THE ELTHAR PROGRAM

A

_1/

—

BRAD GARTON

URING MY YEARS as a graduate student, I often felt that I was leading a

musical ‘double life’. By day I was immersed in the music of digital
synthesis and signal-processing. In the evening, I would gather with friends
to participate in long free-form improvisation sessions. These two activities
seemed fundamentally different to me—improvisation gave me a sense of
instantaneous freedom and possibility that has been invaluable to my com-
positional growth; working with computers satisfied my conflicting desire
to build and rearrange sounds with the control offered by digital tech-
niques.

Because of the qualitative differences between the two, I had thought
that improvisation and computer music composition would always be sepa-
rated in my life, exerting only indirect influence upon each other. Two real-
izations moved me towards unifying these activities. Upon examining my

feelings about improvisation, I realized that the foundation for my enjoy-
ment of the improvisation sessions was the interaction with others. The free
interplay of ideas among individuals was the substrate underlying the free-
dom and unboundedness of the sessions. I was also beginning to realize a
sense of interaction with some compositional algorithms I was experiment-
ing with on the computer. By creating algorithms which could generate
sound synthesis data by following certain rules, I was able to deal with the
computer on a higher conceptual level. For example, I wrote an algorithm
which would create rhythmic patterns when given probabilities that partic-
ular drum sounds would occur at certain points in time. My interaction
with the computer shifted from having to specify data for every single drum
beat within a time-span to specifying some global characteristics (through
probability functions) and letting the computer fill in the details. In
essence, I was able to tell the computer ““do something like this . . . for
thirty seconds,” then listen to the output and adjust higher-level control
probabilities to reflect my compositional goals.

Through experiments with probabilistic algorithms such as this, I began
to build a richer interaction with the computer. I was also beginning to
treat the machine as a separate entity, leaving many of the note-to-note
decisions in the hands of some algorithm. Of course, these simple interac-
tions were only a pale shadow of the tangled web of relationships among
participants in an improvisation. It occurred to me, however, that I might
be able to model a more complex interaction using the symbolic processing
capabilities of the computer. (The idea of designing a high-level software
interface for musical creation is certainly not new. Most computer-music
practitioners have felt the need to enter music data at a level beyond simple
(and tedious) numeric specification of parameters. Indeed, much of the
computer’s musical potential cannot be accessed without the capabilities of
a powerful interface.)

The Elthar program is the result of this modeling attempt. Elthar is a
large signal-processing expert system designed to interpret natural-language
requests from the user. Elthar learns how to use digital signal-processing
algorithms by observing how they are used. Elthar was also intended to be
more than just another tool to be used in the service of external composi-
tional ideas; the program modeled an interaction that was to be an integral
part of the creative process. My design of Elthar reflects my belief that the
environment in which I create music is a prime determinant of the nature
of the resulting music.

This compositional approach differs from a stance I had adopted in the
past (one shared by many western composcrs) that music creation is pri-
marily a mental activity—once the music has been conceived in the mind of
the composer, it only requires the appropriate conduit to be translated into
sound. In fact, this has been one of the big attractions for composers to use

the computer as a musical instrument. The general-purpose nature of the
machine means that it can theoretically be programmed to act as whatever
sonic translator is needed by the composer to realize his abstract musical
ideas. ““Any sound you can imagine”” has been the motto of many digital
synthesis enthusiasts. This view of the creative process largely ignores any
effects that the mental-to-physical conduit might have on the actual con-
ceptualization of the music. Working with computers to realize sounds in a
variety of different ways led me to see how profoundly the tools and tech-
niques I use do effect my creative imagination.

The effect is much more than the simple notion: ‘I shall write a violin
piece, therefore I imagine the sound of a violin.”* At the point that I decide
to write a violin piece, I invoke a set of prejudices and conventions that
establishes the framework for my composing. As I go about the task of
writing the violin music, the attitudes and working habits derived from this
framework play a major role in the shaping of the piece. Even before I
begin to imagine the music, the assumptions about music I make when I
adopt the violin-composing stance will set the stage for my imagination,
channeling my efforts in certain directions. One of my goals with Elthar
was to try to come to terms with some of my basic musical assumptions, to
try to codify a set of working methods appropriate to a particular situation.

In this paper I will be addressing three critical issues raised by the Elthar
program: (1) Why create such a thing? (2) How does it work? (3) What do
you do with it? I want to emphasize that my primary motivation for mak-
ing Elthar was to create a vehicle for producing music—a vehicle intended
to challenge and expand my compositional techniques. I wasn’t interested
in designing a generalized music interface that would capture many differ-
ent compositional approaches. Elthar is a very specialized and idiosyncratic
program intended to magnify and capitalize upon my own idiosyncratic
compositional prejudices.

Probably the most important result of the project was that Elthar could
act as enough of an alter ego to provide an interesting foil for my musical
ideas. Through improvisation, I have found that working with other indi-
viduals to create sound is a fruitful and stimulating way to make music. The
unique thing about working with Elthar is that the program is able to mir-
ror my own preconceptions about music. The mirrored reflection is dis-
torted, however, causing me to see certain aspects of those preconceptions
that I would normally not notice, or that I would take for granted. The
examination of these assumptions has suggested a host of new musical ave-
nues for me to explore.

Why CREATE ELTHAR?
Consider the following three scenarios:

1. I am sitting, a guitar cradled on my lap in playing position. I bring my
right hand up to the strings and place the fingers of my left hand
along the fretboard. I strum the strings slowly, making immediate
adjustments with my hands to change the sound I am producing. The
adjustments serve to align the sound with my sonic imagination; the
feedback between what I want to produce and what I am producing is
tangibly direct.

2. I am sitting at a table, pencil in one hand and a piece of music paper
resting on the table surface. I draw dots and lines on the paper, hop-
ing to capture in the resulting symbols information that will allow
sonic images to come to life. Much later (weeks, months, possibly
even years) I will give this paper to a musical performer (a guitar
player in this case) who will create sounds corresponding more or less
to the symbols I have written. The process of producing sound from
the symbolic language 1s extremely complex, involving the interpreta-
tion of each symbol through an agent with an entre lifetime of expe-
rience completely separate from my own. The only access that agent
has to my sonic imaginings is through the symbols I inscribe on the
paper.

3. I am sitting at the keyboard of a computer terminal, entering data by
typing numbers and letters. When I am finished, the data will be
used by a computer algorithm designed to make the computer syn-
thesize a sound. The connection between the data and the resulting
sound is inflexible. The numbers are interpreted in a completely
determined manner by the algorithm. Changing one of the numerical
values will always affect the resulting sound in the same way. If I
choose the data and the algorithm wisely, I can use the computer to
create any imagined sound. It is my responsibility, however, to iden-
tify the correct computer algorithm and corresponding data to realize
my ideal sound (to simulate a guitar I may have chosen the Karplus-
Strong “‘plucked-string’ algorithm). Once my choices have been
made and the data has been entered, the computer will ““crunch the
numbers” to create the sound. Later (typically several minutes or
hours) I will listen to the result.

