing in the Set Message Text text area specifies the contents of the message box.

227

message B esags

Arguments
anything

Output
anything

Examples

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

The initial contents of the message box are typed in when the patcher window is
unlocked. Any message of up to 256 items can be contained in a message box.
Certain characters have special meaning.

A dollar sign (3), followed immediately by a number in the range 1-9, is a change-
able argument. This argument’s value can be replaced by the corresponding item
ina list received in the inlet. (Example: $2 stores the second item in a list as its
value before sending out the contents of the message box.) The value of a change-
able argument is initially 0.

A comma (,) divides a message into separate messages which will be sent out in
order. (Example: 3,4,5 sends out 3, then 4, then 5.)

A semicolon (;) sends a message to a receive object. The first item following a
semicolon is the name of the receive object. The rest of the message (or up to the
next semicolon) is sent to that object, rather than out the outlet. The first item
after the semicolon can be a changeable argument, so an incoming message can
set the destination of the message “on the fly”

A backslash (\) is used to negate the special traits of a special character. When a
backslash immediately precedes a dollar sign, comma, or semicolon, the charac-
ter is treated as a normal character. (Example: Notes played were C\,E\,and G.)

The contents of the message box are normally sent out the outlet. If a semicolon is
present, the rest of the message (or up to the next semicolon) is sent to the speci-
fied receive object, rather than out the outlet.

I@ 7889 receive X

I’fl start $2 | $2; x $1; y set $1 1,

on channel $3

route 1 2 receive ¥
\EI !
seq ps | I'?, on channel 9

Send a simple message, or construct a message of any degree of complexity

228

message

[

Send any
message

See Also

append
prepend
receive
Tutorial 1
Tutorial 25

Append arguments at the end of a message
Place one message at the beginning of another

Receive messages without patch cords
Saying“Hello!”
Managing messages

229

metro

Output a bang message
at regular intervals

Input

int or float

bang
stop

clock

Arguments

int or float

Output
bang

Examples

In left inlet: Any number other than 0 starts metro. At regular intervals, metro
sends a bang out the outlet. 0 stops metro.

Inright inlet: The number is the time interval, in milliseconds, at which metro
sends out a hang. A new number in the right inlet does not take effect until the
next output is sent. The metro object’s minimum interval time is .02 second.

In left inlet; Starts metro.
In left inlet: Stops metro.

The word clock, followed by the name of an existing setclock object, sets the metro
to be controlled by that setclock rather than by Max’s internal millisecond clock.
The word clock by itself sets metro back to using Max’s regular millisecond clock.

Optional. The first argument sets an initial value for the time interval at which
metro sends its output. If there is no argument, the initial time interval is 5 milli-
seconds. Any argument less than 5 will be set to 5. If the second argument is 1,
metro uses the MIDI Manager external clock (see the ext message discussion
above). If the second argument is 0 or not present, metro uses Max’s internal milli-
second clock.

Abang is sent immediately when metro is started, and at regular intervals thereaf-
ter.

metro 10000

..... Change every
10 seconds

Repeatedly send a message or trigger a process

230

metro

Output a bang message
at regular intervals

See Also

clocker
counter
delay
setclock
tempo

uzi
Tutorial 4

Report the elapsed time, at regular intervals

Count the bang messages received, output the count
Delay a bang before passing it on

Control the clock speed of timing objects remotely
Output numbers at a metronomic tempo

Send a specific number of bang messages

Using metro

231

Tal Send note-offs for hanging
mIdIﬂUSh note-ons in raw MIDI data

Input

int midiflush expects raw MIDI data from a source such as seq or midiin. midiflush
passes the data through unchanged, and observes which note-on messages on
each channel have not received matching note-off messages.

bang When midiflush receives a bang, it outputs MIDI note-off messages for all note-ons
which have not been matched by note-offs since the object was created (or the last
hang message was sent).

clear Erases any note-ons held by midiflush, without sending any note-offs.

Arguments

None.

Output

int midiflush passes all its input through to its output, and sends MIDI note-off mes-
sages (as a series of numbers) for all note-ons which have not been matched by
note-offs at its input.

Examples
"bang” twns [Pas
off held notes midiflush
‘midiout‘
When midiflush receives a bang, it supplies note-offs for any held note-ons
See Also
flush Provide note-offs for held notes
midiin Output received raw MIDI data
midiinfo Set pop-up menu with names of MIDI devices
midiout Transmit raw MIDI data
seq Sequencer for recording and playing MIDI

232

s Al Prepare data in the form
m|d|f0rmat of a MIDI message

Input

list

int

float

Arguments

int

float

Output

int

Numbers received in the inlets are used as data for MIDI messages. The data is
formatted into a complete MIDI message (with the status byte determined by the
inlet) and sent out the outlet as individual bytes.

In leftmost inlet: The first number is a pitch value and the second number is a
velocity value, to be formatted into a note-on message.

In 2nd inlet: The first number is an aftertouch (pressure) value and the second
number is a pitch value (key number), to be formatted into a polyphonic key
pressure message.

In 3rd inlet: The first number is a control value and the second number is a con-
troller number, to be formatted into a control message.

In 4th inlet: The value is formatted into a program change message.

In 5thinlet: The value is formatted into an aftertouch (channel pressure) mes-
sage.

In 6th inlet: The value is formatted into a pitch bend message.

In rightmost inlet: The number is stored as the channel number of the MIDI mes-
sages. The actual value of the status byte is dependent on the channel. Numbers
greater than 16 are wrapped around to stay between 1 and 16.

Converted to int.

Optional. Sets an initial value for the channel number of the MIDI messages.
Numbers greater than 16 are wrapped around to stay between 1 and 16. If there is
no argument, the channel number is initially set to 1.

Converted to int.

MIDI messages are sent out as individual bytes, for recording by the seq object or
for transmission by the midiout object.

233

s Al Prepare data in the form
m|d|f0rmat of a MIDI message

Examples
Mod'Bend |
makenote 127 250 [-l l~—#}
_L=-I.. S Use as either mod
|pack | or pitchbend data

midiformat

w midiformat 4
|

midiount a

—
0

Numbers are formatted into MIDI messages and sent out as individual bytes

See Also

borax Report current information about note-ons and note-offs
midiinfo Set pop-up menu with names of MIDI devices

midiout Transmit raw MIDI data

midiparse Interpret raw MIDI data

MIDI MIDI overview and specification

Tutorial 34 Managing raw MIDI data

234

midiin

Output received

raw MIDI data
Input
(MIDI) midiin receives all MIDI messages from a MIDI input device.
enable The message enable 0 disables the object, causing it to ignore subsequent incoming
MIDI data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by an
enable message to a pcontrol object.
port Theword port, followed by a letter a-z or the name of a MIDI input port or device,
sets the port from which the object receives incoming MIDI messages. The word
port is optional and may be omitted.
(mouse) Double-clicking on a midiin object shows a pop-up menu for choosing a MIDI
port or device.
Arguments
a-z Optional. Specifies the port from which to receive incoming MIDI messages. If
there is no argument, midiin receives from port a (or the first input port listed in
the MIDI Setup dialog.)
Output
int Al MIDI messages received from the specified port are sent out the outlet, byte-
by-byte. Note that midiin does not“clean up”any use of running status in the
incoming MIDI stream.
Examples
midiin a | midiin b | Irecord | Istop I |start I
|é| Each mommg hv‘te —y : .)
[capture | cun be exsmined E

MIDI messages received in a port are output by a midiin object

235

midiin

Output received
raw MIDI data

See Also

midiout
midiparse
midiinfo
notein

rtin

sysexin
xnotein
xbendin
Tutorial 34
Using MIDI
MIDI
Ports

Transmit raw MIDI data

Interpret raw MIDI data

Set pop-up menu with names of MIDI devices
Output received MIDI note messages

Output received MIDI real time messages

Output received MIDI system exclusive messages
Interpret MIDI note messages with release velocity
Interpret extra precision MIDI pitch bend messages
Managing raw MIDI data

Using Max with MIDI

MIDI overview and specification

How MIDI ports are specified

236

- Set pop-up menu with
m | d 1 nfO names of MIDI devices

Input

int

bang

controllers

Arguments

Output

clear

append

set

In left inlet: Causes midiinfo to send out a series of messages containing the names
of the current MIDI output devices. Those messages can be used to set the indi-
vidual items of a pop-up umenu object connected to the midiinfo object’s outlet.
The number received in the midiinfo object’s left inlet is then sent in a set message
to set the currently displayed menu item.

Inright inlet: Causes midiinfo to send out a series of messages containing the
names of the current MIDI input devices. Those messages can be used to set the
individual items of a pop-up umenu object connected to the midiinfo object’s out-
let. The number received in the midiinfo objectss left inlet is then sent in a set mes-
sage to set the currently displayed umenu item, unless the number is less than zero,
in which case no set message is sent.

In left inlet: Same as int, but doesn’t send a set message after setting the umenu
items. The equivalent message to bang for retrieving input device namesis-1in the
rightinlet.

In left inlet: Causes midiinfo to send out a series of messages containing the names
of all MIDI controllers (devices that transmit MIDI) in the current MIDI setup.
Those messages can be used to set the individual items of a pop-up umenu object
connected to the midiinfo object’s outlet. The word controllers may be followed by a
number, which sets the pop-up umenu to that item number after the menu items
have been created.

None.

midiinfo first sends a clear message out its outlet to clear all the receiving umenu
object’s items.

Immediately after sending the clear message, midiinfo sends an append message for
each MIDI input or output device name, to set the items of a connected umenu
object. The device names will be sent out in the order in which they appear in
Max’s MIDI Setup dialog.

If the incoming message to midiinfo is an integer greater than or equal to zero, a set

message is sent after the append messages, to set the currently displayed menu
item.

237

midiinfo Set pop-up menu with

names of MIDI devices

Examples
Get output device names for MIDI output objects ...and for MIDI input objects
See Also
midiin Output received raw MIDI data
midiout Transmit raw MIDI data
umenu Pop-up menu to display and send commands
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

238

midiout

Transmit
raw MIDI data

Input
int The number is transmitted as a byte of a MIDI message to the specified port.
float Converted toint.
list ~ The numbers are transmitted sequentially as individual bytes of a MIDI message
to the specified port.
enable The message enable 0 disables the object, causing it not to transmit MIDI data. The
word enable followed by any non-zero number enables the object once again, even
if the entire patcher window has had its MIDI disabled by an enable message to a
pcontrol object.
port The word port, followed by a letter a-z or the name of a MIDI output port or
device, specifies the port used to transmit the MIDI messages. The word port is
optional and may be omitted.
(mouse) Double-clicking on a midiout object shows a pop-up menu for choosing a MIDI
port or device.
Arguments
a-z Optional. Specifies the port for transmitting MIDI data. If there is no argument,
midiout transmits out port a (or the first output port listed in the MIDI Setup dia-
log.)
(MiDIname) Optional. The name of a MIDI output device may be used as the first argument to
specify the port.
Output
(MIDI) There are no outlets. The output is a byte of a MIDI message transmitted directly
to the object’s MIDI output port.
Examples
tempo 60 1 96 pE192 | 14-it Play back
| xb@miout,I P:cll:bmnnﬂ | s | Shaenas
MIDI clock pitchbe
¢ho0 xgl ‘F-I IMIDI data
midiout a midiout a midiout b

MIDI bytes received in the inlet are transmitted out the specified port

239

midiout

Transmit
raw MIDI data

See Also

midiformat
midiin
midiinfo
noteout
sxformat
xbendout
xnoteout
Tutorial 34
Using MIDI
MIDI
Ports

Prepare data in the form of a MIDI message
Output received raw MIDI data

Set pop-up menu with names of MIDI devices
Transmit MIDI note messages

Prepare MIDI system exclusive messages

Format extra precision MIDI pitch bend messages
Format MIDI note messages with release velocity
Managing raw MIDI data

Using Max with MIDI

MIDI overview and specification

How MIDI ports are specified

240

midiparse ! ot

Input
int Numbers received in the inlet are treated as bytes of a MIDI message (usually
from a seq or midiin object). The status byte determines the outlet which will be
used to output the data bytes.
float Converted toint.
bang Clears the midiparse object’s memory of any partial MIDI message received up to
that point.
Output
list Outleftmost outlet: A note-on message. The first number is a pitch value and the
second number is a velocity value.
Out 2nd outlet: A polyphonic key pressure message. The first number is an after-
touch (pressure) value and the second number is a pitch value (key number).
Out 3rd outlet: A control message. The first number is a control value and the sec-
ond number is a controller number.
int Out4th outlet: The number is a program change.
Out 5th outlet: The number is an aftertouch (channel pressure) value.
Out 6th outlet: The number is a pitch bend value.
Out rightmost outlet: The number is the MIDI channel number.
Examples
midiin a midiin b
|
midiparse —
l midliparse
unpack
l | channel
po | po | po | |s_pgns | [s_bendinfo
pitch velocity bend

Interpret the meaning of MIDI messages and filter different types of data

241

midiparse Interpret raw

See Also

borax Report current information about note-ons and note-offs
midiformat Prepare data in the form of a MIDI message

midiin Output received raw MIDI data

midiinfo Set pop-up menu with names of MIDI devices

Tutorial 34 Managing raw MIDI data

MIDI MIDI overview and specification

242

Tal Output the smallest
mlnlmum in a list of numbers

Input
int Inleftinlet: If the number is less than the value currently stored in minimum, it is
sent out the outlet. Otherwise, the stored value is sent out.
Inright inlet: The number is stored for comparison with subsequent numbers
received in the left inlet.
float ~ Converted to int, unless there is a float argument, in which case all numbers are
compared as floats.
list Inleftinlet: The numbersin the list are all compared to each other, and the small-
est value is sent out the outlet. The value stored in minimum is replaced by the next
smallest value in the list. The minimum object accepts lists of up to 256 elements.
bang Inleftinlet: Sends the most recent output out the outlet again.
Arguments
intorfloat ~ Optional. Sets an initial value to be compared with numbers received in the left
inlet. If the argument contains a decimal point, all numbers are compared as
floats, and the output is a float. If there is no argument, the initial value is 0.
Output
int The number received in the left inlet is compared with the value currently held by
minimum (or numbers received as a list are compared with each other), and the
smallest of the numbers is sent out the outlet.
float Only if there is an argument with a decimal point.
Examples
|;| 26| [32] [2¢] Numbers inalis [3 73 4 56 49
| . pe—— d with ek
M mum M mum :{;;(;?hitmnot with [Mirdmum 1 The second smallest
. . . | ’ valug (9) becomes
bS] p2E | the stored value the new stored value
The output is the lesser of two numbers, or the smallest in a list of numbers
See Also
maximum Output the greatest in a list of numbers
trough If a number is less than previous numbers, output it
< Is less than, comparison of two numbers

243

tFi Report modifier key presses
mOd Ifl €rs on the computer keyboard

Input
(keyboard)

bang

interval

Arguments

int

Output

int

The keyboard input to modifiers comes directly from the computer keyboard.
Sends out a report of the current modifier key states.

The word interval followed by a number, specifies the rate, in milliseconds, used
when polling the state of the modifier keys. A value of zero disables polling.

Optional. Specifies a polling rate in milliseconds. The default value is 0 (no poll-
ing).

Output is sent whenever a modifier key is pressed down on the computer key-
board. Modifier key states are reported as 0 (not pressed) or 1 (pressed).

Out left outlet: The on/off state of the Shift key.
Out second outlet: The on/off state of the Caps Lock key.

Out third outlet: the on/off state of the Option key on Macintosh or the Alt key on
Windows.

Out fourth outlet: the on/off state of the Control key.

Out fifth outlet: the on/off state of the Command key on Macintosh or the Con-
trol key on Windows.

Note: The fourth and fifth outlets both report the on/off state of the Control key
on Windows, since the Command key on Macintosh is equivalent to the Control
key on Windows. For cross-platform uses, Windows users should use the fifth
outlet of the modifiers object for reporting the Control key state. The fourth outlet
also reports the Control key on Windows so that (older) Macintosh patches that
use this key can be opened on Windows systems. The Macintosh Control key
normally corresponds to the right-hand mouse button on Windows. See the sec-
tion on file and key mappings in the Max Tutorials for a complete discussion of
cross-platform keyboard issues.

244

tFi Report modifier key presses
mOd Ifl €rs on the computer keyboard

Examples
key
key
ASCII x s p (for play)
walie * select 114 115 112
select 120 r s P Anything else
0 123 All notes off lrecord ||stop | |start Invalid key
I I] command
ctlout *=\ T
== ‘ print Warning

Modifier keys typed on the computer keyboard can be used to trigger messages

See Also

key Report key presses on the computer keyboard

keyup Report key releases on the computer keyboard
numkey Interpret numbers typed on the computer keyboard

245

mOUSEﬁ Iter Pass numbers only when

the mouse button is up

Input
int If the mouse button is up, the number is sent out the outlet. Otherwise, the num-
ber is ignored.
Arguments
None.
Output
int The number received in the inlet is sent out only if the mouse button is up.
Examples
X
N
_’/ metro &0
|
See all numbers, drunk 127 4
bur send only .
mousefilter | ope number, movsefilter
[—— when the mouse .
(pgmout 1 | button is released makenote 32 60
Nothing gets through unless the mouse is up
See Also
mousestate Report the status and location of the mouse
Tutorial 39 Mouse control

246

Report the status and
mOUSEState location of the mouse

Input

bang

poll

nopoll

Zero

reset

Arguments

Output

int

Sends out the current horizontal and vertical coordinates of the location of the
mouse, as well as the change in location since the last output.