Each of these has the potential to produce nearly identical acoustic
results. The music I write in each case, however, will be different. When I

pick up the guitar to play, I am picking up all my guitar-playing experi-
cnces. My musical creativity will be constrained not only by my physical
performance capabilities, but also by the way I think musically when I have
a guitar in my hands. This mode of thinking has been shaped by a multi-
tude of social, cultural, and personal factors reflecting my personal history
as a guitar player.

Similarly, picking up a pencil to write music for some other guitar player
brings another set of musical premises into play. The entire concept of writ-
ten musical notation in our culture will certainly exert a profound influence
upon my musical decision-making. The simple fact that the symbols I write
arc intended for musical interpretation by another individual changes at a
fundamental level the way I think about the music. I am preparing a
““script™ for a performer to read and interpret. Even the visual aspect of the
notes on paper may cause me to se¢ patterns and consider options that
might not be apparent in another mode of composing.

Finally, the computer also invokes a particular set of personal conven-
tions when used as a musical tool. Like guitar playing and script writing,
these conventions reflect the musical capabilities of the computer and my
own computer experience. Included within this domain, however, is a
capability that separates the computer-music environment from the others.
As a general-purpose machine, the computer can be programmed to per-
form a wide variety of operations, including operations which alter the way
I interact with the machine. This means that not only do I have a new set
of tools at my disposal, but also the capability to design new tools (and
even the capability to design the capability to design new tools). I can
imagine a way to do something and, with a little programming, implement
that strategy on the machine.

Putting this idea into practice has dramatic effects on the music I pro-
duce with the computer. An example: Consider again scenario three above,
the computer-music scenario, only this time suppose that I have written
two versions of the plucked-string algorithm, and the only difference
between the two is the way in which pitch information is specified. One
version accepts pitch data written in octave. pitch-class notation,! of the
western equal-tempered scale, and the other requires pitch to be given by
frequency (cycles per second). The effect that the selection of one or the
other of these two digital instruments would have on what I write is appar-
cnt to those familiar with musical acoustics. Because of the logarithmic
nature of our perception of frequency as pitch, it is difficult to think of the
western equal-tempered tuning in terms of absolute frequencies. Con-
versely, because of compromises made in the design of the equal-tempered
scale, perfect intervals found in many nonwestern scales are nearly impossi-
ble to represent coherently in octave.pitch-class notation. If I were to use
the octave. pitch-class plucked-string program, I could not but think of

music in equal-tempered terms. The direct frequency version also carries
much baggage—the conception of a piece in the key of 440Hz is vastly dif-
ferent than the conception of a piece in the key of A major.

Is this simply equivalent to selecting an instrument and then, given the
musical assumptions surrounding that instrument, writing a piece for that
instrument? I think not, because the implementation of sound-producing
algorithms on the computer is under my direct control. I am able to design
a set of musical premises and then create an instrument to realize the music
arising from them. Musical assumptions that I consciously choose dictate
the design of the digital instruments I will use, rather than the instruments
invoking a set of assumptions automatically. This does not deny the influ-
ence that the instruments I create have on the music I write; the point is
that the initial decision about many of the preconceptions embodied in
those instruments (and the working environment I create around them) is
mine.

Armed with this ability, I began to approach music by considering the
underlying assumptions I wanted to make in my design of instruments and
the prejudices I wanted to imbed in my computer environment. I soon
realized that the traditional way of working with computer instruments,
tediously entering exact data at the terminal, is not a particularly pleasant
way to create sound. It certainly isn’t musically stimulating. Imagine again
the three guitar-music situations described above. Something vital seems
missing in the computer scenario. I identify this as a rich sense of interac-
tion. In the first scenario I am intimately involved, physically, with the pro-
duction of sound. I can respond immediately to what I hear. In a sense I
am interacting directly with the sound itself, the interaction taking the form
of my changing physical relationship with the guitar. The second scenario is
striking in that my relationship to the sound produced is complicated and
remarkably indirect, since a performer is involved. The performer is able to
interpret because of the inexact and incomplete nature of musical notation.
A discussion of the problematic nature of communication using symbolic
notation systems (especially music) is far beyond the scope of this paper.
Suffice it to say that when two individuals with different personal histories
read the same symbol, a wide variety of responses may result.

Seen in comparison with the other two scenarios, the computer-music
description appears somewhat impoverished. It has neither the direct phys-
icality of the first scenario, nor does it have the interactive complexity of the
second situation. There is indeed an interaction between the computer and
myself, but it generally functions at the level of mistyping some value and
producing an unexpected result. Given this unpleasant state of affairs, I
decided to design an interactive environment using the computer that
would be more musically satisfying. I wanted to choose a set of musical
assumptions that would establish a working environment that I would find
congenial.

I chose as my model a situation that I have found to be musically fruitful
for me in the past. Prior to my involvement in the world of computer
music, I had done much compositional work in recording studios. A typical
session would consist of several people working together to compose,
orchestrate, and sonically ““sculpt’ the music. By ““sculpting’ I mean the
aural manipulation of sound using the signal-processing and sound-
synthesis-tools available in a recording studio. Much of the art of studio
recording involves the alteration of sounds through mixing, equalization
(filtering), spatial processing, multitracking (arranging), and other audio-
production techniques. The sounds produced in a recording-studio
environment are the result of a multifaceted collaboration. Recording stu-
dios are designed to facilitate sonic experimentation; participants can sug-
gest new ideas and experiment with possibilities quite fluidly.

I really enjoy the interaction in studio sessions. I find the interplay
between my ideas and the ideas of others as music is shaped very stimulat-
ing. Much of my computer-music work had dealt with the development
and use of signal-processing algorithms that are copies or extensions of the
tools I utilize in the recording-studio world. I had developed in effect a vir-
tual recording studio. All that was lacking was the easy collaboration that
defined for me the recording-studio interaction. This was the difficult part
of the model—getting the computer to act as a collaborator with me to
make music.

How Doks It Work?

As I reflected upon my recording-studio experiences, it struck me that the
heart of the interaction I was trying to model lay in the way musical ideas
were communicated. Of course, there are many features of the studio I
could point to which make positive contributions to the working environ-
ment (the real-time nature of the equipment used; the ease with which
signal-processing equipment is configured for various sonic effects; even
aesthetic factors such as lighting, comfortable seating, room acoustics, and
so on); but it is the way that musical concepts are shaped and the evolution
of those concepts that is of particular interest to me. I believe that this evo-
lution of ideas occurs through the process of communication. As thoughts
are exchanged among participants in a recording project, translation (as
some ideas are incompletely described) and expansion (as each individual
interprets the ideas given the background of his/her own experience) of
cach idea communicated takes place as a matter of course.

The medium of communication used in the studio is spoken language.
Typical verbal exchanges during the course of a recording session might be:

““Boost the bass on the drums.”
““Try adding a little more edge to the guitar.”
““Let’s set up that funky bass sound we had the other day.”

In each of these statements, no further information is usually necessary
to create the desired action. The participants in a session more or less
‘know’ what is meant or implied. The brevity and ambiguity of these state-
ments are probably the key to the fluidity of ideas in the studio.

This verbal interaction became the basic model for the Elthar program.
My ““spoken”’ requests of Elthar would be typed into the computer, with
Elthar replying at the terminal screen. Several components of this model
are immediately apparent.

1. Some sort of natural-language interpreter is obviously needed. Not
only is the syntactic and semantic freedom afforded by a natural lan-
guage such as English an integral part of the interaction I wanted to
emulate, the extensive descriptive capabilities inherent in such a lan-
guage would also greatly facilitate musical communication. A more
structured input language would eliminate much of the looseness and
ambiguity I desired.

2. Elthar must be able to think for itself and use knowledge to interpret
requests with varying degrees of specificity about what to do. For
example, rarely in a recording session would I say ““process the voice
track through a room-simulation algorithm using a rectangular room
114 feet long and 77 feet wide having walls with an absorption factor
of 77% and use a reverb decay time of 1.35 seconds....”” I would
more likely say “‘reverb the voice track.” However, it is quite con-
ceivable that I would want to be a little more specific and say “‘reverb
the voice track in a large room’ or even ““Let’s try the voice in a large
room with some high-frequency damping.>’

3. Methods for learning the knowledge to interpret under-specified
requests, learning descriptions, and learning how to do complex
operations are also necessary. I believe this to be one of the key fac-
tors in making the program work. In a recording-studio setting, one
learns quickly how another works, making redundant specification of
parameters unnecessary every time a particular sound is desired. I
should stress that this is an ongoing process of learning, not merely
parroting predefined sets of parameters. [wanted Elthar to be flexible
enough to adapt to changing sonic conceptions and interactive
enough to suggest slightly different ways to do an operation.

I also adopted the approach that Elthar should always try to generate
some sort of output, even if the input request is horribly “*misun-
derstood.”” If my ideas about how musical concepts shift in this sort of
interaction are correct, then it is the ““misunderstandings’” that will be
prime contributors to the shaping of the music. I was also hoping that
Elthar would be able to surprise me occasionally by doing something com-
pletely unexpected. One way to ensure this possibility is to grossly under-
specify some request and have the program try its best to create some out-
put.

NATURAL-LANGUAGE/KNOWLEDGE-BASE INTEGRATION

Elthar works by constructing data files in response to natural-language
requests. These files are subsequently passed to signal-processing algorithms
for execution. The data files contain commands to open input sound-
files for processing and open output soundfiles for writing the processed
signal, along with any parameters or data needed by the requested signal-
processing algorithm (see Example 1 for an illustration of this flow of com-
mand). Elthar generates all of this data by first scanning the input request
for explicit (or indirect) information, and then using the knowledge base to
complete any missing information.

translation/information
natural language request > e

output filename

"echo a soft sound"” 7 s
input filename

/

constructs

/

cmix data file

signal processing commands

l

input soundfile) —— signal processing —b@utput soundfile)

EXAMPLE 1: ELTHAR TRANSLATES NATURAL-LANGUAGE REQUESTS INTO
DATA FOR SIGNAL-PROCESSING ALGORITHMS IN THE CMIX COMPUTER-
MUSIC LANGUAGE

It is difficult to separate the procedures used by Elthar to parse the input
sentence from the organization and operation of Elthar’s knowledge base.
One of the primary reasons for this difficulty is that Elthar never generates a
complete parse of the sentence. Elthar repeatedly scans the sentence (or
fragments of the sentence) to extract the information contained within it.
The organization of these scans causes the parsing to resemble Schank’s
conceptual-dependency parsing methodology (Schank and Abelson 1977)
coupled with Minsky’s ““frames’” concept (Minsky 1975) for organizing
program procedures and data.

The first scan done by Elthar attempts to ascertain the main verb of the
sentence (I refer to this as the ACTION word). Elthar scans for a word by
comparing each word of the sentence to words existing in a group of syn-
onym networks, or lists of words with an identical underlying meaning or
concept. The group of synonym networks being searched during a particu-
lar scan is determined by the type of scan being done. In the first scan, the
group of synonym networks used is all of the ACTIONs known to Elthar.
For example, in Example 2 the ACTION scan determines that the word
“‘echoing’ is a member of the synonym network for the ACTION echo.
This detection terminates the scan and signals that an instance of an echo
ACTION word has been found.

scan 1:

Try[echoing]a loud sound with a delay time of 0.7 and randomize the regeneration

ACTION word

scan 2:

Try echoing a T sound with a delay time of 0.7 and randomize the regeneration
Soundfile description

scan 3:

Try echoing a loud sound with a[delay] time ofgl.z and_randomize the

Signal Processing Parameters

EXAMPLE 2: AN EXAMPLE OF A SENTENCE-PARSING BY ELTHAR

Once the ACTION word has been identified, a set of procedures associ-
ated with that word are then called. This set is the ACTION frame. Typical
procedures associated with a signal-processing ACTION word are more
scans of the sentence to determine which input file is being requested,
more scans to discover if any of the signal-processing parameters are
explicitly set, and scans to extract information about any auxiliary data
required by the algorithm (amplitude-envelope specifications, waveform

specifications for operations such as amplitude modulation or flanging, and
so on). Each of these scans is done through the mechanism of Elthar’s syn-
onym networks, so that references to a particular specification can be quite
informal.

Determining the input soundfile is important not only because the
input filename is needed by the signal-processing algorithm, but also
because the filename/ ACTION word combination is used as a data-object
identifier in the organization of Elthar’s knowledge base. Example 3 shows
the structure of a typical data object. Information about every signal-
processing parameter is stored as discrete probability distributions associ-
ated with each filename/ ACTION word data object. Every numerical value
learned by Elthar for a particular signal-processing parameter has a proba-
bility of being chosen associated with it. All of the probabilities for the pos-
sible values of a signal-processing parameter form the probability distribu-
tion for the parameter. The probability distributions are discrete (rather
than continuous) because Elthar’s learning focuses on specific numerical
values. For any parameter, however, Elthar will have a range of numerical
values to choose from (the discrete probability distribution). As an exam-
ple, suppose that Elthar had chosen the soundfile thunder as the input
soundfile for the request of Example 2. After all scanning of the sentence
had finished, Elthar would still be lacking a value for the AMPLITUDE
parameter (among others) of the echo algorithm. Elthar would then usc
the probability distribution stored on the thunder/ECHO data object
under AMPLITUDE to choose a value for the AMPLITUDE parameter.
This is the mechanism Elthar uses to deal with underspecified requests.
I decided to keep separate parameter-probability distributions for each
filename/ ACTION object because I believe that the use of the signal-
processing algorithms depends heavily on what sound is being processed. I
would use a different set of parameters for a ““loud”” sound than I would
for a “‘soft”” sound to achieve a certain type of effect.