Causes mousestate to send out the mouse location, and the change in mouse loca-
tion, whenever the mouse is moved, as well as when a bang is received. If poll is fol-
lowed by the name of a graphics window, the coordinates returned by mousestate
will be local to the graphics window, and only sent while the graphics window is
visible.

Undoes a poll message, reverting mousestate to its normal condition of waiting for
a bang before reporting.

Resets the point mousestate considers as the 0,0 point from which to measure the
mouse location. The current location of the mouse is considered the new 0,0
point.

Resets the 0,0 point to its default setting, in the upper left corner of the screen.

None.

mousestate must have received at least one bang or poll message in its inlet before
any output is sent out.

Out left outlet: Each time the mouse button is pressed, 1 is sent out. Each time the
mouse button is released, 0 is sent out.

Out 2nd outlet: The horizontal location of the mouse, measured in terms of the
number of pixels the mouse is to the right of the 0 point.

Out 3rd outlet: The vertical location of the mouse, measured in terms of the num-
ber of pixels the mouse is below the 0 point.

Out 4th outlet: The change in horizontal location of the mouse, since the last time
the mouse location was reported.

Out right outlet: The change in vertical location of the mouse, since the last time
the mouse location was reported.

247

mousestate Report the status and

location of the mouse
Examples
Report position Report position
metro S50 port p
' every 50 ms ?elect 4 on Mouse-up
MfouseState llovseState
— 5 |] | |
pS2 | p241 | p185 | p224 | pSS | p139 |
Horz. WVer. Horz. Ven. Horiz. WVen.
change change
The mouse can provide continuous or discrete values
See Also
mousefilter Pass numbers only when the mouse button is up
Tutorial 39 Mouse control

248

I Play a QuickTime
mOV|e movie in awindow

Note: The movie object requires that Quick Time be installed on your system. If you are using Max
on Windows, we recommend that you install Quick Time and choose a complete install of all
optional components. The movie object plays a QuickTime movie in its own window, and the
imovie object plays a Quick Time movie in a box inside a patcher window.

Input

All messages below, recognized by the movie object, are similarly recognized by imovie.

int Sets the current time location of the movie. If the movie is playing, it will play
from the newly set location. 0 is always the beginning. The end time varies from
one movie to another. (The length message reports the end time location out the
left outlet.)

active The word active, followed by a nonzero number, makes the movie active (the
default). Followed by a 0, active makes the movie inactive. An inactive movie will
not play or change location.

autofit ~ The word autofit, followed by a nonzero number, scales the movie to fit in the win-
dow currently displayed.

bang Same as resume.

border ~ The word border, followed by a 0 or 1, toggles the movie’s border type. The mes-
sage border 1 (the default) uses the traditional Macintosh-style border for the
movie window. The message border 0 displays only the rectangle in which the
movie plays.

clear Has the same effect as dispose with no arguments.

dispose Closes the movie window if it is open, and removes all movies from the movie
object’s memory. If the word dispose is followed by the name of a loaded movie,
only the named movie will be removed.

getrate Reports the current rate multiplied by 65536 out the right outlet. Thus, normal
speed is reported as 65536, half speed is reported as 32768, double speed backward
Is reported as -131072, etc. If the movie is not playing, the rate is reported as 0, and
if no movie has yet been loaded nothing is sent out.

length Reports the end time location of the movie.

loadintoram The word loadintoram, followed by a nonzero number, attempts to load the entire
movie into memory;, if possible. The default is 0.

loop The word loop, followed by a nonzero number, turns looping for the current film
on. loop 0 (the default) disables looping.

249

movie

Play a QuickTime
movie in a window

loopend

loopset

loopstart

matrix

mute

The word loopend, followed by a number, sets the end point of a loop. The default
value is corresponds to the end of the film.

The word loopset, followed by two numbers, sets the beginning and end points of a
loop. the default values are O (i.e., the start of the film) for the start point and the
end of the film for the endpoint.

The word loopstart, followed by a number, sets the beginning point of a loop. The
default value is O (i.e., the start of the film).

The word matrix, followed by nine floating point numbers, reloads the current
movie into RAM after performing a transformation matrix operation on the
image. This transformation is the same one used for the mapping in QuickTime
of points from one coordinate space (i.e, the original image) into another coordi-
nate space (a scaled, rotated, or translated version of the original image).

The transform matrix operation consists of nine matrix elements

t X ty w
ifuandvare0.,and wis 1., we have the following translation formula.
X=a*x+cry+t_x;
y=b*x+d*y+t y
The following formulas are used for scaling/rotation:
a=xscale*cos(6)
b=yscale*sin(6)
c=xscale*(-sin(6))
d=yscale*cos(6)

For more on the transformation matrix, consult the Apple QuickTime Developer
documentation found at:

http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/
igMovieToolbox.c.htm#18006

The word mute, followed by a nonzero number, turns off the movie's sound (if it
has any). Followed by a 0, mute turns on the movie’s sound (the default).

250

movie

Play a QuickTime
movie in a window

next

nextmovie

open

passive

pause

prev

quality

rate

read

readany

The word next, followed by a number, moves the time location ahead by that
amount. If no number is supplied, next moves the time ahead by 5. (The actual
time meaning of these units varies from movie to movie.)

Stops the movie if it is playing, and switches to the movie that was loaded just
prior to the current movie. (The movies are stored in reverse order from the order
in which they were loaded.) If there is no prior movie, nextmovie wraps around
back to the most recently loaded movie. Note that the title of the movie window is
not automatically changed, even though the “current movie” has been changed by
nextmovie.

Brings the movie window to the foreground (applies only to movie, not imovie).

The word passive, followed by a nonzero number, sets the passive mode. In passive
mode, starting a movie will not cause the frame to change unless a bang message
is received. passive 0 (the default) sets the movie object to respond to normal start
messages.

Stops the movie.

The word prey, followed by a number, moves the time location backward by that
amount. If no number is supplied, prev moves the time backward by 5.

The word quality, followed by a number, sets the minimum interval, in millisec-
onds, between movie redraws. The defaultis 0 (i.e., no minimum).

The word rate, followed by one or more integers or floats, sets the playing speed of
the movie. If rate is followed by one integer, that number is taken to be a whole
number playing speed. If rate is followed by two numbers, the first number is
taken to be the numerator and the second the denominator of a fractional speed.
Lis the normal playing speed, 0 means the movie is stopped, and a negative rate
plays backwards. rate 12 would play the movie at half speed. Immediately after you
send a hon-zero rate message, the movie will begin playing, so you may wish to
precede any rate messages with an integer to locate to the desired starting position.

The word read, followed by a symbol, looks for a Quick Time movie file with that
name in Max’s file search path, and opens it if it exists, displaying the movie’s first
frame in a movie window. If the filename contains any spaces or special charac-
ters, the name should be enclosed in double quotes or each special character
should be preceded by a backslash (\). The word read by itself puts up a standard
Open Document dialog box and reads in any movie file you select. The read mes-
sage will open at least 26 different types of files that can be opened by QuickTime,
these include movie files such as MPEG, audio files including AIFF and MP3, and
graphics files including GIF and JPEG.

The readany message opens any type of file, using QuickTime routines to try to
interpret it as a movie or other supported media file.

251

movie

Play a QuickTime
movie in a window

rect

resume

start

startat

stop

switch

time

title

vol

weclose

windowpos

Arguments

symbol

The word rect, followed by four numbers, specifies the size of the rectangle in
which the movie is displayed within the movie window. The first two numbers
specify the position of the rectangle within the movie window, in relative coordi-
nates, and the second two numbers specify the width and height, in pixels, of the
rectangle.

Begins playing the movie from its current location, at the most recently specified
rate.

Sets the movie’s rate to 1 and begins playing from the beginning. If the word start
is followed by the name of a specific loaded movie, that movie becomes the cur-
rent movie before starting.

The word switch, followed by a number, set the current time location of the movie
and begins playing from that point.

Stops the movie.

The word switch, followed by a symbol, make the named movie the active one
without changing the transport state (See the start message).

Reports the current time location of the movie.

Sets the title of the movie window to the name of the current movie. This is neces-
sary in conjunction with the nextmovie message (or a start message specifying a dif-
ferent movie) if you want the title of the movie window to show the name of the
current movie correctly. You can set the title of the movie window to any text you
want, using the message title followed by a symbol.

The word vol, followed by a number, sets the movie’s sound volume. Any number
less than 1 mutes the sound. The maximum volume is 255.

Closes the movie window.

The word windowpos, followed by four numbers, specifies the location and size of
the movie window on the screen. The four numbers specify the left, top, right,
and bottom of the movie window in global coordinates. This message is only sup-
ported by the movie object, not the imovie object.

Optional. Specifies the name of a QuickTime movie file to be read into movie
automatically when the patch is loaded. The same effect can be achieved for
imovie by selecting the object in an unlocked patcher and choosing Get Info...
from the Object menu to select a movie file. Both objects retain the name(s) of the
movie(s) they have loaded at the time that the patch is saved, and attempt to load
the same movie(s) the next time the patch is opened.

252

I Play a QuickTime
mOV|e movie in awindow

Output
int Out left outlet: The current time location, when a time message is received; the end
time location when a length message is received.
Out middle outlet: The horizontal position of the mouse, relative to the left side of
the movie box or window, when the mouse is clicked or dragged inside the movie.
Out right outlet: The vertical position of the mouse, relative to the top of the
movie box or window, when the mouse is clicked or dragged inside the movie.
Also, in response to a getrate message, the current movie rate multiplied by 65536
is sent out the right outlet.
Examples
P33 |
Bring to)4 | metro |
fo':ggrou.nd |open | |start | |stop | b—
1]
Goto beginmingand | 0 |9
play at double speed Load in mowvie i
0, rate 2 1 | |read “apocalypse Now" | [prev 1][next 1]
I J
_movie | | movie |

Play a QuickTime movie, or move through it in a variety of ways

1. [read ‘Godfather III’ |
2 |read ‘Godfather II’ I Jumyp to Godfather II, update the title bar of
— the movie window, the nstart the new movi
3. |read Godfather | nextmovie, title, start
4 [start | PRy most recently
\-=V loaded mom —
movie (Godfather) movie

Hold multiple movies (which are stored in reverse order from the order received)

See Also

imovie Play a QuickTime movie in a patcher window

253

mtr

Multi-track
sequencer

Input

record

play

stop

next

rewind

mute

delay

In left inlet: Begins recording all messages received in the other inlets. The word
record, followed by one or more track numbers, begins recording those tracks.

In other inlets: Begins recording messages on the track that corresponds to the
inlet.

In left inlet: Plays back all messages recorded earlier, sending them out the corre-
sponding outlets in the same rhythm and at the same speed they were recorded.
The word play, followed by one or more track numbers, begins playing those
tracks.

In other inlets: Plays back all messages on the track that corresponds to the inlet.

In left inlet: Stops mtr when it is recording or playing. The word stop, followed by
one or more track numbers, stops those tracks.

In other inlets: Stops the track that corresponds to the inlet.

In left inlet: Causes each track to output only the next message in its recorded
sequence. When a next message is received, the track number and the delta time of
each message being output are sent out the leftmost outlet as a list. The word next,
followed by one or more track numbers, outputs the next message stored in those
tracks.

In other inlets: Outputs the next message stored on the track that corresponds to
theinlet.

In left inlet: Resets mtr to the beginning of its recorded sequence. This command
Is used to return to the beginning of the sequence when stepping through mes-
sages with next. To return to the beginning of a sequence while playing or record-
ing, just repeat the play or record message. When mtr is playing or recording, a stop
message should precede a rewind message. The word rewind, followed by one or
more track numbers, returns to the beginning of those tracks.

In other inlets: Returns the pointer to the beginning of the track that corresponds
to the inlet.

In left inlet: Causes mtr to stop producing output, while still continuing to “play”
(still moving forward in the sequence). The word mute, followed by one or more
tracks, mutes those tracks.

In other inlets: Mutes the track that corresponds to the inlet.

In left inlet: The word delay, followed by a number of milliseconds, sets the first
delta time value of each track to that number, so that all tracks begin playing back
that amount of time after the play message is received.

256

mtr

Multi-track
sequencer

first

write

read

int

list

any symbol

In other inlets: Sets the initial delta time of the track that corresponds to the inlet.

In left inlet: The word first, followed by a number of milliseconds, causes mtr to
wait that amount of time after a play message is received before playing back.
Unlike delay, first does not alter the delta time value of the first event in a track, it
just waits a certain time (in addition to the first delta time) before playing back
from the beginning.

In leftinlet: Calls up the standard Save As dialog box, allowing the contents of mtr
to be saved as a separate file. Note that the only way to save the contents of mtr is
with the write message; the object’s contents cannot be embedded in a patcher file.

In other inlets: Wkites a file containing only the track that corresponds to the inlet.

In left inlet: Calls up the standard Open Document dialog box, so that a previ-
ously saved file can be read into mtr.

In other inlets: Opens a file containing only the track that corresponds to the
inlet.

Inany inlet other than the left inlet: If the track is currently being recorded, num-
bers received in that track’s inlet are combined with a delta time (the number of
milliseconds elapsed since the previous event) and stored in mtr.

Inany inlet other than the left inlet: If the track is currently being recorded, lists
received in that track’s inlet are stored in mtr, preceded by the delta time.

Inany inlet other than the left inlet: If the track is currently being recorded, sym-
bols received in that track’s inlet are stored in mtr, preceded by the delta time.

Although mtr can record individual bytes of MIDI messages received from midiin,
it stores each byte with a separate delta time, and does not format the MIDI mes-
sages the way seq does. If you want to record complete MIDI messages and edit
them later, seq is better suited for the task. On the other hand, mtr is perfectly
suited for recording sequences of numbers, lists, or symbols from virtually any
object in Max: specialized MIDI objects such as notein or pgmin, user interface
objects such as number box, slider, and dial, or any other object.

In order for afile to be read into mtr for playback, it must be in the proper format.
An mtr multi-track sequence can even be typed in a text file, provided it adheres

to the format. The contents of the different tracks are listed in order in an mtr file,
and the format of each track is as follows. Note that a semicolon (;) ends each line.

Line 1: track <track number>; (Track in which to store subsequent data)
Line 2, etc.: <delta time> <message>;
Lastline: end; (End of this track’s data)

257

mtr

Multi-track
sequencer

clear

unmute

Arguments

int

Output
anything

list

In left inlet: Erases the contents of mtr. The word clear, followed by one or more
track numbers, clears those tracks.

In other inlets: Erases the track that corresponds to the inlet.

In left inlet: Undoes any previously received mute messages. The word unmute, fol-
lowed by one or more track numbers, unmutes those tracks.

In other inlets: Unmutes the track that corresponds to the inlet.

Optional. Specifies the number of tracks in the mtr. The number of tracks deter-
mines the number of inlets and outlets in addition to the leftmost inlet and outlet.
Up to 32 tracks are possible. If there is no argument, there will be only one track.

Out all track outlets: When a play message is received in the leftmost inlet, the
messages stored in each track are sent out the outlet of that track, in the same
rhythm and at the same speed they were recorded. A play message received in the
inlet of an individual track plays that particular track.

When a next message is received in the leftmost inlet, the next message in each
track is sent out its corresponding outlet. The word next, received in the inlet of an
individual track, sends out the next message in that track.

Out left outlet: Whenever a value is sent out in response to a next message, the
track number and delta time of that value are sent out the left outlet as a two-item
list.

258

mtr

Multi-track
sequencer

|record| pgmin a 1
bendin a 1
Record ctlin a 1 1
messages
from any mtr 4 o
kind of j
_Pgmout [bendout | ctlout 7
ctlout 1

Record MIDI data or other events

Output numbers by moving a slider onscreen

Multiple slider and scrolling display

Sequencer for recording and playing MIDI
Time-based score of Max messages
Display or change a range of numbers

Output numbers by moving a slider onscreen

Examples
notein a
| | |
[record [p3 | |pack 0 0 0
P
Record tracks
StO p———— Sepwelv,
\2%\ then Pl&v
mty 4 th.em baCk
I together
unpack 0 0 0
| | |
noteout a
See Also
hslider
multislider
seq
timeline
rslider
uslider
Tutorial 14 Sliders and dials
Tutorial 36 Multi-track sequencing
Sequencing

Recording and playing back MIDI performances

259

el Multiple slider
mU|tIS|Id€|’ and scrolling display

Input

int

float

list

bang

border

brgb

contdata

displayonly

Sets all slider values and positions to the number received and outputs a list
reflecting the current values. If the multislider data type is set to float, the values in
the incoming list are converted to floats.

Sets all slider values and positions to the number received and outputs a list
reflecting the current values. If the multislider data type is set to int, the values in
the incoming list are truncated and converted to ints.