In Example 2, Elthar had to choose an input soundfile based on the
description “‘loud.”” When scanning for information that can be described
verbally, Elthar calls upon another set of discrete probability distributions
to make choices. Each adjective has a set of probabilities associated with it
denoting items described by that word. The description ““loud”” might be
connected to the following list of soundfile names:

3l—thunder
07 —rain
J4—wind

A8—crash

/_. synonym networks __\

synonvm networks
DESCRIPTION & e
words
ACTION

i;entifier

\\\

crickets/ECHO

data object

signal-processing parameter
probability distributions

0

synonym nctworks T

(sentence parsing procedures)

—flange
—reverb
—eccho

— filter "'"other' data probability
(distributions

i phrase curve
gen functions

EXAMPLE 3: A TYPICAL SOUNDFILE/ACTION DATA OBJECT.

When asked to process a “‘loud” soundfile, Elthar would use the above
probabilities to choose a soundfile (how these probabilities are compiled is
discussed later). This technique allows an item to be described in a variety
of ways, with the relative ““strength’’ of each descriptive attribute deter-
mined by the probability of the item being chosen for that attribute. Again,
the adjectives are represented as synonym networks within Elthar, giving
the program a complex ability to understand descriptions.

One problem with this scheme is that a general description cannot func-
tion in more than one context. If the adjective “‘loud”” were used to refer
to a signal-processing algorithm parameter rather than a set of soundfiles, as
in ““make a loud echo of a bizarre soundfile,’’ Elthar would become quite
confused. The items on the “‘loud” probability list are all soundfiles—
Elthar would have no idea how to use “‘loud’’ to denote a value for the
amplitude parameter of the echo algorithm. Elthar would indeed act on
this sentence but in an unexpected manner. Upon encountering the word
““loud,” Elthar would assume that it referred to the input soundfile and
proceed to echo a ““loud”” sound. It is misunderstandings like this that give
Elthar personality. Perhaps an echo of the ““loud”’ sound Elthar chooses
would be closer to what I desired than a “‘loud echo of a bizarre sound-
file.”> One solution to this problem is to have Elthar use different proba-
bility lists for a particular adjective in different contexts. This could easily
be done by using Elthar’s scans as context markers. If the word “‘loud”’
were identified during the soundfile-determining scan, then the soundfile-
probability list associated with ““loud”” would be used. If ““loud”” were seen
during a scan for signal-processing algorithm parameters, Elthar would use
a different probability list containing parameter values. If this solution were
adopted, Elthar’s parsing mechanism would need to be more sophisticated
so that words would not be redundantly scanned and interpreted in several
ways. Currently Elthar only allows probabilistic descriptions of soundfiles.

Even with this restriction on probabilistic descriptions, the potential for
ambiguity in the program is large. This is mainly due to the fact that the
same word can exist on many synonym networks. Verbal confusion is mini-
mized by using only a small subset of all the synonym networks during each
scan and by scanning only relevant fragments of the input sentence. The
procedures used to fragment the input sentence during different scans are a
number of ad hoc rules based on my observations of the ways I normally
communicate signal-processing information in speech. For example, when
scanning for words referring to signal-processing algorithm parameters,
Elthar only searches the synonym networks of words denoting the param-
eters of the particular signal-processing algorithm under consideration
(identified during the initial ACTION scan). If a signal-processing param-
eter referent is found, Elthar then scans only the remainder of the sentence
for the value of the parameter. This limiting of networks and chunking of
the input sentence has the important side effect of making Elthar’s parsing
much more efficient.

Another aspect of Elthar’s knowledge-base organization which also lim-
its word searching concerns the management of Elthar’s soundfile memory.
Elthar can selectively ““forget” or “‘recall’’ soundfiles upon demand. I
added this feature after working with Elthar. I wanted to be able to access
only a select group of soundfiles, but needed to shuttle different soundfiles

i and out of the group at will. I partitioned Elthar’s memory into two sec-
tions: ‘‘working’> memory and long-term memory. When a soundfile is
forgotten, the soundfile data object is moved to “‘long-term’” memory and
it is removed from the list of active soundfiles. All references to it (including
the adjective probability lists) are adjusted accordingly. The inverse opera-
tion occurs when a soundfile is recalled. During a sentence parse, Elthar
only uses the soundfile data objects of soundfiles on the active list. This 1s
typically a small subset of Elthar’s entire soundfile memory.
Some observations about Elthar’s sentence-parsing:

1. Nowhere in Elthar is there any explicit grammar for parsing input sen-
tences; the grammar used by Elthar is mainly a consequence of the way
the scans are organized. Although this severely limits Elthar’s ability to
understand many verbal locutions, it also allows an extremely wide vari-
ety of sentences to be accepted by the program.

2. As with Schank’s conceptual dependency parsing methodology, radi-
cally different sentences with identical deep meanings will produce sim-
ilar parsings by Elthar. The resulting actions can differ, however,
because of the use of probabilistic decision making in the program.

3. The parsing/scanning system used in Elthar practically guarantees that
Elthar will produce some sort of action. Even sentences such as ““mix
something’” or simply “‘reverb’” will cause the execution of some signal-
processing operation. As I have stated, I wanted Elthar to be a very
active program and to take advantage of verbal ambiguity. The exact
actions taken by Elthar when presented with under-specified requests
depends on the state of Elthar’s working memory and on what Elthar
has learned about signal processing up to that point.

LEARNING

Elthar constructs and maintains the probability distributions it uses
through three simple learning techniques: learning by being told, learning
by observation, and a unique analogy-forming method for creating data
structures for new soundfiles. In addition to these, Elthar can dynamically
learn scripts consisting of a number of requests for carrying out complex sig-
nal-processing operations. I can also easily modify Elthar’s synonym net-
works and other memory structures via direct interaction with the program
(another case of learning by being told). Example 4 gives an overview of
how Elthar’s learning is integrated into the knowledge base.

The probability distributions used to make choices from adjectives are
learned and altered by telling Elthar how an item is described. For instance,

verbal knowledge
description » base
probabilities param probabilities,

procedures, etc.

sentence |~ l | ACTION [_,| command

scanning frame assimilation

Signal Processing
Data

EXAMPLE 4: THE GENERAL ORGANIZATION OF ELTHAR
SHOWING WHERE LEARNING OCCURS

if T tell Elthar “‘the thunder soundfile is an ominous sound,’” then Elthar
will either enhance the probability that the thunder soundfile will be chosen
for the OMINOUS description (or whatever descriptive synonym network
is represented by the word ““ominous’’) or will construct a new description
probability distribution for OMINOUS if none exists. This interaction can
occur at any point during my conversation with Elthar. As a matter of
course, Elthar asks for descriptions of new soundfiles when they are intro-
duced in order to fully incorporate the new soundfiles into the knowledge
base. Elthar also understands negative descriptions (““the thunder is not
very loud”’) and adjusts the adjective probabilities accordingly.

New synonyms are defined for Elthar in much the same way. I can say
“‘the word strange means odd”’ or “‘big means large™ and Elthar will add
the new synonym to all of the synonym networks that have the defining
word as a member. As discussed in the preceding section, I can also selec-
tively modify Elthar’s memory of soundfiles by telling Elthar to forget or
recall certain sounds. Elthar’s memories (descriptions, words, soundfiles)
can be permanently altered by asking to “‘erase’” or ““delete’” an item.

Elthar learns how to use the signal-processing algorithms by observing
values I choose for algorithm parameters (or randomly chosen values, at my
request), and soliciting my response to the operation. Elthar has a number
of ‘common-sense’ constraints that are invoked when ‘randomly’ choosing

a value. For example, the program will never choose a starting point for
processing a soundfile that lies beyond the end of the soundfile nor will it
choose a negative duration. Many of the ‘common-sense’ constraints are
also skewed probability distributions reflecting my experience in using sig-
nal-processing algorithms. These constraints are extremely general and
designed mainly to prevent illegal values from being used—I didn’t want to
rule out any values that might be musically useful.

Suppose that Elthar had performed the action requested in the sentence
of Example 2, and upon listening I decided that I didn’t particularly care
for my choice of delay time but that the value Elthar used for the regenera-
tion seemed very appropriate. Suppose also that the attack portion of the
overall amplitude curve sounded very nice. Elthar would ask me what I
thought of the sound it had synthesized. Responses such as “‘save the
regeneration value and the fade-in but not the delay time” or I liked the
fade-in and the regen factor” will cause Elthar to change the probability
distributions for those parameters. This will then affect Elthar’s choices for
those parameters when the knowledge base is consulted in the future.

I realize that using subjective criteria (my “‘likes’”) and treating each
parameter as an independent entity is quite problematic. My goal was to
have Elthar track my thoughts about the sounds being processed. Elthar
keeps separate probability distributions for every soundfile known. This is
so subtle variations in my approach to different sounds will be reflected in
the knowledge base. One of the modifications to Elthar I am planning is to
allow it to introspectively modify its probability distributions. This intro-
spection may take the form of simple numerical analysis (searching for cor-
relations, simple linear or inverse relationships between parameters, and so
on) or possibly more complex analysis of data trends and clustering such as
those discussed by Michalski, et. al. (1983).

It takes some time for Elthar to develop detailed probability distribu-
tions for each soundfile. A solution to this problem is to have new sound-
files inherit data from existing soundfiles. When a new soundfile is intro-
duced, Elthar asks what other soundfiles are like the new file. The
interesting aspect of this inheritance is that Elthar creates the new soundfile
data through a linear combination of the probability distributions from the
analogous sounds. Thus the new file has data that is unique, but at the
same time contains salient characteristics of similar files (see Example 5).
This simple analogy-forming technique proved to be very useful as my work
with Elthar progressed.

Elthar also has the ability to assimilate scripts into its knowledge base
and recall them as commands in subsequent conversations. These scripts
are simply sentences grouped together under a single command name. The
sentences are interpreted sequentially as if they had been entered at the ter-
minal. Elthar does maintain some conversational continuity throughout

soundfile woof

soundfile _meow

p(x) plx)
parameter 1: I . . parameter 1: l ‘
x x
plx) plx)
parameter 2: | ' parameter | .
pCx) b + pCx) X
parameter 3: parameter

parameter 4:

E

p(x)

3

/

parameter

b4

-

plx)

£

soundfile mewoof

plx)
parameter 1: M
x
p(x)
parameter 2: | hi
plx) x
parameter 3:
x
(1¢3]

parameter 4:
x

EXAMPLE 5: NEW SOUNDFILE DATA OBJECTS ARE CREATED BY COMBINING
THE SIGNAL-PROCESSING PARAMETER PROBABILITY DISTRIBUTIONS OF
ANALOGOUS SOUNDFILES

the duration of a script, allowing items such as the input or output file to
be implied rather than explicitly referenced. Although this is more of a con-
versational context than is maintained during normal interaction with
Elthar, it is not complete in any sense of the term. Variables or parameter
values cannot be passed from one sentence to the next in the script, nor is

Elthar able to recall what operations were done previously during the
execution of a script. Scripts can be recursive, but an explicit interrupt is
required from outside the script to break the recursion. Even with these
handicaps, complex sequences of signal-processing operations can be easily
defined and used by Elthar. Example 6 shows a sample script for creating a
flanged and reverberated version of an input file.

flange the input soundfile using a sine wave with a frequency
of .3 Hz into output soundfile tmp

flange the input with a cycle freq of .414 into soundfile tmp

reverb tmp with a long decay time

EXAMPLE 6: A SAMPLE SCRIPT FOR FLANGING AND REVERBING AN
INPUT SOUNDFILE

ELTHAR IN ACTION

Although the Elthar program is designed to accept virtually any English
sentence related to signal-processing operations (and soundfiles) it knows
about, it does expect a certain loosely defined sequence of events. This
sequence is dictated by the two modes (or contexts) used by Elthar to parse
sentences. The first mode is Elthar’s general listening mode. In this state
(signaled by the next command? prompt), Elthar is expecting commands
for signal-processing operations or requests for information about sound-
files, algorithms, scripts, and so on. The second mode is Elthar’s learning
mode. It is in this mode that Elthar learns how to use the signal-processing
algorithms. Some of Elthar’s learning is done in the general listening mode,
however. Specifically, Elthar learns soundfile classification and description
during general listening. Elthar’s analogy-forming (*‘Soundfile X is like
soundfiles T and Z°*) and description-learning (**Soundfile X is loud and
stupid”’) abilities are both invoked from following the next command?
prompt.

As discussed previously, Elthar learns by doing. Thus the learning mode
is entered immediately after executing some signal-processing operation.
This mode involves Elthar asking a series of questions about what was
done. The answers to these questions form the basis for Elthar’s learning.
When the learning mode is finished, Elthar returns to general listening.

To clarify how Elthar is used, consider the record of a typical Elthar ses-
sion in Example 7.

B o~

oW

11

13
14

15

want me to clean up exec/?

+ no

+ what sounds do you know?

I have info on these soundfiles:

woof noise meow flamflam daytime looching howling barks babyness

next command?

+ what sounds are described as obnoxious?

the following soundfiles are classified as obnoxious:
(14 (1 flamflam) (3 noise) (7 howling) (3 barks))

next command?