Sets each slider to a corresponding value in the list from left to right, with the first
value in the list setting the first slider. If the multislider has a different number of
slidersthan is present in the list, the number of sliders is changed to the number of
items in the list. In such a case, the outside dimensions of the multislider will not
change, only the width or height of the sliders.

Outputs the current slider values as a list.

The word border, followed by an integer, tells a multislider which of its outside bor-
ders to draw. This is useful for placing multislider objects next to each other.

It is both easier and more customary to use the Inspector to set the colors for the
border. The arguments to border are:

border 0 Draw no borders
border 1 Draw left border
border 2 Draw right border
border 4 Draw top border
border 8 Draw bottom border

Any combination of borders can be drawn by adding these values. For example,
border 15 draws all borders.

The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the multislider object. The default value is white (brgh
255 255 255).

The word contdata, followed by a one or zero, allows continuous output mode to
be turned on and off for non-scrolling display styles. If this mode is turned on,
the multislider object will output a list of its current slider values each time the
mouse is clicked and dragged. If this mode is turned off, the multislider will only
output a list when the mouse button is pressed and when it is released. The con-
tinuous output mode can also be set using the Inspector.

Toggles display only mode on and off. When display only mode is on, the multi-
slider object will not allow user interaction with the display. The default is off (0).

260

el Multiple slider
mU|tIS|Id€|’ and scrolling display

echo

fetch

frgb

interp

max

maximum

min

minimum

(mouse)

Toggles echo mode on and off. WWhen echo mode is on, the multislider object will
output any list received in its inlet. The default is off (0).

The word fetch, followed by a number, sends the value of the numbered slider out
the rightmost outlet.

The word frgh, followed by three numbers between 0 and 255, sets the RGB values
for the slider color of the multislider object. The default value is black (frgh 00 0).

The word interp, followed by a one or zero, enables or disables interpolation mode.
When interpolation mode is on (the default), the multislider object will output
interpolated values when a slider is moved. In most cases you probably will not
want to disable interpolation mode.

Sets all sliders to their maximum values.

The word maximum, followed by an integer or floating point value, sets the maxi-
mum range value for the multislider object. The default is 1.0 when using floating
point sliders, and 127 when using integer sliders. This value can also be set using
the Inspector.

Sets all sliders to their minimum values.

The word minimum, followed by an integer or floating point value, sets the mini-
mum range value for the multislider object. The default is -1.0 when using floating
point sliders, and 0 when using integer sliders. This value can also be set using the
Inspector.

The way that a multislider responds to the mouse is determined by its chosen dis-
play style (see Arguments, below). A multislider will respond to mouse clicks
when its display style is non-scrolling (Thin Line or Bar). Clicking on a forward or
reverse scrolling display multislider (Point Scroll or Line Scroll) has no effect.

If continuous output mode is enabled, the list of the current values will be sent out
each time the mouse moves while dragging. If the continuous output mode is off,
this list is only sent out when the mouse button is pressed or released. The contin-
uous output option can be set in the multislider object's Inspector.

When the display style is non-scrolling, clicking on any slider in a multislider
immediately positions the slider at the click point. The current value of all sliders
is sent out. Dragging across a multislider will set the other sliders in the same man-
ner. If continuous output mode is enabled, the list of the current values will be
sent out each time the mouse moves while dragging. If the continuous output
mode is off, this list is only sent out when the mouse button is pressed or released.
The continuous output option can be set in the multislider object's Inspector.

If the mouse is moved quickly across a range of sliders, the mouse's position is
likely not to be polled quickly enough by the computer to provide a value for each

261

el Multiple slider
mU|tIS|Id€|’ and scrolling display

peakhold

peakreset

quantiles

rgh2

select

set

setborder

setminmax

and every slider it appears to pass. By default, multislider will automatically inter-
polate slider values between successively polled mouse positions. You can use the
interp message to disable interpolation, if desired.

The word peakhold, followed by a one or zero, enables or disables peak hold mode.
When peak hold mode is on, the peak value of each slider is represented by a thin
line, whose color can be set in the multislider object’s Inspector. the peak values
may be reset with the peakreset message.

Resets the current peak values to the current slider values.

In left inlet: The word quantiles, followed by a list of floats between 0 and 1.0, mul-
tiplies each list element by the sum of all the values in the multislider. This result is

then divided by 21° (32,768). Then, multislider sends out the address at which the
sum of all values up to that address is greater than or equal to the result for each
list element.

The word rgh2, followed by three numbers between 0 and 255, sets the RGB values
for the peak indicators when Peak-Hold display is turned on (see peakhold and
peakreset messages). The default value is grey (rgh2 127 127 127). The color can also
be set using the Inspector.

Selectively sets slider values. For example, select 130 2 4 550 sets the first slider to
30, the second to 4, and the fifth slider to 50 (the top or leftmost slider is always
number 1).

The word set, followed by a slider number and a value, sets the numbered slider to
that value without triggering any output.

The word setborder, followed by four integers representing the left, right, top and
bottom borders of the multislider object, set the object’s borders. It is similar in
function to the border message (see above). A 0 indicates that the specified border
segment will not be drawn, and a 1 draws the border. The default is to draw all
borders (sethorder 111 1).

The word setminmax, followed by two floats or two integers, sets the low and high

range values for the multislider object. The default values are -1.0 and 1.0 for float-
ing point sliders and 0 and 127 for integer sliders.

262

el Multiple slider
mU|tIS|Id€|’ and scrolling display

setstyle

settype

size

sum

Inspector

The word setstyle, followed by an int in the range 0-5, sets the display style of the
multislider object. The default value is Thin Line (setstyle 0). The display style val-
ues are:

setstyle 0 Thinline

setstyle 1 Bar

setstyle 2 Point Scroll

setstyle 3 Line Scroll

setstyle 4 Reverse Point Scroll
setstyle 5 Reverse Line Scroll

When the display style is set to Thin Line or Bar, each slider displays its current
value as a thin line. When one of the other (scrolling) display styles is chosen,
each slider provides a continuously scrolling display of its current and most recent
past values. (The number of past values shown is determined by the display size
of the multislider, in pixels.)

Note: A scrolling display multislider may not be able to update at the rate it
receives data. This can result in some data points not being displayed.

The word settype, followed by a 0 or 1, sets the multislider object for integer (0) or
floating point (1) operation. The Inspector can also be used to set the multislider
object's type. The default is integer (settype 1).

The word size, followed by a number, sets the number of sliders the multislider
object has. The default is 1, and the maximum number of sliders is 4096.

Outputs asum of all current slider values as a float.

The behavior of a multislider object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any multislider object displays the
multislider Inspector in the floating window. Selecting an object and choosing Get
Info... from the Object menu also displays the Inspector.

The multislider Inspector lets you set the following attributes:

+ Slider Range Minimum and Maximum values. The default Min. value is -1.
The default Max. value is 1.

« Number of Sliders. The maximum number of sliders a multislider object can
have is 4096, and the default is 1. You can also choose Integer or Floating
Point sliders. The default is floating point.

« Slider Style. You can choose Thin line, Bar, Point Scroll, Line Scroll, Reverse
Point Scroll, or Reverse Line Scroll styles. When the display style is set to Thin

263

el Multiple slider
mU|tIS|Id€|’ and scrolling display

Arguments

Output
list

int or float

Line (the default) or Bar, each slider displays its current value as a thin line.
When one of the other (scrolling) display styles is chosen, each slider pro-
vides a continuously scrolling display of its current and most recent past val-
ues. (The number of past values shown is determined by the display size of
the multislider, in pixels.) You can also select Continuous Data Output and
Peak Hold display modes (the default is off for both modes).

« Orientation lets you choose horizontal or vertical (default) data display.

« The Draw Borders checkboxes let you specify borders for all four sides of the
multislider object.

« The Color option lets you use a swatch color picker or RGB values to specify
colors for the Sliders, Background and Peak Indicators of the multislider
object. The default color for the sliders is 0 0 0, the default background color
Is 255 255 255, and the default peak indicator color is 127 127 127.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

Out left outlet: When a multislider receives alist, int, or float in its inlet, it outputs a
list of its current values. The list is also sent out when the sliders are changed with
the mouse.

Out right outlet: The value of a numbered slider specified by the fetch message.
The output reflects the current data type settings (see the settype message).

264

el Multiple slider
mU|tIS|Id€|’ and scrolling display

Examples

ctlin a 7

pack

ol Vertical bar graph

of incoming .
volume data on all bendin a 1

See Also

dial

hslider
kslider
matrixctrl
pictctrl
pictslider
rslider
slider
uslider
Tutorial 14

1
select $2 $1 | 16 channels _
t 1 %1
Display incoming

pitchbend dara, or
, ~,
draw an outgoing e
pitchbend curve A
(reverse point seroll, [~ (VI
continuous output) L hed
bendout a 1

multislider drawing styles

Output numbers by moving a dial onscreen
Output numbers by moving a slider onscreen
Output numbers from a keyboard onscreen
Matrix-style switch control

Picture-based control

Picture-based slider

Display or change a range of numbers
Output numbers by moving a slider onscreen
Output numbers by moving a slider onscreen
Sliders and dials

265

next

Detect logical
separation of messages

Input
anything

Arguments

Output
bang

Examples

Messages to be tested to determine whether they are part of the same logical
event. A logical event is one of the following: a mouse click, the ongoing polling of
amouse drag, an event generated by the scheduler (such as the bang from a
metro),a MIDI event, or a keyboard event. next determines whether the current
message is part of the same event as the previously received message. For example,
if you click on a bang twice, the two bangs are not part of the same logical event.
But if you put bang, bang in a message box, or use the uzi object to send out two
bangs in a row, these bangs are part of the same logical event.

None.

Out left outlet: A bang is sent out if the current message is not part of the same log-
ical event as the previously received message.

Out right outlet: A bang is sent out if the current message is part of the same logical
event as the previously received message.

[60, 63, 67, 70 | send fow numbers

— ‘simultaneously’.
next
change the active MIDI
channel with each chord sent.

makenote 64 1000| [counter 1 16

,_l

noteout

next detects when separate Max messages occur within the same logical event.

See Also

uzi

defer
delay
Messages

Send a specific number of bang messages
De-prioritize a message

Delay a bang before passing it on

Using the comma in a message box]

266

notein

Output received
MIDI note messages

Input
(MIDI)

enable

port

(mouse)

Arguments

a-z
(MIDI name)

a-zand int

int

Output

int

notein receives its input from a MIDI note-on or note-off message received from a
MIDI input device.

The message enable 0 disables the object, causing it to ignore subsequent incoming
MIDI data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by an
enable message to a pcontrol object.

The word port, followed by a letter a-z or the name of a MIDI input port or device,
sets the port from which the object receives incoming note messages. The word
port is optional and may be omitted.

Double-clicking on a notein object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port from which to receive incoming note messages. If
there is no argument, notein receives from all channels on all ports.

Optional. The name of a MIDI input device may be used as the first argument to
specify the port.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to receive note messages. Channel numbers
greater than 16 will be wrapped around to stay within the 1-16 range.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

Out left outlet: The number is the pitch value of the incoming note message.

Out 2nd outlet: The number is the velocity of the incoming note-on message if
non-zero, 0 for a note-off message. To receive release velocity, use xnotein.

If a specific channel number is included in the argument, there are only two out-
lets. If there is no channel number specified by the argument, notein will have a
third outlet, on the right, which will output the channel number of the incoming
note message.

267

I Output received
N Ote IN MIDI note messages

Examples
Receive from evernynwhere Receive only from port b Only from port b, channel 13
notein notein b notein b 13
1 1 | 1 | 1
pet Jpes]pzm] pen | per | pim]
Pitch Velocity Channel Pitch Veloeity Channel Pitch Veloeity

Note-on messages can be received from everywhere, a specific port, or a specific port and channel

See Also

ctlin Output received MIDI control values

midiin Output received raw MIDI data

noteout Transmit MIDI note messages

rtin Output received MIDI real time messages

xbendin Interpret extra precision MIDI pitch bend messages
xnotein Interpret MIDI note messages with release velocity
Using MIDI Using Max with MIDI

Ports How MIDI ports are specified

Tutorial 12 Sending and receiving MIDI notes

268

Transmit MIDI
N OteO Ut note messages

Input

int

float

list

enable

port

(mouse)

Arguments

a-z

a-zand int

(MIDI name)

int

In leftinlet: The number is the pitch value of a MIDI note message transmitted on
the specified channel and port. Numbers are limited between 0 and 127.

In middle inlet: The number is stored as the velocity of a note message, to be used
with pitch values received in the left inlet. Numbers are limited between 0 and
127.0is considered a note-off message, 1-127 are note-on messages.

Inright inlet: The number is stored as the channel number on which to transmit
the note-on messages.

Converted to int.

In left inlet: The first number is used as the pitch, the second number is used as
the velocity, and the third number is used as the channel, of a transmitted MIDI
note message.

The message enable 0 disables the object, causing it not to transmit MIDI data. The
word enable followed by any non-zero number enables the object once again, even
if the entire patcher window has had its MIDI disabled by an enable message to a
pcontrol object.

In left inlet: The word port, followed by a letter a-z or the name of a MIDI output
port or device, specifies the port used to transmit the MIDI messages. The word
port is optional and may be omitted.

Double-clicking on a noteout object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port for transmitting MIDI note messages. Channel num-
bers greater than 16 received in the right inlet will be wrapped around to stay
within the 1-16 range. If there is no argument, noteout initially transmits out port
a,on MIDI channel 1.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to transmit note messages. Channel numbers
greater than 16 will be wrapped around to stay within the 1-16 range.

Optional. The name of a MIDI output device may be used as the first argument to
specify the port.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

269

Transmit MIDI
N OteO Ut note messages

Output

(MIDI) There are no outlets. The output is a MIDI note-on message transmitted directly
to the object’s MIDI output port.

Examples
|60 64 | |29 I |60 64 | |29 I
Will transmit on Will transmit on
channel 13, port & channel 13, port b
noteout a noteout 1
Letter argument transmits Otherwise, number specifies
to only one port both port and channel
See Also
ctlout Transmit MIDI control messages
midiout Transmit raw MIDI data
notein Output received MIDI note messages
xbendout Format extra precision MIDI pitch bend messages
xnoteout Format MIDI note messages with release velocity
Ports How ports are specified
Tutorial 12 Sending and receiving MIDI notes

270

numberbox FT B

Input

int or float

bang
brgh

color

flags

frgb

max

min

The number received in the inlet is stored and displayed in the number box and
sent out the outlet. A float is converted to int by an int number box, and vice versa.

When the active patcher window is locked, numbers can be entered into anumber
box by clicking on it with the mouse and typing in a number on the computer
keyboard. Typing the Return or Enter keys on Macintosh or the Enter key on
Windows, or clicking outside the number box, sends the number out the outlet.

Dragging up and down on the number box with the mouse (when the patcher
window is locked) moves the displayed value up and down, and outputs the new
values continuously. In the float number box, dragging to the left of the decimal
point changes the value in increments of 1. Dragging to the right of the decimal
point changes the fractional part of the number in increments of 0.01.

Sends the currently displayed number out the outlet.

The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the number box. The default value is white (brgh 255 255
255).

The word color, followed by a number from 0 to 15, sets the background of the
number box to one of the standard object colors which are also available via the
Color submenu in the Object menu.

The word flags, followed by a number, sets characteristics of the appearance and
behavior of the number box. The characteristics (which are described on the next
page, under Arguments) are set by adding together specific numbers to designate
the desired characteristics, as follows: 4=Bold type, 16=Hexadecimal display,
32=No triangle, 64=Send on mouse-up only, 128=Can’t change with mouse,
256=MIDI C3 display, 1024=Roland octal display, 2048=Binary display,
4096=MIDI C4 display, 8192 =Transparent display mode (useful for display-
ing and editing numbers over other objects). So, for example, flags 180
(4+16+32+128=180) will set the number box to display its numbers in hexadeci-
mal format, in bold type, with no triangle, and unchangeable by the mouse.

The word frgh, followed by three numbers between 0 and 255, sets the RGB values
for the number values displayed by the number box. The default value is black (brgh
000).

The word max, followed by a number, sets the maximum value that can be dis-
played or sent out by the number box. The word max by itself sets the maximum to
None (removes a prior maximum value constraint).

The word min, followed by a number, sets the minimum value that can be dis-
played or sent out by the number box. The word min by itself sets the minimum to
None (removes a prior minimum value constraint).

271

numberbox FT B

rgh2

rgb3

set

(typing)

(Font menu)

Inspector

The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the number values displayed by the number box when it is highlighted or being
updated. The default value is black (brgh 00 0).

The word frgb, followed by three numbers between 0 and 255, sets the RGB values
for the background color of the number box when it is highlighted or being
updated. The default value is white (brgh 255 255 255).

The word set, followed by a number, sets the stored and displayed value to that
number without triggering output.

When a number box is highlighted (indicated by a filled-in triangle) in a patcher
window, numerical keyboard input is sent to the number box to change its value.
Clicking the mouse or pressing Return on Macintosh or Enter on Windows stores
a pending typed number.

The font and size of a number box can be altered by selecting it and choosing a dif-
ferent font or size from the Font menu.

The behavior of a number box object is displayed and can be edited using its
Inspector. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any number box object displays the
number box Inspector in the floating window. Selecting an object and choosing
Get Info... from the Object menu also displays the Inspector.