+ how would you describe soundfile daytime?
I would describe soundfile daytime as:
mellow nice pleasant

next command?

+ echo an obnoxious sound with a delay time of .7
what output file does this go to?

+ obnokecho

the command file is:

open("sf/barks", 0, 0)

system("sfc sf/obnokecho”)

open("sf/obnokecho”, 1, 2)

setline(0, 0, 50, 1, 50, 1, 75, 1, 100, 0)

echo(0, 0, 8.072000, 1, 0.210000, 0.457000, 0.700000, 3.500000)

do you want to run it?

+ yes

did you like that?

+ yes, I did

what should happen?

+ save the attack curve and the regeneration factor
Elthar understands

next command?
+ flange something
what output file does this go to?
+ flanginess
Check the NEEDED file before running this!

EXAMPLE 7: A SESSION WITH ELTHAR. ELTHAR’S OUTPUT IS IN BOLD
FONT, THE USER’S INPUT IS IN PLAIN FONT. LINE NUMBERS ARE
INCLUDED FOR REFERENCE

28
29

30

39
40
41
42
44

45

46

gen not found, choose one?
+ yes

the command file is:

makegen(l, 10, 512, 1)

open("sf/babyness”, 0, 0)

system("sfc sf/flanginess")

open("sf/flanginess", 1, 2)

setline(0, 0, 10, 1, 50, 1, 100, 0)

flange(0, 0, 14, 1, 0.970000, 0.740000, 0.070000, 0.500000)

do you want to run it?
+ yes

did you like that?

+ ask me later

ok, check it later

next command?

+ what scripts do you know

You have defined these scripts:

craziness superflange low gotoit nocomb manycomb manyroom humpo
mechanization flangify interpify amify echolate

next command?

+ make a mechanization

what output file does this go to?

+ mechodaytime

any particular input file you want?

+ daytime

about to execute:
comb soundfile daytime into output file tmp using freq of 100
and regen of .9
am soundfile tmp into output file tmp2 using freq of 114 and
a sawtooth waveform
flange soundfile tmp2 into output soundfile mechodaytime using
a sine wave and freq of 7 and regen of .87

the command file is:

open("sf/daytime”, 0, 0)

EXAMPLE 7 (CONT.)

system("sfc sf/tmp")

open("sf/tmp", 1, 2)

setline(50, 1, 75, 1, 100, 0)

comb(0, 0, -999, 1, 100, 0.900000, 0.077500, 0.500000)

makegen(l, 7, 512, -1, 512, 1)
open("sf/tmp", 0, 0)
system("sfc sf/tmp2")
open("sf/tmp2", 1, 2)

setline(0, 0, 50, 1, 90, 1, 100, 0)
am(0, 0, -999, 1, 114, .500000)

makegen(1, 10, 512, 1)

open("sf/tmp2", 0, 0)

system("sfc sf/mechodaytime”)
open("sf/mechodaytime”, 1, 2)

setline(0, 0, 10, 1, 52, 0)

flange(0, 0, -999, 1, 7, 0.870000, 0.149000, 0.500000)

47 processed them commands!
48 next command?

49 + stop it, no more, halt!

50 Goodbye

EXAMPLE 7 (CONT.)

The following describes the action of the commands and discusses Elthar’s
responses:

Lines 1-2;

Upon entering the program, Elthar asks if a certain subdirectory (exec/)
should be cleaned—all files erased. The exec/ subdirectory is where the
cmix signal-processing command files are stored prior to execution.
These files are not erased automatically. This is to allow them to be
inspected or executed at a later time. Periodically the subdirectory must
be emptied or it will rapidly become unmanageable.

Elthar also uses several other subdirectories to store vocabulary lists,
probability distributions, command script definitions, etc. These sub-
directories are regulated directly by Elthar and require no user interven-
tion.

Lines 3—4:

Elthar has now entered general listening mode. The question causcs
Elthar to display a list of soundfile objects currently in working memory.
This is a small subset of all the soundfiles known to Elthar—remember
that the program can selectively forget and recall soundfiles (for exam-
ple, ““forget about the soundfile named looching’* will cause loching to
be removed from the list of active soundfiles).

If a soundfile is requested for processing and it is not in Elthar’s working
memory, Elthar’s long-term memory (where forgotten soundfile-objects
are stored) is searched. If the soundfile exists in long-term memory, then
Elthar temporarily restores it to working memory for processing. Other-
wise Elthar assumes that the soundfile is new and asks a series of ques-
tions (““what is soundfile X like?*” ““how would you describe soundfile
X?** etc.) designed to enable the program to construct a new soundfile
data object. The new object is then added to the working memory list.

Lines 5-7:

The next command? prompt signals that Elthar is again in general lis-
tening mode. The query about soundfiles described as obnoxious causes
a list of the OBNOXIOUS soundfiles to be displayed. This list shows
how most of the probabilistic attributes are represented in Elthar. The
number at the beginning of the list is the total number of “‘units” cur-
rently in the list. The numbers associated with each entry are the
number of units allotted to the entry. Thus the soundfile howling has a
7/14 or 50% chance of being selected if Elthar is asked to process an
““‘obnoxious” sound. The barks soundfile has a 3/14 (21.43%) chance of
being chosen. Elthar learns how soundfiles are described by adding
soundfiles to these description lists or modifying the units associated
with each soundfile.

Lines 8-10:

This request for information causes Elthar to display the DESCRIPTION
words which have the soundfile daytime as a member of their probability
list.

Lines 11-17-

Elthar is now asked to perform a signal-processing task. The only param-
eter explicitly set is the delay time (0.7 seconds). The rest of the param-
eters will be determined using Elthar’s learned knowledge about how to

echo obnoxious sounds. Elthar also needs to know the name of the out-
put soundfile (the processed sound has to go somewhere!). Since the
name was not given in the request, Elthar asks for it. Elthar also checks
to see if this soundfile currently exists. If it does, then the output of this
run will be added to it (this is how complex musical passages can be
built). If not, then Elthar creates a new soundfile. Elthar fills in the
unspecified parameters and then displays the cmix commands (line 15—
note that the delay time 1s the seventh parameter of the echo algorithm).
The user is then given a choice of executing the cmix commands now,
later, or not at all.

Lines 18-22:

After performing the signal-processing task, Elthar switches to learning
mode and asks if the user was happy with the result. The user can
express total satisfaction (or dissatisfaction) or can single out particular
items that Elthar did for comment. In line 21, Elthar is instructed to
remember how the attack envelope and echo regeneration were done.
Elthar will then increase the probabilities of the values used for those
parameters.