The number box Inspector lets you set the following attributes:

You can set the range for stored, displayed, typed, and passed-through values by
typing values into the Range Min. and Max. boxes. If the No Min. and No Max.
checkboxes are checked (the default state), the number box objects will have their
minimum and maximum values set to “None.” Unchecking these boxes sets the
minimum and maximum values to 0.

The Options section of the Inspector lets you set the display attributes of the num-
ber box. Other options available in the number box Inspector window are: Bold (to
display in bold typeface), Draw Triangle (to have an arrow pointing to the num-
ber, giving it a distinctive appearance), Output Only on Mouse-Up (to send a
number only when the mouse button is released, rather than continuously), Can't
Change (to disallow changes with the mouse or the computer keyboard), and
Transparent (to display only the number in the number box and not the box, so
that the number box resembles a comment object).

The Display Style pop-up menu lets you select the way that number values are rep-
resented. Decimal is the default method of displaying numbers. Hex shows num-
bers in hexadecimal, useful for MIDI-related applications. Roland Octal shows

272

numberbox FT B

Arguments

Output

int or float

numbers in a format used by some hardware devices where each digit ranges from
1t08;111is0and 88 is 63. Binary shows numbers as ones and zeroes. MIDI Note
Names shows numbers according to their MIDI pitch value, with 60 displayed as
C3. Note Names C4 is the same as MIDI Note Names except that 60 is displayed as
C4.With all display modes, numbers must be typed in the format in which they
are displayed.

The Color option lets you use a swatch color picker or RGB values used to display
the number box and its background in its normal and highlighted forms. Number
sets the color for the number displayed (default 0 0 0), Background sets the color
for the number box object itself (default 221 221 221), Highlighted Number sets
the color of the number display when the number box is selected or its values are
being updated (default 222 222 222), and Highlighted Background sets the color of
the number box when it is highlighted or being updated (default 0 0 0).

The Revert button undoes all changes you’ve made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

The number displayed in the number box is sent out the outlet. Numbers received

in the inlet or typed on the computer keyboard can exceed the limits of the num-

ber box, but the value that gets stored, displayed, and sent out will automatically be
limited to the specified range.

The number box does not resize itself automatically according to the size of the
number it contains. If the number received is too long to be displayed in the num-
ber box, it is displayed in abbreviated form followed by an ellipsis (...) in the case
of an int number box, or as a plus sign (+) in the case of a float number box.

The number is stored and sent out of the number box as usual, despite this abbre-
viated display.

213

numberbox T BC

Examples
[J [{100] amowis ped | Drag the .0 drsg the
highlighted integer part decimal part
> 63 » 3F | ‘ when selected [r—
[} IH[:mﬂelsl ‘;" 3.0‘ m ‘* 1000. | Beware of possible
i aeem i B imprecisions in flosting
ctlout 7 33333332 ctlout »329. | point srithmetic
Displays numbers passing through Can be used to output numbers
See Also
float Store a decimal number
int Store an integer value
Tutorial 3 About numbers
Tutorial 10 Number boxes

274

num key Interpret numbers typed

on the computer keyboard

Input

int

bang

clear

Arguments

Output

int

float

The number is an ASCII value received from a key or keyup object. When digits
are typed on the computer keyboard, numkey recognizes the ASCII values and
interprets them as the numbers being typed.

The keys recognized by numkey are the digits 0-9, the Delete (Backspace) key,
decimal point (period), Return, and Enter. Digits are combined as a single num-
ber and stored in numkey.

Sends the number currently stored in numkey out the left outlet, and resets the
stored number to 0.

Resets the stored number to 0.

Optional. A float argument causes numkey to understand the decimal point and
the fractional part of a number, and send out floats instead of ints. (The argument
does not, however, set an initial value for numkey. The initial value is always 0.)

When digits are typed on the computer keyboard, and the ASCII value (from key
or keyup) is received in the inlet, the digits are combined as a single number and
stored in numkey. The stored number is sent out the right outlet each time a new
digitis typed. The Delete key on Macintosh or Backspace key on Windows erases
the most recently typed digit, and sends the stored number out the right outlet.
The period key acts as a decimal point and causes numkey not to store subsequent
digits until a new number is started (unless there is a float argument). Typing the
Return or Enter keys on Macintosh or the Enter key on Windows sends the stored
number out the left outlet and resets the number stored in numkey to 0, so that a
new number can be typed in.

When there is a float argument, numkey understands decimal points and frac-
tional parts of a number, and sends out floats instead of ints.

275

num key Interpret numbers typed

on the computer keyboard

Examples
The :key |
e —— number is | Type number | |
key i key = Imumkey
|) Retwrn or - — cOmMmands in = ‘
‘%‘ it is being Enter sends] numkey | from the Mae P99 |
= typed it out the =——rp keyboard
po | p12 | Lt outlet 127 | p127 | pgmout a 1
Recognizes all numbers typed in

See Also

key Report key presses on the computer keyboard

keyup Report key releases on the computer keyboard

number box Display and output a number

Tutorial 20 Using the computer keyboard

276

Offer Store x,y pairs of

numbers temporarily

Input

list Inleftinlet: The first number is the x value, and the second number is the y value,
of an x,y pair to be stored in offer. The first number must be an int; the second
number may be a float, but will be Converted to int.

int Inleftinlet: The number specifies the x value of an x,y pair. If ay value has been
received in the right inlet, the two numbers are stored together in offer; otherwise,
offer looks for an x value that matches the incoming number, sends out the corre-
sponding y value, then deletes the stored pair. If there is no x value stored in offer
that matches the number received, offer does nothing.

Inright inlet: The number specifies ay value to be stored in offer. The next x value
(int) received in the left inlet causes the two numbers to be stored together as an
X,y pair.

float Inrightinlet: Converted toint.

clear Inleftinlet; Deletes the entire contents of offer.

Arguments

None.

Output

int If the number received in the left inlet matches the x value of an x,y pair stored in
offer, the corresponding y value is sent out and the stored pair is deleted.

Examples
1. Humbers are stored 2. When x is received, 3. Subsequent tries
45 4L X, pair ¥ is sent out and the have no result.
padr is deleted
32 |
96 |
A pair of numbers can be stored, then recalled a single time.
See Also
coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers together
table Store and graphically edit an array of numbers

217

Traffic control for
Onebang bang messages

Input
bang

stop

anything

Arguments

int

Output
bang

Examples

See Also

gate
Ggate

In left inlet: Causes a bang to be sent out the left inlet only if a bang has been
received in the right inlet since the last bang was sent out.

Inright inlet: Resets onebang to permit a bang to be sent out the next time a bang is
received in the left inlet.

In left inlet: Undoes the effect of a bang in the right inlet.

In either inlet: Converted to bang.

Optional. A non-zero argument sets onebang to permit a bang to be sent out the
left outlet the first time a bang is received in the left inlet.

When onebang receives a bang in its left inlet, it sends a bang out its left outlet only if
it has received a bang in its right inlet since the last time it sent out a bang. Other-
wise, it sends a bang out its right outlet.

]

metro 10000 poteina L
1 stripnote nreset
onebang T .
nomorethanone all other bangs ~ [onebang 1
bang getsthrough go out here detect (only) the
every 10 seconds first note played

Allow just one of (potentially) many bang messages to get through

Pass the input out a specific outlet
Pass the input out one of two outlets

278

Prevent multiple copies of
oneco py the same patcher from being opened

Use the onecopy object inside a patcher that you want to place in the extras folder for inclusion in
the Extras menu. When the patcher's name is chosen using the Extras menu, its window will be
brought to the front instead of opened a second time if it has already been loaded. The patch will
be loaded if it is not currently open. The onecopy object cooperates with the Extras menu to ensure
that only one copy of the patcher is opened at a time. However, opening the patcher containing a
onecopy object by choosing Open... from the File menu will open additional copies.

Input

None.
Arguments

None.
Output

None.
Example

loadbang

generate a master clock source,

metro S0

onecopy | |5 master_clock

the presence of ‘onecopy’ in this patch prevents it from being
accidentally opened multiple times.

Use onecopy to prevent multiple copies of the same patch from being opened from the Extras menu

See Also
thispatcher Send messages to a patcher
pcontrol Open and close subwindows within a patcher

279

I Open a dialog to
Opendlalog ask for a file or folder

Input
bang

set

sound

types

any symbol
Arguments

fold

sound

any symbol

Output

symbol

bang

Opens a standard Open Document dialog box for choosing afile.

The word set, followed by a four-letter symbol (e.g., TEXT, maxb) which specifies a
file type, sets the opendialog object to search for the designated file type when
opening the dialog box.

Sets opendialog to list audio files (AIFF, Sound Designer 11, NeXT/Sun, and WAV,
along with some generic data file types).

The word types, followed by one or more four-letter type codes, determines which
file types are listed by the opendialog object. Example type codes for files are TEXT
for text files, maxb for Max binary format patcher files, and AIFF for AIFF format
audio files. types with no arguments makes the object accept all file types, which is
the default setting.

One or more symbols are interpreted as one or more type codes used to deter-
mine which files are listed by the opendialog object.

Optional. Sets opendialog to choose folders instead of files.

Optional. Sets opendialog to list audio files (AIFF, Sound Designer 11, NeXT/Sun,
and WAV, along with some generic data file types). The QuickTime appendix lists
all the files that can be opened.

Optional. One or more symbols set the list of file types that determine which files
are listed by the opendialog object.

Out left outlet: The absolute pathname of the file chosen by the user asa symbol.
The output pathnames contain slash separators.

Absolute pathnames look like this:
“C./Max Folder/extras/mystuff/mypatch.pat”

The conformpath object can be used to convert paths of one pathtype and/or
pathstyle to another.

If the dialog box is cancelled by the user, a bang message is sent out the right outlet.

280

I Open a dialog to
Opend|a|0g ask for a file or folder

Examples

pick & folder. pick o file, Loadband) o
T fold srgument specifies tw we're =t TEXT ::ixeﬁaiza::m

Tpe ialog IO lDOklng tor fomrs, not files. files without

= if you cancel the dislog box, - opening the

prepeniset the right outlet bangs. SPendiatodl jialog box.

[*belldog:Desktop Folder /DemoNoise" | prepend read

the name of the folder you picked. [co1l |

See Also

conformpath
dialog
dropfile
date
filedate
filein
filepath
folder
strippath

read the file into the coll.

Look for folders or a certain kind of file

Convert paths of one pathtype and/or pathstyle to another
Open a dialog box for text entry

Define a region for dragging and dropping a file

Report current date and time

Report the modification date of afile

Read in afile of binary data

Report information about the current search path

List the files in a specific folder

Get filename from an absolute pathname

281

Send messages
OUtI et out of a patcher
Input

(patcher) Each outlet object in a patch will show up as an outlet at the bottom of an object
box when the patcher is used inside another patcher (as an object or a subpatch).
Messages received in the outlet object in the subpatch will come out of corre-
sponding outlet in the subpatch’s object box in the patcher that contains it.

Inspector

A descriptive Assistance message can be assigned to an outlet object and can be
edited using its Inspector. If you have enabled the floating inspector by choosing
Show Floating Inspector from the Windows menu, selecting any outlet object
displays the outlet Inspector in the floating window. Selecting an object and
choosing Get Info... from the Object menu also displays the Inspector.

Typing in the Describe Outlet text area specifies the content of the Assistance mes-
sage.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments

None.

Output

anything Any messages received by outlet in a subpatch are sent out the outlet of that sub-
patch, through patch cords.

Examples

notein E

" ’ tib

stripnote .

] random 25
patcher subpatch| Contents of the subpatch look like this: ‘-i-=-l.. Transpose up by
[- b sOme interval
[Fable | EI pitch posed pitch

Outlets of the subpatch object correspond to the outlet objects inside the subpatch

282

outlet

Send messages
! out of a patcher

See Also

bpatcher
forward
inlet
patcher
receive
send
Tutorial 26

Embed a visible subpatch inside a box

Send remote messages to a variety of objects
Receive messages from outside a patcher
Create a subpatch within a patch

Receive messages without patch cords

Send messages without patch cords

The patcher object

283

oval

Draw solid oval in
a graphic window

Input
bang

int

frgb

priority

Arguments

any symbol

int

In left inlet: Draws the oval using the current screen coordinates, drawing mode,
and color.

In left inlet: Sets the left screen coordinate of the oval and draws the shape.
In 2nd inlet: Sets the top screen coordinate of the oval.

In 3rd inlet: Sets the right screen coordinate of the oval.

In 4th inlet: Sets the bottom screen coordinate of the oval.

In 5thinlet: Sets the drawing mode of the oval. The following are drawing mode
constants; not all modes will be available on all operating systems.

Copy 0 blend 32
or 1 addPin 33
Xor 2 addOver 34
Bic 3 subPin 35
NotCopy 4 transparent 36
NotOr 5 adMax 37
NotXor 6 subOver 38
NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the oval according to the
graphics window’s current palette. This setting has no effect when the monitor is
in black and white mode.

In left inlet: The word frgh, followed by three numbers between 0 and 255, sets the
RGB values for the color of the oval the next time it is drawn.

In left inlet: The word priority, followed by a number greater than 0, sets an oval
object’s sprite priority in its graphics window. Objects with lower priority will
draw behind those with a higher priority.

Obligatory. The first argument to oval must be the name of a graphics window
into which the oval will be drawn. The window need not exist at the time the oval
object is created, but the oval will not be drawn unless the name matches that of
an existing and visible window.

Optional. Sets the initial sprite priority of the oval. If no priority is specified, the
default is 3.

284

Draw solid oval in
Oval a graphic window

Output

(visual) When the oval objects associated graphics window is visible, and a bang message
or a number is received in its left inlet, a shape is drawn in the window, and the
object’s previously drawn oval (if any) is erased.

Examples
Start both

1 1
(10, 350 2000 | [350, 10 2000 |

1 1

line 1 S0 line 1 S0

L\ L\

[+ S0 |[graphic Moving Ovals [+ 30|
IIf :If
pack pack
|g\ |g\
|$1 S0 $2 100 0 25 |$1 S0 $2 100 0 99
| 1eft, top, right, bottom, mode, color | 1eft, top, right, bottom, mode, color
oval Moving Ovals 2 oval Moving Ovals 3
Blue oval moves from left to vig Red oval moves from right to le

The oval object on the right will appear to pass in front of the one on the left
when both move across the screen, since it has a higher sprite priority

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics

Icd Draw graphics in a patcher window

rect Draw solid rectangle in a graphic window

ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects

285

pack

Combine numbers and
symbols into a list

Input

int

float

bang

any symbol

list

set

nth

send

The number is stored in pack as an item in a list, with its position in the list corre-
sponding to the inlet in which it was received. A number in the left inlet is stored
as the first item in the list, and causes the entire list to be sent out the outlet. If the
inlet in which the number is received has been initialized with a float or symbol
argument, the incoming number will be converted to a float or a blank symbol,
respectively.

The number is stored in pack as an item in a list, with its position in the list corre-
sponding to the inlet in which it was received. A number in the left inlet is stored
as the first item in the list, and causes the entire list to be sent out the outlet. If the
inlet in which the number is received has been initialized with an int or symbol
argument, the incoming number will be converted to an int or a (blank) symbol,
respectively. If no argument has been typed in, float is converted to int.

In left inlet: Causes pack to send out a list of the items currently stored.

If the inlet in which the symbol is received has been initialized with a symbol
argument, the symbol is stored in the corresponding location in pack. Otherwise,
the symbol is converted to 0 before being stored. A symbol in the left inlet triggers
output of the pack object’s contents.

Any multi-item message, regardless of whether it begins with a number, is treated
as a list by pack. The first item in the incoming list is stored in pack in the location
that corresponds to the inlet in which it was received, and each subsequent item is
stored as if it had arrived in subsequent inlets (limited by the number of inlets
available). A list received in the left inlet causes the entire stored list to be sent out
the outlet.

The word set, followed by any message, allows that message to be received by pack
without triggering any output. Although a set message may be received in any
inlet, it is only meaningful in the left inlet, which is the only triggering inlet. In
any other inlet, the word set is ignored and the rest of the message is used as nor-
mal.

The word nth, followed by the number of an inlet (starting at 1 for the leftmost
inlet), causes the value of the item stored at that location in pack to be sent out the
outlet.

In left inlet: The word send, followed by the name of a receive object, sends a list of
the currently stored items to all receive objects with that name, instead of out pack
object’s outlet.

286

pack

Combine numbers and
symbols into a list

Arguments

int, float, symbol - Optional. The number of inlets is determined by the number of arguments. Each

Output
list

argument sets an initial type and value for an item in the list stored by pack. If a
number argument contains a decimal point, that item will be stored as a float. If
the argument is a symbol, that item will be stored as a symbol. If there is no argu-
ment, there will be two inlets, and the two list items will be set to (int) 0 initially.
Note: Typing a list into an object box automatically identifies it as a pack object, so
you may omit the word pack from the object box, provided that you type in a list
of arguments (that has at least two items and begins with a number).

The length of the list is determined by the number of arguments. When input is
received in the left inlet, the stored list is sent out the outlet.

int, float, symbol When the nth message is received, the value of the specified item is sent out.

Examples

notein a

pack 0 0 O

See Also

bondo
buddy
match
swap
thresh
unpack

Zl

Tutorial 30

|1inesegment| |paintova1 I Ipaintrect
1]

I_?Z] bendin a 1
|

pack messagename 0 0 0 0 0
Group numbers Y

together in & list Collect diverse
messages to construct
a single message

Numbers and symbols may be mixed as needed in pack

Synchronize a group of messages

Synchronize arriving data, output them together

Look for a series of numbers, output it as a list

Reverse the sequential order of two numbers

Combine numbers into a list, when received close together
Break a list up into individual messages

Multi-purpose list processor

Number groups

287

paHEI [ﬁ Colored background area

The panel object lets you create rectangular background panels for use in creating user interfaces.
You can also create rectangles with rounded corners and shading which can also be used as but-
tons when used in conjunction with ubutton object.

Input

border ~ The word border, followed by a number, sets the size, in pixels of the panel object’s
border. The default is 1.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values
for the color (Background) of the panel object. The default value is gray (brgh 192
192 192).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values
for the border of the panel object. The default value is black (frgh 00 0).

rounded The word rounded, followed by a number, sets the size, in pixels of the rounding of
the panel object’s corners. The default is 0 (no rounding).

shadow The word rounded, followed by a positive or negative number, sets the size, in pixels
for a*“shadow” effect for the panel object. Positive numbers create a“raised”
shadow effect, and negative numbers created a*“recessed” effect. The defaultis 0
(no shadow).

size. The word size, followed by two numbers, specifies the width and height, in pixels,
of the panel object. The default panel size has a width of 69 and a height of 57.

Inspector

The behavior of a panel object is displayed and can be edited using its Inspector. If
you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any panel object displays the panel Inspector
in the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The Width and Height number boxes are used to set the size of the panel. The
default panel size has a width of 69 and a height of 57. Border Size specifies the
width, in pixels of the panel border. The default is 1. Entering a value in the
Shadow Size number box sets the size of the panel’s shadow. The default is 0 (no
shadow). The number, of pixels, worth of rounding for the panel is specified by
entering a number into the Rounded Corners box. The default is 0 (no rounding).

The Color option lets you use a swatch color picker or RGB values used to set the
border color and the frame color. Frame sets the color for the border of the panel
object (default 0 0 0), and Background sets the color for the panel (default 192 192
192).

288

panel Colored background area

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

Arguments

None.
Output

None.
Examples

|border 2, rounded 32, shadow 12
I

prepend brgb

Round the corners
o your panel and
add some shading
and you've got g button

Shop around for that perfect
background color uaing
the swatch object

See Also

fpic Display a picture from a graphics file
Icd Draw graphics in a patcher window
pict Draw picture in a graphic window
ubutton Transparent button, sends a bang

289

past

Report when input increases
beyond a certain number

Input
list ~ The numbers in the list are compared to the arguments. If all of the numbers in
the list are greater than or equal to the corresponding arguments, a bang is sent out
the outlet. Before a bang is sent again, however, past must receive a clear message, or
must receive another list in which the number that equaled or exceeded its argu-
ment goes back below (is less than) its argument.
intorfloat If there is only one argument, and the input is greater than or equal to it, and the
previous input was not greater than or equal to it, past sends a bang out the outlet.
clear Causes past to forget previously received input, readying it to send a bang mes-
sageagain.
set The word set, followed by one or more numbers, sets the numbers which must be
equaled or exceeded by the numbers received in the past object’s inlet.
Arguments
list Setsthe numberswhich must be equaled or exceeded by the numbers received in
theinlet.
int Setsasingle number which must be equaled or exceeded by the number received
in the inlet.
Output
bang If all of the arguments are equaled or exceeded by the numbers received in the
inlet, past sends out a bang. Otherwise, past does nothing. A bang is sent only as a
number increases past its threshold. Once the threshold has been passed, the
number must go below the threshold again, then increase past it, before another
bang will be sent.
Examples
[60 127 1 250 | Triggers o bang [|

|60 63 1 250 |Must go below before

another bang can be triggered [past 64 |
past 60 64 1 230 Only thggers & bang

when increasing past 64

Send out bang only when the input goes past the threshold in an upward direction

290

past

Report when input increases
beyond a certain number

See Also

maximum
peak
>

Output the greatest in a list of numbers
If a number is greater than previous numbers, output it

Is greater than, comparison of two numbers

291

patcher/p S ithin bt

Input
anything

Arguments

any symbol(s)

Output
anything

Examples

i

The number of inlets in a patcher object is determined by the number of inlet
objects contained within its subpatch window.

Optional. The subpatch can be given a name by the argument, so that its name
appears in the title bar of the subpatch window. The name in the title bar of the
subpatch window is displayed in brackets to indicate that it is part of another file.
If there is no argument typed in, the subpatch window is named [sub patch]. Differ-
ent patcher objects that share the same name are still distinct subpatches, and do
not share the same contents.

The number of outlets a patcher object has is determined by the number of outlet
objects contained within the subpatch window. Output can also be sent via send
and value objects contained in the subpatch. The actual messages sent out of a
patcher object depend on the contents of the subpatch.

When a patcher object is first created, the subpatch window is automatically
opened for editing. To view or edit the contents of a patcher object (or any sub-
patch object) later on, double-click on the object when the patcher window is
locked.

All the objects in a subpatch of a patcher object are saved as part of the patcher
which contains the object.

pa

The contents of the % Multiply

tcher squared * the number

subpatch look like this: e " .
F times itself

A patch can be contained (and saved) as part of another patch

292

patcher/p

Create a subpatch
within a patch

See Also

bpatcher
inlet

outlet
pcontrol
thispatcher
Tutorial 26

Embed a visible subpatch inside a box
Receive messages from outside a patcher
Send messages out of a patcher

Open and close subwindows within a patcher
Send messages to a patcher

The patcher object

293

Open and close subwindows
pCO ntro I within a patcher

Input

open
close

enable

load

shroud

help

Arguments

Output

Opens the patcher window of any subpatches or patcher objects connected to the
pcontrol object’s outlet.

Closes the patcher window of any subpatches or patcher objects connected to the
pcontrol object’s outlet.

The word enable, followed by any number other than 0, enables the MIDI objects
contained in the subpatches or patcher objects connected to the pcontrol object’s
outlet. A message of enable 0 disables the MIDI objects in those subpatches.

If a second non-zero numerical argument is added, the enable message will dis-
able/enable the patcher and its subpatchers. The enable message also affects the
enabling/disabling of MSP audio processing (in addition to MIDI) within the
selected patch.

The word load, followed by the name of a patcher file, opens that file if it can be
found in Max’s search path. The file name may optionally be followed by up to
nine numbers and/or symbols, which will be substituted for the appropriate
changeable # arguments (#1 to #9) in the patch being opened.

The word shroud, followed by the name of a patcher file, opens that file but does not
show its window. (Use this message with care, since having patchers open but
invisible can potentially lead to some disconcerting results.)

The word help, followed by a symbol, opens a help file in Max’s max-help folder
with the name of the symbol followed by .help.

None.

Any subpatches or patcher objects connected to the pcontrol object’s outlet can
have their patcher window opened or closed, or MIDI enabled/disabled, when
the appropriate message is received in the inlet of pcontrol.

294

Open and close subwindows
pCO ntro I within a patcher

Examples
[open | [close | [} |
Twn the MIDI capabilities
‘ of "limitNotes" on or off
pcontrol
Display the contents of [peontrol
"About This Patch” , '
patcher about This Patch limitNotes S0 1
Show/hide a subpatch window, or enable/disable its M1DI objects
See Also
bpatcher Embed a visible subpatch inside a box
inlet Receive messages from outside a patcher
patcher Create a subpatch within a patch
thispatcher Send messages to a patcher
Tutorial 40 Automatic actions

295

eak If a number is greater than
p previous numbers, output it

Input

int Inleftinlet: If the input is greater than the value currently stored in peak; it is
stored as the new peak value and is sent out.

Inright inlet: The number is stored in peak as the new peak value, and is sent out.
float ~ Converted toint.

list Inleftinlet: The second number is stored as the new peak value and is sent out,
then the first number is received in the left inlet.

bang Inleftinlet: Sends the currently stored peak value out the left outlet.

Arguments

None. The initial value stored in peak is 0.

Output

int Outleft outlet: New peak values are sent out. (A number received in the right inlet
Is always the new peak value.)

Out middle outlet: If the number received is a new peak value, the output is 1. If
the number received in the left inlet is not a new peak value, the output is 0.

Out right outlet: If the number received is a new peak value, the output is0. If the
number received in the left inlet is not a new peak value, the output is 1.

Examples
1, 4,5, -9,3,7,86,2 Reset mazximum value |34|
[ﬂ Initial macdmum value
peak peak
If greater than the masdmum, it I |
27 becomes the new minimum. P34 | P | po_ |
Find the greatest in a series of numbers A number in the right inlet
always sets a new peak

296

peak

If a number is greater than
previous numbers, output it

See Also

maximum
past
trough

>

Output the greatest in a list of numbers
Report when input increases beyond a certain number

If a number is less than previous numbers, output it
Is greater than, comparison of two numbers

297

pgmin

Output received
MIDI program change values

Input
(MIDI)

enable

port

int

(mouse)

Arguments

a-z
(MIDI name)

a-zand int

int

Output

int

pgmin receives its input from a MIDI program change message received from a
MIDI input device.

The message enable 0 disables the object, causing it to ignore subsequent incoming
MIDI data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by an
enable message to a pcontrol object.

The word port, followed by a letter a-z or the name of a MIDI input port or device,
sets the port from which the object receives incoming program change messages.
The word port is optional and may be omitted.

The number is treated as if it were an incoming MIDI program change value. If
there isaright outlet, 0 is sent out in lieu of a MIDI channel number. The program
number plus 1 is sent out the left outlet, and is not limited in the range 1 to 128.

Double-clicking on a pgmin object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port from which to receive incoming program change
messages. If there is no argument, pgmin receives from all channels on all ports.

Optional. The name of a MIDI input device may be used as the first argument to
specify the port.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to receive program change messages. Channel
numbers greater than 16 will be wrapped around to stay within the 1-16 range.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

If a specific channel number is included in the argument, there is only one outlet.
The output is the incoming program number on the specified channel and port.
Note: The pgmin object always adds 1 to the incoming program number. Thus,

an incoming program change value of 32 will come out the outlet of pgmin as 33.

If there is no channel number specified by the argument, pgmin will have a second
outlet, on the right, which will output the channel number of the incoming pro-
gram change message.

298

I Output received
pg min MIDI program change values

Examples
Receive from evenrwhere Receive only from port b Only from port b, channel 13
pamin pgmin b pamin b 13
1 1 1
S SN L | Owpw of pgmin
j _j J is always 1 greater
: than the actual
bz] PIE] B2 icoming velue
program channel program channel program
Program changes can be received from everywhere,
a specific port, or a specific port and channel
See Also
midiin Output received raw MIDI data
pgmout Transmit MIDI program change messages
Tutorial 16 More MIDI ins and outs
Using MIDI Using Max with MIDI
Ports How MIDI ports are specified

299

Transmit MIDI program
pg mo Ut change messages

Input

int

float

list

enable

port

(mouse)

Arguments

a-Z

a-zand int

(MIDI name)

int

In leftinlet: The number has 1 subtracted from it and then is transmitted as a pro-
gram change value on the specified channel and port. Numbers are limited
between 1 and 128, and are sent out as program changes 0 to 127.

In right inlet: The number is stored as the channel number on which to transmit
the program change messages.

Converted to int.

In left inlet: The first number is the program number +1, and the second number
is the channel, of a MIDI program change message, transmitted on the specified
channel and port.

The message enable 0 disables the object, causing it not to transmit MIDI data. The
word enable followed by any non-zero number enables the object once again,
even if the entire patcher window has had its MIDI disabled by an enable message
to a pcontrol object.

The word port, followed by a letter a-z or the name of a MIDI output port or
device, specifies the port used to transmit the MIDI messages. The word port is
optional and may be omitted.

Double-clicking on a pgmout object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port for transmitting MIDI program change messages.
When a letter argument is present, channel numbers greater than 16 received in
the right inlet will be wrapped around to stay within the 1-16 range. If there is no
argument, pgmout initially transmits out port a, on MIDI channel 1.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to transmit program change messages. Channel
numbers greater than 16 will be wrapped around to stay within the 1-16 range.

Optional. The name of a MIDI output device may be used as the first argument to
specify the port.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

300

pg mOUt Transmit MIDI program

change messages

Output

(MIDI) There are no outlets. The output is a MIDI program change message transmitted
directly to the object’s MIDI output port.

Examples

m WAl transmit m WAl transmit
program change 20 on program change 20 on
channel 13 of port a channel 13 of port b

pgmout a pamout 1

Letter argument transmits to only one port. Otherwise, number specifies both port and channel

See Also

midiout Transmit raw MIDI data

pgmin Output received MIDI program change values
Tutorial 16 More MIDI ins and outs

Using MIDI Using Max with MIDI

Ports How MIDI ports are specified

301

pict

Draw picture in
a graphic window

Input
bang

clear

int

priority

Arguments

symbol

int

Output

(visual)

Draws the picture stored in the pict object if its associated graphics window is vis-
ible.

Erases the picture drawn in the graphics window.

In left inlet: A nonzero number draws the picture in its associated graphics win-
dow if that window is visible. 0 erases the picture.

In middle inlet: Sets the left edge of the picture, in pixels, relative to the left edge of
the graphics window (effective the next time the picture is drawn).

Inright inlet: Sets the top edge of the picture, in pixels, relative to the top edge of
the graphics window’s drawing area (effective the next time the picture is drawn).

The word priority, followed by a number greater than or equal to 0, sets the object’s
sprite priority to that number. Refer to the Graphics section of the Tutorials and
Topics manual for a discussion of sprite priorities.

Obligatory. The first argument to pict must be the name of a graphic object whose
window will be used to draw the picture. The second argument must be the name
of a Quicktime PICT file which will be loaded when the object is created. PICT
files have .pct filename extensions on Windows.

Optional. Following the window name and file name, a number greater than or
equal to 0 sets the initial sprite priority. The default priority is 0, which means the
picture will be drawn behind all other objects. Following the priority number, the
next two arguments specify the left and top offsets of the image, in pixels, relative
to the top left corner of the graphics window’s drawing area.

When the pict object’s associated graphics window is visible, and a bang message
oranonzero int is received in its inlet, the stored picture is drawn in the window.

302

p|Ct Draw picture in

a graphic window

Examples
Scroll the picture from left to right
@Gmphics window to counter -16 64
display the picture metro 200 "b=10-' Start and end
| offsereen

graphic Display
0 20 640 480 pict Display 160x120.PICT

Picture can be displayed or moved around in the graphics window

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics

Icd Draw graphics in a patcher window

oval Draw solid oval in a graphic window

rect Draw solid rectangle in a graphic window

ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
Tutorial 42 Graphics

303

pictctrl 3 o it

The pictctrl object is a user interface object for creating buttons, switches, knobs, and other con-
trols. It can open PICT files and, if QuickTime Version 3.0 or later is installed, other picture file
formats that are listed in the QuickTime appendix.Since the pictctrl object uses images from a pic-
ture file for its appearance, you can create controls with whatever appearance you desire.

Note: The pictctrl object requires that QuickTime be installed on your system to open any files
other than PICT files. If you are using Max on Windows, we recommend that you install Quick-
Time and choose a complete install of all optional components.

Input

int Sets the value of the button or knob set by the control, and sends the current value
out the outlet. In button and toggle mode, the value must be either 0 or 1. In dial
mode, the range of values is determined by pictctrl object’s Range attribute.

set The word set, followed by a number, sets the value of the button or knob to that
number, without triggering output.

bang Sends the current value of the pictctrl to the outlet.

clickincrement ~ The word clickincrement, followed by a nonzero value, sets the output value to incre-
ment by 1 each time the object is clicked (Click to Increment mode). Any move-
ment of the mouse after clicking is ignored. When the uppermost value is
reached, the value returns to zero with the next click. All other mouse tracking
modes are disabled. clickincrement 0 disables Click to Increment mode.

clickedimage ~ The word clickedimage, followed by a nonzero value, tells the pictctrl object to use
an alternate set of image frames in your picture file to give the dial a different
appearance when the user clicks on it and drags the mouse pointer. clickedimage 0
disables this feature.

picture The word picture, followed by a symbol that specifies a filename, designates the
picture file that the pictctrl object will use for the control’s button or dial file. The
symbol used as a filename must either be the name of a file in Max’s current search
path, or an absolute pathname for the file (e.g.“MyDisk:/Documents/Ul Pictures/Cool-
Knob.pct”). The word picture by itself puts up a standard Open Document dialog
box and displays the common graphics files supported by QuickTime.

active The word active, followed by a 0 or 1, toggles mouse control of the pictctrl object.
The defaultis 1 (enabled). If a separate set of inactive images is present in the pictc-
trl object’s picture file and if the inactive images attribute is set, the active message
will also change the appearance of the control.

inactiveimage ~ The word inactiveimage, followed by a nonzero value, tells the pictctrl object that
your picture file has an additional row of images for its inactive state. The default
is 0 (no inactive state).