Lines 23-32:

Elthar returns to general-listening mode and is given a very under-
specified request. Again the output soundfile is needed, Elthar asks for
this information. The message of line 27 instructs the user to check a
certain file prior to execution of the cmix commands. Soundfiles are
often stored off-line on magnetic tape. In this case, Elthar chose an
input file (none was explicitly requested by the user) that was not on
disk—the “NEEDED”’ file contains a list of soundfiles that must be
transferred from tape before they can be processed. The flange
algorithm also requires the specification of what is known as a gen func-
tion—a periodic signal used for certain effects. Since a particular gen func-
tion was not given by the user, Elthar asks if it should choose one. If the
answer in line 29 was no, Elthar would have asked which gen function to
use.

Lines 33-35:

Elthar enters learning mode after processing the soundfile, but Elthar is
told to ask later about the results of the operation. Elthar will then tem-
porarily store all of the parameters used for this particular operation so
that the knowledge base may be modified later. (Currently, the later-
learning program is a separate program from the main Elthar program.

It basically behaves just like Elthar in learning mode only it reads as data
the temporary parameter data files constructed by Elthar when asked to
“‘ask later.”” This program could easily be incorporated into the main
Elthar program, but it isn’t really necessary.) This feature was added to
Elthar for several reasons. Many of the signal-processing operations take
significant amounts of time to run. This feature allows many operations
to be performed within a single Elthar session. It is also advantageous to
allow the user to listen to Elthar’s output over a span of time before
requiring that Elthar be told what was good or bad about it.

Lines 36-38:

Elthar is asked (and displays) a list of scripts currently defined. Elthar
could also display the commands comprising any of these scripts.

Lines 39-47:

The ““mechanization script is requested. Elthar asks for some informa-
tion missing in the script (lines 41-44) and then displays the script (line
45) and the resulting cmix commands (line 46). Unlike simple signal-
processing operations, scripts are not executed from within Elthar.
Instead, the cmix commands are collected into larger files within the
exec/ subdirectory for later execution. This was done mainly to ease the
load upon the computer (large signal-processing jobs could be run when
fewer processes were on the machine) and to allow easier inspection of
the cmix data (scripts would often produce a large number of cmix com-
mands). Elthar also does not go into learning mode after executing a
script. Elthar can only learn about one algorithm at a time; a script con-
tains many requests for different signal-processing operations.

Lines 48-50:

The session ends.

Wuat Do You Do WitH IT?

As I worked with Elthar an interesting interaction developed that I had not
foreseen when designing the program. The interaction was the result of the
conjunction of Elthar’s script-learning capability with the analogy mecha-
nism used to create data for new soundfiles. After installing the script func-
tions into Elthar, I began to use scripts to test the program—I created sev-
eral debugging scripts that called upon all of Elthar’s signal-processing
commands. I purposefully left the scripts open; I didn’t specify many of

the parameters for the signal-processing algorithms. This ensured that a
large portion of Elthar’s knowledge base would be consulted (one of the
purposes of the testing).

The sounds that resulted from these test scripts really caught my ear.
They weren’t at all what I had planned to do, but at the same time they
had a fascinating beauty all their own. In attempting to decipher how
Elthar had chosen the signal-processing parameters used to create the
sounds, I began to analyze how the knowledge had been derived for the
soundfiles used as input to the debugging scripts. I had originally taken
time to develop fairly extensive probability distributions for several sound-
files. All of the data for other files I was using came from Elthar’s analogy-
forming ability. This was done mainly in the interests of time (after all, I
was only debugging the program). It was much easier for me to tell Elthar
what other files a new soundfile was like rather than build new data (or sig-
nificantly alter analogy-created data) each time I created a new sound—this
was why I developed the analogy mechanism in the first place.

My discovery of the sounds resulting from the scripts caused me to
think anew about knowledge propagation through Elthar’s knowledge
base. The evolution of Elthar’s knowledge as new soundfiles were added
reminded me of the biological evolution of genetic information. I started to
view soundfiles as populations, the attendant signal-processing parameter
data being the gene pool surrounding the populations. The soundfiles
themselves then became population phenotypes, or particular expressions
of the parameter gene pools. The scripts functioned as signal-processing
environments through which the soundfile populations evolved. My ears
played the role of natural selection, rejecting mutant populations that
didn’t quite make the grade, and selecting for others whose sonic charac-
teristics intrigued me.

This reconceptualization of Elthar changed my role in the interaction
from recording-studio collaborator to experimenter in population biology.
Elthar created the world in which I conducted my experiments. I began to
write scripts (environments) that would select for certain characteristics—
one script might foster the development of a large low-frequency content,
another would tend to produce short, choppy sounds with lots of rever-
beration. I wondered what would happen when two populations were
combined and placed in a particular environment as opposed to cach one
evolving independently. I repeatedly subjected certain soundfile popula-
tions to a particular script environment to sec what characteristics would
develop. Occasionally I would subject a population to a harsh environment
designed to demolish traits that had developed over several generations. I
was able to design whatever evolutionary pathways I desired.

All of these experiments left audible results (the soundfiles). The music I
created with Elthar is simply a record of these tests. The evolutionary

approach I adopted produced sounds that flowed very naturally into each
other. Although I did make a number of compositional choices unrelated
to the experimenting while assembling the soundfiles into their final form,
the basic structural ideas for the music (and the actual sounds themselves!)
were a direct result of the interaction that developed between Elthar and
myself. The point I want to make by relating the somewhat absurd view of
myself as population scientist in sound is how much the Elthar interface
influenced the music I created. Had the interaction gone differently and
had I not started to think of the soundfiles as these strange populations, I
would not have produced the music that I did. The interaction that devel-
oped between myself and the Elthar program affected the music at a very
fundamental level.

Using Elthar as this evolution-model circumvented many of the con-
cerns I was having about the program as I was writing it. I had thought that
I would very rapidly discover the operational limits of the system. I was
afraid that Elthar’s operations would degenerate to a small class of sound
transformations. I was concerned that these transformations would be fur-
ther limited by Elthar’s learning capabilities, especially given the somewhat
one-dimensional character of the signal-processing parameter-learning tech-
niques. I envisioned myself constantly pushing against the wall of what
Elthar couldn’t learn. This is a common complaint among users of
algorithmic compositional programs (Koenig 1982; Roads 1977; Laske
1980). Some types of sounds are casily generated—those types that the
process was intended to create. Other sonic conceptions are nearly impossi-
ble to realize with a given program because of the restrictions inherent in
the musical assumptions made when devising the program.

I am not advocating that music interfaces should be as general as possible
to allow for the creation of a wide variety of sounds from various musical
conceptions. To the contrary, I believe that every interface necessarily
imposes limits on what musics can be produced through it. The process of
creative music-making recognizes interface limits and works within them,
possibly even exploiting their restrictive characteristics. I was concerned,
however, that the limits imposed by Elthar might defeat my purposes in
constructing the program. Specifically, I wanted Elthar to play an active
role in the sound-generation process. If the learning algorithms employed
in the program caused Elthar’s knowledge to converge upon a set of
““lowest common denominator’® values, then the transformations per-
formed by Elthar could be easily codified. My corresponding interest in
Elthar’s actions would decrease as a result of this. Elthar would no longer
be contributing anything to the creation process; I would be able to predict
the actions of the program. Elthar would then become not much more
than a souped-up signal-processing algorithm that I could use, setting cer-
tain parameters to produce expected results.