304

pictctrl

- Picture-based
! control

imagemask

tracking

range

offset

multiplier

frames

trackhorizontal

trackvertical

trackcircular

ratio

The word imagemask, followed by a nonzero value, tells the pictctrl object that your
picture file has an image mask. The default is 0 (no image mask).

The word tracking, followed by a 0 or 1, toggles live tracking. If live tracking is on,
the pictctrl object will change its state if the mouse moves in and out of the rectan-
gular border of the object with the mouse button held down. tracking 0 disables live
tracking

The word range, followed by a number, sets the range of the pictctrl object when it
is in dial mode. The default value is 128.

The word offset, followed by a number, sets an offset value. When pictctrl is in dial
mode, the offset value is added to the object's value before being sent out the out-
let. The default offset value is 0.

The word multiplier, followed by a number, specifies a multiplier value. When pictc-
trlis in dial mode, the object's value is multiplied by this number before being
sent out the outlet. The multiplication happens before the addition of the Offset
value. The default multiplier value is 1.

The word frames, followed by a number, specifies the number of images (columns)
in the picture file. The number of frames does not have to be the same as the range
of the control; the pictctrl object will use the nearest image for any given value.

The word trackhorizontal, followed by a nonzero value, sets the pictctrl object to
respond when you click on it and drag the mouse horizontally; moving the
mouse to the right increases the object’s value,and moving it to the left decreases
the value. Enabling this mode of operation disables the Circular Tracking and Click
to Increment modes (see the clickincrement and trackcircular messages).

The word trackvertical, followed by a nonzero value, sets the pictctrl object to
respond when you click on it and drag the mouse vertically; moving the mouse
up increases the object’s value, and moving it down decreases the value. Enabling
this mode of operation disables the Circular Tracking and Click to Increment
modes (see the clickincrement and trackcircular messages).

The word trackcircular, followed by a nonzero value, sets the pictctrl object to
respond when you click on it and drag the mouse in a circular arc relative to the
control's center (Circular Tracking mode). Moving the mouse clockwise increases
the control’s value, and moving it counterclockwise decreases its value. Enabling
circular tracking disables all other tracking modes. trackcircular 0 disables circular
tracking.

The word ratio, followed by a number, specifies how many pixels the mouse
pointer must move before the value of the dial changes by one increment. If the
pictctrl object is using Circular Tracking, the ratio message specifies how many

305

pictctrl

- Picture-based
! control

Inspector

degrees the cursor must move, relative to the center of the object, to increase the
value by one.

The behavior of a pictctrl object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any pictctrl object displays the pictctrl Inspec-
tor in the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

Some of the pictctrl object’s attributes are associated with one of the three modes
of this object—Button Mode, Toggle Mode, and Dial Mode. The pictctrl Inspector
lets you set the following attributes:

Button mode imitates the behavior of simple buttons in graphical user interfaces,
such as the “OK” and “Cancel” buttons found in dialog boxes. In this mode, the
pictctrl object outputs a 1 when the user clicks on the object,and a 0 when the user
either moves the mouse off of the object or releases the mouse button. Button
mode is also useful for display objects, such as simulated LEDs and status indica-
tors.

Toggle mode is similar to button mode, except that the object changes state from 0
to 1 (or 1 to 0) with every mouse click. Toggle mode imitates the behavior of
check boxes.

Checking Live Tracking can only be done if you're using the pictctrl object’s button
mode. If this checkbox is checked, pictctrl will change state if the mouse moves in
and out of the rectangular border of the object with the mouse button held down.

Dial mode can be used to create controls that act like knobs, or any other control
that has more than two distinct values. (You could use dial mode to create sliders,
but the pictslider object is better suited to this task.) Dial mode lets you set a range,
offset, and multiplier for its values, just as with Max’s hslider, uslider, and dial
objects. When you click on the object and drag, its value changes. pictctrl can
track either horizontal and/or vertical cursor motion, or circular motion. ignor-
ing subsequent drag motions. When using dial mode you must specify the num-
ber of image frames that are in the picture file you're using (see below). The
number of images does not have to be the same as the range of values. For exam-
ple, a knob could have a range of 128 but only 30 distinct images. There is little
reason to create a control with more image frames than its range, since manipu-
lating the control could change its appearance without causing any output.

When using dial mode you must specify the number of image frames that are in
the picture file you're using (see below). The number of images does not have to
be the same as the range of values. For example, a knob could have a range of 128
but only 30 distinct images. There is little reason to create a control with more

306

pictctrl 3 o it

image frames than its range, since manipulating the control could change its
appearance without causing any output.

When the pictctrl object is in dial mode, you can specify a Range for the object
which will automatically limit numbers received in the inlet to between 0 and the
number 1 less than the specified range, a Multiplier—a number by which all num-
bers will be multiplied before being sent out—and an Offset—which will be
added to the number, after multiplication. The default object has a range of 128,a
multiplier of 1, and an offset of 0.

The Image Frames box lets you specify the number of distinct images (columns)
in the picture file. The number of frames does not have to be the same as the range
of the control; pictctrl will use the nearest image for any given value.

If Horizontal Tracking or \ertical Tracking is checked, the pictctrl object will
respond when you click on it and drag the mouse in the corresponding direction.
Dragging the mouse to the right and/or up increases the pictctrl object’s value;
dragging it left and/or down decreases its value. Enabling either of these attributes
disables the Circular Tracking and Click to Increment modes (see below).

If Circular Tracking is checked, the control will respond when you click on it and
drag the mouse in a circular arc relative to the control’s center. Dragging the
mouse clockwise increases the control’s value; dragging it counterclockwise
decreases its value. Enabling Circular Tracking disables all other tracking modes.

If Click to Increment is checked, the control’s value increases by one every time it is
clicked. Subsequent dragging motions are ignored. When the uppermost value is
reached, the value returns to zero with the next click. Enabling Click to Increment
disables all other tracking modes.

If Clicked Images is checked, pictctrl uses an alternate set of image frames in your
picture file to give the dial a different appearance when the user clicks on it and
drags the mouse pointer.

The Tracking Ratio attribute specifies how many pixels the mouse pointer must
move before the value of the dial changes by one increment. For the circular track-
ing mode, the tracking ratio specifies how many degrees the cursor must move,
relative to the center of the object, to increase the value by one.

The Has Inactive Images and Image Masks checkboxes specify that your picture file
has additional rows of images for its inactive state, and whether it has image
masks.

The Picture File option lets you choose a picture file for the pictctrl object’s knob
by clicking on the Open button. The current file’s name appears in the text box to
the left of the button. You can also choose a file by typing its name in this box, or
by dragging the file’s icon from the Finder into this box.

307

pictctrl

, Picture-based
E control

Arguments

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

Picture File Format

When you create a new pictctrl object in a patcher window, it has no associated
picture file. Use the Open button in the inspector to choose a picture file for the
control. It can open PICT files and, if QuickTime \ersion 3.0 or later is installed,
other picture file formats that are listed in the QuickTime appendix. The layout of
the picture in the file varies depending on which mode of operation the pictctrl
uses. All three modes require that the pictures be made up of a grid of images, in
which all images have the same width and height.

Button mode has the simplest layout:

Mot Clicked
value = 0

hactive
value = 0

MNot-Clicked
Mask
value = 0

hactive
Mask
value = 0

The first row of images is mandatory: these two images are used for the idle and
clicked states (values zero and one, respectively) of the button. The next row of
images, if present, is used for the control when it is in its inactive state. The next
rows contain the masks for the top row of images, and the inactive images if
present.

308

= Picture-based

. control

-
L

pictetrl

Toggle mode has a similar layout:

In this mode, the top two rows are mandatory. The first row of images are used
when the control’s value is zero, the next row when its value is one. The third row
is optional; it is used for the control when it is in its inactive state. (Note that there
are no “clicked” images for the inactive state, since when inactive, the control
ignores mouse clicks.) The next rows contain masks for the images.

309

pictctrl

Picture-based
B control

Output

int

The Dial mode layout varies in size depending on how many image frames it has,
which must be the same as the Image Frames parameter as set in the inspector:

Clicked
image 0

hactive
image 0

Clicked
Mask
image 0

hactive
Mask
image 0

The first row of images is mandatory: one image for each visually distinct state of
the control. Dials need as many picts as you wish them to have visible states. Note
that dials can receive and send a larger range of values than are represented by
picts (e.g. your dial can have a range of 128 even if you only use eight pict frames
to represent the range of the dial). The next row of images is optional, and is used
when the user is clicking and dragging on the object to change its value. The next
row is also optional; (Note that there are no“clicked” images for the inactive state,
since when inactive, the control ignores mouse clicks.) The following rows con-
tain masks for the images.

The current value of the pictctrl object. In toggle and button modes this will be a0
oral.Indial mode, this value is specified by the range, offset, and multiplier that
you set in the Inspector window.

310

pictctrl 2 o it

-y

Examples

- twn on the musie
e RN

l control the volume.
metro 250

I |
random 48 [|[random 48
\b b\
+ 36 + 36
—— l F\
makenote 64 1000

|
\l*\

noteout

step 1.

Create customized controls to create a more attractive user interface

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
matrixctrl Matrix-style switch control

pictslider Picture-based slider

rslider Display or change a range of numbers

slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang

uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

311

pictslider [P e soniral

The pictslider object is a slider control that uses pictures in external files for its appearance. It uses
two pictures—one for the “knob” (the part that you move with the mouse, corresponding to the
part of a physical slider that you move with your fingers) and one for the background over which
the knob moves. The pictslider object has default pictures that are used if you do not want to sup-
ply pictures of your own, but its intended use is creating controls with customized appearances.

You can use the pictslider object to create horizontal or vertical sliders, as well as two-dimensional
controllers (virtual trackpads or joysticks).

Note: The pictslider object requires that QuickTime be installed on your system to open any files
other than PICT files. If you are using Max on Windows, we recommend that you install Quick-
Time and choose a complete install of all optional components.

Input

bang Inleftinlet: Sends the current values of the pictslider to its outlets. The horizontal
value is sent out the left outlet; the vertical value out its right outlet.

int Inleftinlet: sets the pictslider object’s horizontal value. The value is also sent out
the left outlet, and the pictslider object’s current vertical value is sent out the right
outlet.

Inright inlet: sets the pictslider object’s vertical value. The value is also sent out the
right outlet, and the control’s current horizontal value is sent out the left outlet.

float Converted toint.

list Inleftinlet: A list of two numbers sent to the left inlet sets the pictslider object’s
horizontal value to the first number and its vertical value to the second. The two
values are sent out the left and right outlets.

active Inleftinlet: The word active, followed by a 0 or 1, toggles mouse control of the
pictslider object. The default is 1 (enabled). If a separate set of inactive images is
present in the pictslider object’s graphics file and if the inactive images attribute is
set, the active message will also change the appearance of the control.

bkgnddrag In left inlet: The word bkgnddrag, followed by a 0 or 1, toggles background drag
mode for the pictslider object. When this mode is enabled, clicking and dragging
anywhere in the background area of the slider will move the knob; the knob will
move relative to the motion of the mouse, just as if you had clicked in the knob
itself. The message bkgnddrag 0 disables this mode. You must also uncheck the
KnobJumps to Click Location checkbox in the pictslider object's inspector or send
the object a jump 0 message to enable this mode.

bkgndpicture The word bkgndpicture, followed by a symbol that specifies a filename, designates
the graphics file that the pictslider object will use for the control’s background
image. The symbol used as a filename must either be the name of a file in Max’s

312

pictslider [P e soniral

bkgndsize

bottommargin

bottomvalue

clickedimage

horizontaltracking

imagemask

inactiveimage

invisiblebkgnd

jump

knobpicture

current search path, or an absolute pathname for the file (e.g. “MyDisk:/Documents/Ul
Pictures/CoolBkgnd.pct™).

In left inlet: The word bkgndsize, followed by a nonzero value, tells the pictslider
object to change the size of the object to match the size of the background picture.
After receiving this message, the object’s size cannot be changed. bkgndsize 0 allows
the control to be resized in the usual manner by dragging its lower-right corner.

In left inlet: The word bottommargin, Followed by an int greater than or equal to
zero, sets the bottom margin, in pixels, for the pictslider. The margin reduces the
area in which the knob moves; if a margin is zero, the knob can move all the way
to the bottom of the slider.

In left inlet: The word bottomvalue, followed by an int, sets the values emitted by the
pictslider object when the knob is moved as far as possible to the bottom. The
message hottomvalue 100 will cause the control to send 100 out of its left outlet when
the knob is moved all the way to the bottom.

In left inlet: The word clickedimage, followed by a nonzero value, specifies that the
graphics file used by the pictslider object contains an additional image to be dis-
played when the control is clicked.

In left inlet: The word horizontaltracking, followed by a float, sets the horizontal
tracking ratio for movements of the pictslider object’s knob. The default value is
1.0. Values greater than one cause the knob to move more quickly when dragged,;
values less than one cause it to move more slowly.

In left inlet: The word imagemask, followed by a nonzero value, specifies that the
graphics file used by the pictslider object contains image masks.

In left inlet: The word inactiveimage, followed by a nonzero value, specifies that the
graphics file used by the pictslider object contains additional images for the
object’s inactive state.

In left inlet: The word invisiblebkgnd, followed by a nonzero value, tells the pictslider
object to not draw any background image. The knob will appear to float above
any objects underneath it.

In left inlet: The word jump, followed by a nonzero value, makes pictslider move
the knob to the position of the cursor if you click in the object outside of the knob.
jump 0 disables this behavior; you must click in the knob itself to move it.

In left inlet: The word knobpicture, followed by a symbol that specifies a filename,
designates the graphics file that the pictslider object will use for the control’s knob
file. The symbol used as a filename must either be the name of a file in Max’s cur-
rent search path, or an absolute pathname for the file (e.g.“MyDisk:/Documents/Ul Pic-
tures/CoolKnob.pct™). The word knobpicture by itself puts up a standard Open

313

pictslider [P e soniral

leftmargin

leftvalue

movehorizontal

movevertical

rightmargin

rightvalue

scaleknob

set

topmargin

Document dialog box and displays the common graphics files supported by
QuickTime.

In left inlet: The word leftmargin, followed by an int greater than or equal to zero,
sets the left margin, in pixels, for the pictslider. The margin reduces the areain
which the knob moves; if a margin is zero, the knob can move all the way to the
left of the slider.

The word leftvalue, followed by an int, sets the values emitted by the pictslider
object when the knob is moved as far as possible to the left. The message leftvalue
100 will cause the control to send 100 out of its left outlet when the knob is moved
all the way to the left.

In left inlet: The word movehorizontal, followed by a nonzero value, allows the knob
to change when the mouse is moved horizontally. The message movehorizontal 0
prevents the knob from moving when the mouse is moved horizontally.

In left inlet: The word movevertical, followed by a nonzero value, allows the knob to
change when the mouse is moved vertically. The message movevertical 0 prevents
the knob from moving when the mouse is moved vertically.

In left inlet: The word rightmargin, followed by an int greater than or equal to zero,
sets the right margin, in pixels, for the pictslider. The margin reduces the area in
which the knob moves; if a margin is zero, the knob can move all the way to the
right of the slider.

In left inlet: The word rightvalue, followed by an int, sets the values emitted by the
pictslider object when the knob is moved as far as possible to the right. The mes-
sage rightvalue 100 will cause the control to send 100 out of its left outlet when the
knob is moved all the way to the right.

In left inlet: The word scaleknob, followed by a nonzero value, tells the pictslider
object to stretch or shrink the knob when you change the size of the entire object.
scaleknob 0 will result in the knob always being drawn at its original size.

In left inlet: The word set, followed by a number, sets the pictcslider object’s hori-
zontal value but does not send the value out its left outlet. The word set, followed
by two numbers, sets the pictslider object’s horizontal value to the first number
and its vertical value to the to the second number, but does not send the values out
its outlets.

Inright inlet: The word set, followed by a number, sets the pictslider object’s verti-
cal value, but does not send the value out its right outlet.

In left inlet: The word topmargin, followed by an int greater than or equal to zero,
sets the top margin, in pixels, for the pictslider. The margin reduces the area in

314

pictslider [P e soniral

topvalue

track

verticaltracking

Inspector

which the knob moves; if a margin is zero, the knob can move all the way to the
top of the slider.

In left inlet: The word topvalue, followed by an int, sets the values emitted by the
pictslider object when the knob is moved as far as possible to the top. The message
topvalue 100 will cause the control to send 100 out of its left outlet when the knob is
moved all the way to the top.

In left inlet: The word track, followed by a float, sets the tracking ratio for horizon-
tal movements of the pictslider object’s knob.

Inright inlet: The word track, followed by a float, sets the tracking ratio for vertical
movements of the pictslider object’s knob.

In left inlet: The word verticaltracking, followed by a float, sets the vertical tracking
ratio for movements of the pictslider object’s knob. The default value is 1.0. Values
greater than one cause the knob to move more quickly when dragged; values less
than one cause it to move more slowly.

The behavior of a pictslider object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating
Inspector from the Windows menu, selecting any pictslider object displays the
pictslider Inspector in the floating window. Selecting an object and choosing Get
Info... from the Object menu also displays the Inspector.

The pictslider Inspector lets you set the following attributes:

The Margin number boxes set the corresponding margin for the pictslider, in pix-
els. The margins reduce the area in which the knob moves. If a margin is zero, the
knob can move all the way to the corresponding edge of the slider. If the left mar-
gin is five, for example, the knob can move no closer than five pixels to the left
edge of the slider.

The Value number boxes set the values emitted by the control when the knob is
moved as far as possible in the corresponding direction. For example, setting the
right-hand number box to 100 will cause the control to send 100 out of its left
outlet when the knob is moved all the way to the right. (The value is sent out the
left outlet because the left outlet emits values for horizontal movements of the
knob.) Values for intermediate positions of the knob are calculated by interpolat-
ing between the left and right or top and bottom values. Either one of each pair of
numbers can be larger, so for example if the top value is -100 and the bottom is
50, the vertical value will decrease from 50 to -100 as the knob is moved from the
bottom to the top.

315

pictslider [P e soniral

If the Move Horizontal or Move \ertical checkboxes are checked, the knob can be
moved in the corresponding direction by clicking and dragging it with the
mouse. If you're creating a traditional slider that moves only horizontally or verti-
cally, check the appropriate checkbox and leave the other unchecked.

Selecting the Knob Jumps to Click Location option lets you click anywhere within
the pictslider object’s bounding rectangle and have the knob jump to this location.
If unchecked, you must click and drag the knob itself to move it.

The Has Inactive Images checkbox tells the pictslider object that your graphics files
have additional images for the control’s inactive state. Leave this box unchecked if
the picture files used by the control do not have these images.

The Tracking Ratio values determine the responsiveness of the knob to mouse
movements. The default value is 1.0. Values greater than one cause the knob to
move more quickly when dragged; values less than one cause it to move more
slowly.

There are four attributes listed in the Inspector that let you change the appearance
of the slider’s knob. You can choose a graphics file for the slider’s knob by clicking
on the Open button. The current file's name appears in the text box to the left of
the button. You can also choose a file by typing its name in this box, or by drag-
ging the file’s icon from the Finder into this box.

Checking the Scale Knob When Control Size Changes option allows the knob's
image to be stretched or compressed when you resize the pictslider, in proportion
to the relative sizes of the object’s bounding box and the background picture. If
unchecked, the knob’s image will be drawn at its original size. Since stretched
images tend to look blocky and uneven, you will usually want to draw an image
for your knob at the size that you want the knob to be. This knob-scaling attribute
is useful for experimenting with the size and layout of the pictslider without hav-
ing to redraw the knob's picture file.

Checking the Clicked Image option will use an alternate set of image frames in
your picture file to give the knob a different appearance when the user clicks and
drags it.

If you want to use image masks in your knob’s graphics file to draw the knob,
select the Image Mask option. Masks can be used to create knobs with a non-rect-
angular shape. If your knob picture has separate images for the clicked and/or
inactive state, you must supply masks for those as well.

There are three attributes listed in the Inspector that let you change the appear-
ance of the slider’s background. You can choose a graphics file for the slider’s
background by clicking on the Open button. The current file's name appears in
the text box to the left of the button. You can also choose a file by typing its name
in this box, or by dragging the file's icon from the Finder into this box.

316

pictslider [P e soniral

Arguments

If Size Control to Background Image is checked, the pictctrl object’s size is adjusted
to match the size of the image chosen for the background. When this attribute is
enabled, you cannot change the object’s size in the usual manner by clicking and
dragging its lower-right corner; its size is fixed. If unchecked, the image is
stretched or shrunk to fill the size of the slider. Since stretched images tend to look
blocky and uneven, you will usually want to draw an image for your slider at the
size that you want the slider to be. Leaving this sizing attribute unchecked is useful
for experimenting with the size and layout of the pictslider without having to
redraw the slider’s picture file.

Checking the Invisible Background box tells the pictslider object not to draw any-
thing for the slider’s background. The knob will appear to “float” over any under-
lying objects.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

Picture File Format

The pictslider object uses the two picture files: one for the background, and one
for the knob that is moved over the background with the mouse.

Background picture files can be in PICT format, or if QuickTime \ersion 3.0 or
later is installed, one of the other graphics file formats listed in the QuickTime
appendix. Background picture files must have the following layout:

Nomnd hactive
mage mage

Only one image is required; if only one image is supplied, it will be used for draw-
ing all states of the background. Additional images are placed to the right of the
firstimage. You can add images for the inactive state of the control. The inactive
image will be used after the control has received an active 0 message.

317

pictslider [e oortral

Output

int

Knob files must be in PICT format with the following layout:

Not-Clicked Clicked hactive
Mask has k Mask

The picture is made up of a grid of one or more images. All images have the same
width and height.

Only one image is required; if only one image is supplied, it will be used for draw-
ing all states of the knob. Additional images are placed to the right of the first
image. You can add images for either or both the “clicked” or inactive states of the
control. The“clicked” image will be shown when the user is dragging the control’s
knob. The inactive image will be used after the control has received an active 0
message.

Image masks can be used to create knobs with non-rectangular outlines. These
masks are directly below their corresponding images in the picture file. If you
wish to use masks for any of the knob images, you must provide masks for all of
them—each image will have a corresponding row of masks. Black pixels in the
mask image create areas of the corresponding image that will be drawn, and white
pixels create invisible areas.

Moving the slider’s knob by clicking and dragging it with the mouse, or sending
values to either of its inlets, causes its horizontal value to be emitted from the left
outlet and its vertical value to be emitted from the right outlet. Incoming values
are constrained to the ranges determined by the top/bottom and left/right values
set in the inspector.

318

pictslider [P e soniral

Examples

See Also

dial

hslider
kslider
multislider
pictctrl
rslider
slider
ubutton
uslider
Tutorial 14

MIDI Hote (36-102)

L' Playa stream of MIDInotes witha
Q sweep of your mouse.
1
° l
e
i Dunation
t
v 20 ms 250 m=
| VI § k
makenote MIDIC hannel > I-; 0 I
I

I-=A\

noteout

——

pictslider lets you create both one- and two-dimensional Ul elements

Output numbers by moving a dial onscreen
Output numbers by moving a slider onscreen
Output numbers from a keyboard onscreen
Multiple slider and scrolling display
Picture-based control

Display or change a range of numbers
Output numbers by moving a slider onscreen
Transparent button, sends a bang

Output numbers by moving a slider onscreen
Sliders and dials

319

pipe

Delay numbers
or lists

Input

int

int or float

bang

float

list

clear

clock

flush

Arguments

int

float

Output

int

In left inlet: The number is delayed a certain number of milliseconds before it is
sent out the left outlet. If there are middle inlets, the numbers in those inlets are
also delayed and sent out the corresponding outlets.

In right inlets: Sets the time in milliseconds to delay numbers received in the
other inlets.

In left inlet: Retriggers the numbers currently stored in the pipe to be output again
in the specified number of milliseconds (in addition to any numbers already being
delayed).

In left and middle inlets: Converted to int, unless the inlet was initialized with a
float argument.

In left inlet: Numbers are distributed to the pipe object’s inlets to be delayed
together. If there is a number for the right inlet, it sets the delay time for the other
numbers.

In left inlet: Halts all numbers currently being delayed by pipe.

The word clock, followed by the name of an existing setclock object, sets pipe to be
controlled by that setclock rather than by Max’s internal millisecond clock. The
word clock by itself sets pipe back to using Max’s regular millisecond clock.

In left inlet: Immediately sends out all numbers currently being delayed by pipe,
and clears the pipe object'’s memory. Numbers are sent out each outlet in reverse
order from that in which they were received in the corresponding inlet.

Optional. The last argument sets an initial value for the delay time, in millisec-
onds. If there is no argument, the delay time is 0. If there are two arguments, the
first argument sets an initial value to be stored in pipe, and the second arguments
sets the delay time. If more than two arguments are present, pipe creates addi-
tional inlets and outlets for delaying additional numbers in parallel to the leftmost
one.

The last argument is converted to int. Other float arguments cause the corre-
sponding outlet to send a float.

When a number is received in the pipe object’s left inlet, it is delayed by the time
specified, then sent out the left outlet. If there are middle inlets, the numbers in
those inlets are also delayed and sent out their corresponding outlet, in response

320

" Delay numbers
p | pe or lists

to a number is received in the left inlet. Unlike delay, more than one number at a
time can be delayed in a pipe. When a new delay time is received in the right inlet,
it does not affect when the numbers already being delayed by pipe will come out.

Examples
[=_—r] Left indet triggers delay Numbers and delay time
| Delay time [24 | [.707 | can all be received as a list
. ’ 24 96 1000
232 l I}SSOI pipe 0 0. 1000
pipe Numbers are delayed pipe 0 0 500
Numbers are sent out together for 1 second

E__,.32 |1.ss seconds later E_,.24 | p0.707| P24 | E__,96 |

One or more numbers can be delayed with pipe

See Also
delay Delay a bang before passing it on
Tutorial 22 Delay lines

321

playbar = QuikTine ot

Note: The playbar object requires that Quick Time be installed on your system. If you are using
Max on Windows, we recommend that you install QuickTime and choose a complete install of all
optional components.

Input
bang

Arguments

Output

(internal)

int

If the left outlet of a playbar object is connected to a movie or imovie object, bang
links the two objects together so the playbar can control the QuickTime movie.
After playbar and movie are linked, any messages sent to the movie object which
change its location or playing status are reflected in the playbar object. (Linking
will happen automatically when a patcher file containing connected playbar and
movie objects is loaded. Thus, sending the bang to playbar is only necessary when
you're building a patch.)

None.

Out left outlet: Once the playbar and a movie object are linked, the playbar controls
the QuickTime movie. playbar only supports being connected to one movie object
atatime. The connection must be made with a patch cord; it cannot take place via
asend-receive pair.

Out right outlet: Each command processed by playbar is sent by number out its
right outlet. A directory of command numbers and their meaning can be found
in the QuickTime Standard Movie Play Controller documentation. By properly
interpreting these commands, you can potentially use playbar for other purposes
besides movie control. However, the “thumb”in the controller has no range until
an associated QuickTime movie with a non-zero duration is linked to the playbar.

322

playbar C e

Examples

[D —— g)

[rovie DembeRochefort |

Using playbar with movie and imovie

See Also
movie Play a QuickTime movie in a window
imovie Play a QuickTime movie in a patcher window

323

Polar to Cartesian
po Itocar coordinate conversion

Input
float

int

Arguments

Output
float

Examples

See Also

cos
cartopol
Icd
sin

In left inlet: The magnitude (amplitude) portion of a polar coordinate pair to be
converted into a cartesian (real/imaginary) coordinate pair.

Inright inlet: The phase portion of a polar coordinate pair to be converted into a
cartesian (real/imaginary) coordinate pair.

Converted to float.
None.

Out left outlet: The real portion of a frequency domain coordinate pair.

Out right outlet: The imaginary portion of a frequency domain coordinate pair.

r, theta in

|:| [2.14| f[o.5] [t.57]| |1] 0
| 1 \ﬁl | 1

poltocar poltocar poltocar

\:l \:l \:l

B-1.00 pooo| pooo| p-os| p1. | p-0. |
X, ¥ out

Convert Polar to Cartesian coordinates

Cosine function

Cartesian to Polar coordinate conversion
Draw graphics in a Patcher window

Sine function

324

poly

Allocate notes to
different voices

Input
list

int

float

stop

Arguments

int

float

Output

int

list

In left inlet: The first number is treated as a pitch, and the second number is
treated as a velocity value, of a pitch-velocity pair. If the velocity is not 0, poly allo-
cates that note-on to the first available voice number and sends it out. If the veloc-
ity is 0, poly frees the voice that is holding that pitch and sends out the note-off.

In leftinlet: The number is treated as the pitch value of pitch-velocity pair and the
note is sent out.

Inright inlet: The number is stored as the velocity to be paired with numbers
received in the left inlet.

Converted to int.

In left inlet: Immediately sends note-offs for all the notes currently being held by
poly, freeing all voices.

Optional. The first argument sets the number of voices to which poly can allocate
notes (thus limiting the number of notes poly can hold at one time). If there is no
argument present, poly can hold 16 notes.

If there is no second argument, or if the second argument is 0, poly sends any notes
it cannot hold out the rightmost outlet. If there is a second argument not equal to
0, poly steals voices: when poly receives more notes than it has voices, it turns off
the note it has held the longest and puts the new note in its place.

Converted to int.

Out left outlet: The output is the voice number of the note-on or note-off being
sent out.

Out 2nd outlet: The output is the pitch of the note-on or note-off.
Out 3rd outlet: The number is the velocity of the note-on or note-off.

Out 4th outlet: The first number is the pitch, and the second number is the veloc-
ity, of any notes poly cannot hold. If there is a nonzero second argument, poly
steals voices rather than send out overflow, so the fourth outlet is not created.

325

pO Iy Allocate notes to

different voices

Examples

notein notein a 1

| —

poly 8

1 1 1 poly 4 1

pack 0 0 O send elsewhere

route 1 2 3456 7 8 noteout a 9

Send each voice to a different place Limit the number of notes held at a time
See Also
borax Report current information about note-ons and note-offs
flush Provide note-offs for held notes
makenote Generate a note-off message following each note-on

326

polyin

Output received
MIDI poly pressure values

Input
(MIDI)

enable

port

(mouse)

Arguments

a-z
(MIDI name)

a-zand int

int

Output

int

polyin receives its input from MIDI polyphonic key pressure messages received
froma MIDI input device.

The message enable 0 disables the object, causing it to ignore subsequent incoming
MIDI data. The word enable followed by any non-zero number enables the object
once again, even if the entire patcher window has had its MIDI disabled by an
enable message to a pcontrol object.

The word port, followed by a letter a-z or the name of a MIDI input port or device,
sets the port from which the object receives incoming polyphonic key pressure
messages. The word port is optional and may be omitted.

Double-clicking on a polyin object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port from which to receive incoming MIDI messages. If
there is no argument, polyin receives from all channels on all ports.

Optional. The name of a MIDI input device may be used as the first argument to
specify the port.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to receive polyphonic key pressure messages.
Channel numbers greater than 16 will be wrapped around to stay within the 1-16
range.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

Out left outlet: The number is the pressure value of the incoming polyphonic key
pressure message.

Out 2nd outlet: The number is the pitch value (key number) of the incoming
message.

If a specific channel number is included in the argument, there are only two out-
lets. If there is no channel number specified by the argument, polyin will have a
third outlet, on the right, which will output the channel number of the incoming
note-on message.

327

I Output received
po Iyl n MIDI poly pressure values

Examples
Receive from evenyrwhere Receive only from port b Only from port b, channel 13
polyin polyin b polyin b 13
1 1 1 1 1 1 1
p3 1pe bz] p3F Jpev_JpIE] pFE]
Pressure Key Channel Pressure Key Channel Pressure Key

Messages can be received from everywhere, a specific port, or a specific port and channel

See Also

midiin Output received raw MIDI data
polyout Transmit MIDI poly pressure messages
Tutorial 16 More MIDI ins and outs

Using MIDI Using Max with MIDI

Ports How MIDI ports are specified

328

Ti it MIDI pol
po Iyo Ut r%r]rsersghre messgge)s/

Input

int

float

list

enable

port

(mouse)

Arguments

a-z

a-zand int

(MIDI name)

int

In left inlet: The number is the pressure value of a MIDI polyphonic key pressure
message transmitted on the specified channel and port. Numbers are limited
between 0 and 127.

In middle inlet: The number is stored as the key number, to be used with pressure
values received in the left inlet. Numbers are limited between 0 and 127.

Inright inlet: The number is stored as the channel number on which to transmit
the polyphonic key pressure messages.

Converted to int.

In left inlet: The first number is the pressure value, the second number is the key
number, and the third number is the channel, of a transmitted MIDI polyphonic
key pressure message.

The message enable 0 disables the object, causing it not to transmit MIDI data. The
word enable followed by any non-zero number enables the object once again, even
if the entire patcher window has had its MIDI disabled by an enable message to a
pcontrol object.

In left inlet: The word port, followed by a letter a-z or the name of a MIDI output
port or device, specifies the port used to transmit the polyphonic key pressure
messages. The word port is optional and may be omitted.

Double-clicking on a polyout object shows a pop-up menu for choosing a MIDI
port or device.

Optional. Specifies the port for transmitting MIDI polyphonic key pressure mes-
sages. Channel numbers greater than 16 received in the right inlet will be wrapped
around to stay within the 1-16 range. If there is no argument, polyout initially
transmits out port a, on MIDI channel 1.

A letter and number combination (separated by a space) indicates a portand a
specific MIDI channel on which to transmit polyphonic key pressure messages.
Channel numbers greater than 16 will be wrapped around to stay within the 1-16
range.

Optional. The name of a MIDI output device may be used as the first argument to
specify the port.

A number alone can be used in place of a letter and number combination. The
exact meaning of the channel number argument depends on the channel offset
specified for each port in the MIDI Setup dialog.

329

pOIyOUt Transmit MIDI poly

pressure messages

Output

(MIDI) There are no outlets. The output is a MIDI polyphonic key pressure message
transmitted directly to the object's MIDI output port.

Examples

|96 64 | @ |96 64 | [_2_1|

Will transmit on Will transmit on
channel 13, port a channel 13, port b
polyout a polyout 1

Letter argument transmits to only one port.
Otherwise, number specifies both port and channel

See Also

midiout Transmit raw MIDI data

polyin Output received MIDI poly pressure values
Tutorial 16 More MIDI ins and outs

Using MIDI Using Max with MIDI

Ports How MIDI ports are specified

330

Compute x to
pOW the power of y

pow raises the base value (set in the right inlet) to the power of the exponent (set in the left inlet).

Input

floatorint Inleftinlet: Sets the exponent.

Inright inlet: Sets the base value.

Arguments

flatorint Optional. Sets the base value. The default value is 0.

Output
float ~ The base value (from the right inlet) raised to the exponent (from the left inlet).
Examples
| p0.707107 |
pow will give you a square deal (and other numbers, too)
See Also
expr Evaluate a mathematical expression
>> Shift all bits to the right
<< Shift all bits to the left

331

p repend Put one message at the

beginning of another

Input

set Theword set, followed by any message, will replace the message stored in prepend,
without triggering output.

anythingelse ~ The message stored in prepend is attached to the beginning of the message
received in the inlet, and the combined message is sent out its outlet.
Arguments
anything Obligatory. Sets the message to be prepended at the beginning of incoming mes-
sages. The first argument must be a symbol.
Output

anything ~ The message received in the inlet is combined with the message stored in prepend,
and then sent out the outlet. The maximum allowed length of any constructed
message is 256 items.

Examples

IAny text message ngmin 1 | Piano Bass Strings
' ‘ Guitar Brass Tibes
Recall pgm name !

prepend store pgms

prepend nth pgms

Store pgm names

prepend set

Coll

Won't accept just
"any text message”

any text message |

Symbols can be combined into meaningful messages with prepend

See Also

append Append arguments at the end of a message
message Send any message

route Selectively pass the input out a specific outlet
Tutorial 25 Managing messages

332

preset

Store and recall the

= settings of other objects
rr

Input

int

float

bang
clear

clearall
list

name

read

store

write

The number indicates a preset, and the settings stored in that preset are sent out to
the connected objects, or to all objects in the window if no patch cords are con-
nected to the preset object’s outlet. The settings in a preset can also be sent out by
clicking on the preset with the mouse.

Converted to int.

Sends out the settings of the preset that was most recently recalled with anint or a
mouse click.

Erases the contents of the most recently sent preset. The word clear, followed by a
number, erases the contents of that numbered preset.

Erases the contents of all presets.
Same as bang.

The word name, followed by a symbol, sets the ID Name for the preset. The ID
Name allows the preset to have a unique ID so that files created for it will not read
into other presets.

The word read, followed by no arguments or a number, displays an Open Docu-
ment dialog box for choosing a file of preset data to read. If the preset has been
given a Preset Name Code, only files of the type specified by the code will be dis-
played. The number argument specifies the preset number into which the file data
should be read. If the number is 0 or -1, the data in the file will be read into the
number of presets contained in the file starting with the first one. If the word read
is followed by a symbol or a number and a symbol, no dialog box is displayed.
Instead, the symbol is taken as a filename from which to read presets. The num-
ber functions as already described.

The word store, followed by a number, it stores the current setting of all user inter-
face objects in the same window in the preset indicated by the number. If objects
are connected to the preset object’ left outlet with patch cords, only those con-
nected objects will be affected.

The presets (storage locations in the preset object) are numbered left-to-right,
top-to-bottom. When settings are stored in a preset, a dot appears on it to indi-
cate that it contains something. Settings can also be stored in a preset by holding
down the Shift key and clicking on the preset with the mouse.

The word read, followed by no arguments or a number, displays a Save As dialog
box for specifying a destination filename for writing the preset data. If the preset
has been given a Preset Name Code, the file is given this code as its file type. The
number argument specifies the preset number from which the preset data should
be written. If the number is 0 or -1, all presets will be written. If the word write is

333

preset

Store and recall the
‘ rr: F settings of other objects

Inspector

Arguments

Output

int or float

int

(internal)

followed by a symbol or a number and a symbol, no dialog box is displayed.
Instead, the symbol is taken as a filename to use for writing the data; the file will
be placed in the current default folder The number functions as already
described.

The behavior of a preset object is displayed and can be edited using its Inspector.
If you have enabled the floating inspector by choosing Show Floating Inspector
from the Windows menu, selecting any preset object displays the preset Inspector
in the floating window. Selecting an object and choosing Get Info... from the
Object menu also displays the Inspector.

The preset Inspector lets you specify an ID Name to the preset object, to distin-
guish it from other preset objects. The first four characters of this name, if you
enter one, are used as the Macintosh “file type” for files of presets saved by this
object. When you send the read message to a preset object that has an ID Name,
only the files whose types match the first four characters of this name are shown
in the standard file dialog. This allows you to create a“document type” for preset
files so the user won't open a preset file designed for another preset object. A pre-
set object can also be set to save its contents as part of the patch that contains it by
checking the Save Presets with Patcher check box.

The Revert button undoes all changes you've made to an object’s settings since you
opened the Inspector. You can also revert to the state of an object before you
opened the Inspector window by choosing Undo Inspector Changes from the
Edit menu while the Inspector is open.

None.

Out left outlet: When a preset is recalled, either by a mouse click or by anumber in
the inlet, the settings stored in that preset are sent out the outlet to all connected
objects, or, if no objects are connected, to all user interface objects in the window.

Out middle outlet: When a preset is recalled, the number of the preset is sent out.

Any user interface objects connected to the right outlet of preset will be excluded
from the effects of that preset. (This is particularly useful when there are many
objects you want to affect with preset, and only a few you want to exclude.)

Objects whose data is stored in a preset include: dial, Ggate, Gswitch, hslider, led,
number box (both int and float), slider, toggle, and uslider. The contents of a table
can also be stored and recalled by preset, but the table must be connected to the

334

Store and recall the
p reset ‘ r": "l: settings of other objects

preset object’s outlet with a patch cord. The outlet of preset can also be connected
to a send object, to communicate with objects connected to areceive object of the
same name.

The number of visible presets can be adjusted by resizing the preset object’s box.
The maximum number of presets in a single preset object is 2048.

Examples
l_store 3 Y B33 | pS | When patch cords are
3 used, only connected
‘j EE’ 11 I]J FF[[:P objects are affected

[T | store” grabs and stores settings; I T 1
[T 71T [the number alone sends them back out peo |p112 [p1ooofpo |

Remember many past settings and recall them later

See Also

grab Intercept the output of another object
Tutorial 37 Data structures

Data Structures Ways of storing data in Max

335

" Print any message
prlnt in the Max window

Input

anything Messages are not interpreted by the print object. They are simply printed verbatim
in the Max window.

(mouse) Double-clicking on any print object opens the Max window or brings it to the
front.

Arguments

anything Optional. The argument is an identifier for the print object. Each message printed
in the Max window is preceded by the name of the print object, and a colon (©).
The name must not contain spaces or special characters, but can be either a num-
ber or aword. If there is no argument, the name of the print object is print. Using
an argument to print can help distinguish the output of two or more print objects.

Output
anything There are no outlets. The message received in the inlet is printed in the Max win-
dow.
Examples
[J [l
patcher Enigma |1110w recording| I;'ecord |
I I |ﬁ=>
print left print right print Sequencer ||seq |
Used for displaying output, or for notifying when an event takes place
See Also
Tutorial 1 Saying“Hello!”
Debugging Techniques for debugging patches

336

prob

Make weighted random
series of numbers

Input
list

bang

int

reset
dump

embed

clear

Arguments

Output

int

bang

The numbers make an entry in a probability matrix of transitions from one num-
ber to another (known as a first-order Markov chain). The list should consist of
three numbers: a current value, a next value, and a probability that current will be
followed by next. The first two numbers in the list identify a possible succession of
output values: a possibility that the first number will be followed by the second.
The third number sets the relative likelihood that the sequence of numbers will
occur. Once the first number has been sent out, the next output is determined by
the relative likelihood(s) assigned to each possible subsequent number.

Makes a weighted random choice of a number to be sent out, based on the imme-
diately previous output and on the specified likelihoods of subsequent numbers.

Sets (but does not send out) out the current number value. The subsequent out-
put, in response to a bang message, will be determined by the stored matrix of
probable transitions from that number.

The word reset, followed by a number, tells prob what number to revert to in the
event that it gets “stuck” on a number that has no possible next number.

Prints out a complete list of the stored transition probabilities (Markov chain) in
the Max window.

The word embed, followed by a nonzero number, causes the contents of prob to be
saved as part of the patch that contains it. The message embed 0 causes prob to for-
get its contents when the patch is closed.

Erases the contents of prob.

None.

Out left outlet: When bang is received in the inlet, prob sends out a number, which
it chooses based on its knowledge of the last number chosen and the relative like-
lihood assigned to each possible subsequent number.

Out right outlet: If the current number (the last number chosen) has no possible
transitions listed in the transition probability matrix, bang is sent out (and noth-
ing is sent out the left outlet) in response to a bang in the inlet.

337

Make weighted random
p rOb series of numbers

Examples
0 has & 79% chance of being followed by 1, Each bang selects the next number
and a 25% chance of being followed by 2 based on the previous number and
0175, 0225 its probable successors
[t 050, 1250]

When & 3 is sent our
t a0 t 0 ’
|? 020, 2 1 e, ZE] Te = Irl'ese prob resets internally to 0

In the (595) event that 2 is followed ‘;'rob=‘

by 3, prod will get “stuck” because e
no transition has been specified for 3 |E1 |Tum off metro when 3 is sent out

Likelihood of a certain output depends on the previous output

See Also

anal Make a histogram of number pairs received

histo Make a histogram of the numbers received

mean Find the running average of a stream of numbers

338

PV

Share variables specific to a
patch and its subpatches

pv operates identically to the value object, with two exceptions. First, pv objects that share the same
name only share the same value if they are in the same patcher, or one of its subpatches. Second,
the pv object cannot be the receiver of a message sent remotely by a message box (the first symbol
after a semicolon). So, pv means private value—a value that is shared between objects, but only
within a single patcher.

Input

any message

bang

Arguments

any symbol

any message

Output

any message

The message is stored, to be shared by all other pv objects of the same name that
are inside the object’s patcher or its subpatches (or, if in a subpatch, its parent
patch). A message received in any other such pv object will change the stored mes-
sage.

Sends out the stored message.

Obligatory. The first argument provides an identifying name. All pv objects with
that name within the patcher will share the same value.

Optional. Any message typed in after the first argument initializes the stored con-
tents of the pv object. Note that when two or more pv objects in a patcher file that
share the same name are initialized to different values, the one which is initialized
last determines the value. Since the order in which pv objects will be initialized
cannot be precisely determined, the best practice is to initialize only one of the
related pv objects.

When bang is received in the inlet, the stored message is sent oult.

339

V Share variables specific to a
p patch and its subpatches

Examples
Store & message in one location Recall the message
[60 127 S000 16 elsewhere in the window
1
pv localinfo pv localinfo
patcher Shared Info unpack 0 0 0 0
PV objects in & subpatch | | | |
can share the same values [?60 |[?127 ”}5000”>16 |
See Also
float Store a decimal number
int Store an integer value
pvar Connect to a named object in a patcher
receive Receive messages without patch cords
send Send messages without patch cords
value Share a stored message with other objects

340

pvar

Connect to a named
object in a patcher

The pvar object lets you build user interfaces in one part of your patcher that are associated with
the “process” part in another part of the patcher. Unlike the send and receive objects, pvar does not
work globally; the pvar object and its associated object must be in the same patcher. You set an
object's name by selecting the object and choosing Name Object from the Object menu. The
name cannot be a number, although it can contain numbers.

Input
anymessage The message is sent to the named object currently associated with pvar.
setname The word setname, followed by a symbol, specifies the name of the object to which
pvar will be associated with. The named object must be in the same patcher as the
pvar object.
Arguments
symbol Optional. The first argument specifies the name of the object to which pvar will be
associated with. If no name is supplied, the setname message can be used to con-
nect later.
int Optional. The second argument specifies the number of outlets pvar will have.
pvar connects to as many outlets as its associated object has, unless it is more than
the number you specify as an argument. The default number of outlets is 1.
Output
anymessage The outlets of pvar correspond to the outlets of its associated named object. When
the named object sends anything out one of its outlets, the output also comes out
of the corresponding outlets of the pvar object.
Examples
an object named "hank" vsed to | loadbang |

display the random outpur

an object named “frank” used
to set the random masdmum

rand max

E] initialize random
po] s
metro 100 Hpvar frank
|
random 128

|
lgvar hank send random value to

be displayed

piz8)

pvar can be used to build a user interface without any messy patch cords

341

pvar

Connect to a named
object in a patcher

See Also

receive
send
thispatcher
value

Receive messages without patch cords
Send messages without patch cords

Send messages to a patcher

Share a stored message with other objects

342

I Radio button/check box
rad | Og rou p El user interface object

The radiogroup object has two modes of operation: radio button and check box. In radio button
mode, the radiogroup object provides a user-definable number of buttons in a group, only one of
which may be selected at a time. In check box mode, the indicators in the radiogroup object func-
tion as a set of on/off indicators. Check box mode also supports a way to have the checkboxes act
as indicators for the bit pattern of a binary representation of an integer (see the flagmode message

below).

Note: radiogroup can be re-sized horizontally so it will extend under comment boxes placed to the
right of the buttons or boxes. this way, clicking on the text to the right of the button will also set the
button selection or box state.

Input

(mouse)

bang

int

float

list

In radio button mode, clicking on a radio button will set the radio button selection
and output the corresponding button number (numbering starts from 0).

In check box mode, clicking on a check box will change its state (from 1 to 0 or
from 0 to 1) and output a list of zeros and ones corresponding to the on/off state
of the boxes. if the entire group of buttons/boxes is inactive (greyed out) it will not
respond to clicks. if an individual item is disabled (greyed out) it will not respond
to clicks, although active items in the group will still respond to clicks as usual.
The Flag Mode variation on the check box mode has check boxes that correspond
to bit positions for a binary value (i.e. the first checkbox corresponds to the 1s, the
second to 2s, the third to 4s, etc.) Clicking on a check box will select or deselect
the check box and output the integer value which corresponds to the bit pattern.

In radio button mode: A bang outputs the currently selected radio button number.

In check box mode: A bang outputs a list of zeros and ones representing the on/off
state of the check boxes.

In flag mode: A bang send the integer that corresponds to the bit pattern of the
currently checked boxes (i.e., if boxes one, two, and three are checked, a bang will
output a value of 7)out the radiogroup object’s output.

In radio button mode: An integer sets the radio button selection and outputs the
input value. Numbering starts with 0, and a negative number indicates that no
buttons will be selected.

In flag mode: An integer value received in the radiogroup object’s inlet will set the
buttons or checkboxes to reflect the bit pattern of the integer value (i.e., a value of
19 will select boxes one, two, and five, corresponding to the binary value 10011)
and send the integer value out the radiogroup object’s output.

In radio button and check box modes: Converted to int.

In check box mode: list of zeros and ones sets the check box states and causes out-
put of the input list. If you have specified check box mode and have the flag mode

343

I Radio button/check box
rad | Og rou p El user interface object

disableitem

enableitem

flagmode

itemtype

inactive

offset

set

size

set using the flagmode 1 message, a list of zeros and ones sets the check box states
and causes output of the input list.

In radio button and check box modes: disable the items whose numbers are indi-
cated (they will be drawn in grey and will not respond to clicks, although they will
still respond to set messages, ints or lists).

In radio button and check box modes: The word enableitem, followed by followed
by a number or list of numbers, will enable the items whose numbers are indi-
cated if they have been disabled with the disableitem message.

In check box mode: The word flagmode, followed by a nonzero value, sets the flag
mode of operation for the radiogroup object. In this mode, each check box corre-
sponds to one bit in an integer value (i.e., the first radio button or checkbox corre-
sponds to the ones bit, the second button or checkbox to the twos bit, the third
button or checkbox to the fours bit, etc.). The message flagmode 0 disables this
mode (default).

In radio button and check box modes: The word itemtype, followed by a zero or
one, selects the mode of the radiogroup object. The message itemtype 0 selects radio
button mode, and itemtype 1 selects check box mode.

In radio button and check box modes: The word inactive, followed by a zero or
one, toggles the active or inactive state of the entire group of radio buttons or
check boxes. inactive 0 (default) means that the boxes are not inactive, and will
respond to mouse clicks. The message inactive 1 will gray out the radio buttons or
check box displays, and they will not respond to mouse clicks (although their
state can still be set using set messages, ints or lists).

In radio button and check box modes: The word offset, followed by a number,
changes the pixel offset between the tops of the buttons/boxes. the minimum off-
set is 14 pixels, the default offset is 16 pixels.

In radio button mode: The word set, followed by a number, sets the currently
selected radio button without triggering any output.

In check box mode: The word set, followed by a list of zeros and ones, sets the
check box states without triggering any output.

If you ar