At the opposite extreme, I was worried that the complexity and ran-
domness inherent in the program might produce wildly unpredictable out-
put, untameable by any amount of learning. In the recording-studio
model, this situation would be analogous to several people randomly set-
ting the studio devices without listening to each other—no collaboration at
all. T would certainly be able to use Elthar if this working relationship
developed, but the entire program could easily be replaced by a random
parameter-value generator. Elthar’s role in the creation process would be
no more than a noise generator in the system, creating random output for
compositional filtering through me. I imagined Elthar’s productions
becoming enveloped in a sheen of homogeneity, each one similar to the
others because of the unchanging amount of randomness generated by
Elthar.

In both of these cases, I object to the amount of the compositional bur-
den I would have to bear. The Elthar program was intended to be an active
element in the sound-creation process, not merely a black box for either
carrying out my specific compositional intentions or for producing a ran-
dom array of sounds upon which I would pass ultimate judgement of their
fitness as measured against my musical preconceptions. Through the pro-
gram’s learning strategies, Elthar was supposed to produce variations and
suggestions relating to the musical ideas I was exploring as I explored them.

One of the paths I envisioned out of the stagnation resulting from these
possibilities was to vary the source material upon which Elthar would act.
Unfortunately, this does not solve the problems concerning Elthar’s role in
the composition process. Most of my compositional activity would take
place during the selection of appropriate input sounds for Elthar. Feedback
from Elthar would indeed occur in the form of my collecting new input
sounds based on the transformations Elthar did to previous sounds. This
interaction is much shallower than the rich sense of feedback and knowl-
edge flow that I had hoped to capture in the program. The center of com-
posing activities would not involve Elthar as an integral part. I would be
choosing sounds to feed to some sound-transforming automaton. The two
worst-case situations would represent different degrees of control over this
automaton. Elthar would not be acting with much knowledge of the
sounds being processed. In fact, most of Elthar’s descriptive intelligence
would be superfluous if the program were used in this manner.

The introduction of new sound sources was another concern I had
about the Elthar program. I was afraid that the knowledge of individual
sounds developed by Elthar would be so specific or idiosyncratic that it
could not be applied effectively to new source material. The evolution-
model approach to Elthar effectively removed this fear by making the chan-
neling of knowledge from known soundfiles to newly constructed files one
of the main features of the entire operation. This approach also eliminated

the entire set of problems surrounding the selection of new sound-source
material for Elthar. New soundfiles followed quite naturally from earlier
sounds because they were in fact derived from existing sounds known to
Elthar. The derivation itself was even performed by the Elthar program.
Any questions concerning how the new sounds might relate to Elthar’s cur-
rent operations and operating knowledge vanished. The operation of Elthar
established sonic relationships because these relationships were fundamen-
tal to the way the program was being used.

In a similar way the evolution-model use of Elthar removed my other
concerns about the program. Because this approach made the learned
knowledge Elthar had accumulated essential to the sound-creation activity,
my worries that Elthar’s learning algorithms might be too trivial or too spe-
cific were completely unfounded. In fact, the manipulation of this learned
knowledge was an explicit feature of the evolution-model mode of opera-
tion. This knowledge also constrained the possible transformations Elthar
performed in a very natural way, eliminating the fear that Elthar would
simply become a random value-generating machine. The knowledge Elthar
used to create sonic transformations also related directly to the soundfiles
through the evolutionary process. Knowledge about the sounds evolved as
the soundfiles were transformed through different evolutionary pathways.
At any stage of the sound-creation process, Elthar’s knowledge was intrin-
sically part of where the sounds came from and where they were going. My
fears of Elthar becoming tangential to the creative act vanished. It was in
Elthar’s world using Elthar’s knowledge that any creation took place.

My use of Elthar as this evolution-model also undermined some per-
sonal issues that I take into the composition of any piece. An example:
because digital sound synthesis gives me nearly unlimited control over the
sounds I can create, I alw ays grapple with the qucstxon of how much con-
trol I should exert. Especially when I am processing an existing sound for
musical purposes, it is difficult for me to differentiate between forcing the
sound into some preconception I have or letting the characteristics of the
sound determine my musical concepts. I think that one of the hidden
motivations behind the natural-language interface could probably be traced
to this problem. I was hoping that ambiguous specifications on my part
might allow me to hear some obvious musical features that I would miss
otherwise.

The evolution-model circumvented this problem because I was rarely
specifying individual signal-processing parameters. My control over sound
production involved the design and construction of procedures through
which sounds would quite naturally develop their own musical person-
alities—nothing was forced by direct intervention on my part. This issue of
forcing sounds into some conception surfaced in a much different guise
during the course of this project, however. I had developed some definite

ideas about the form the presentation of Elthar’s output would take. As I
considered the method I used to create Elthar’s sounds and the sonic
qualities of these sounds, questions began to form in my mind concerning
the validity of my output-format preconceptions.

THERE’S NO PLACE LIKE HOME

One of my interests in composing is to project the impression of physical
space: a sense that the music emanates from somewhere. In its first imple-
mentation, the Elthar program is designed to use signal-processing
algorithms, especially those learned that tend to foster what has been
termed the illusion of recording—the impression that a tape was actually
recorded in a physical setting. Thus the musical bias of this implementation
is towards the manipulation of real-world sounds in the tradition of musigue
concréte. The point of the Elthar project was not to create a transparent
interface, but to work with an interface that emphasized a particular view of
music and composition.

Appropriately, I chose three recordings for use as sound sources which
had very strong time/place associations. The first recording is the sound of
birds outside my home one spring morning; the second is a recording of an
approaching summer rainstorm; and the third consists of sounds recorded
during the early evening hours of an August night. There’s No Place like
Home is a sonic tour of these three recordings: I used Elthar to weave this
source material into a musical context. This connective tissue, or web of
relations and distinctions among the three sound sources, came about not
as part of some prior plan I had for using Elthar, but as the result of my
population-scientist model in which variety is produced by successive evo-
lution from a few sound sources rather than many.

Musical associations are created by the fact that subjecting different
sound sources to the same signal-processing techniques produces results
that have related characteristics. For example, one particular signal-process-
ing algorithm, the comb filter, has the ability to endow the processed
sounds with definite pitches by virtue of sharp resonances created in the
audio spectrum. The sounds processed using this algorithm are striking in
that unlike most of the other processed sounds produced with Elthar,
pitch material is present. Elthar was able to learn how to produce different
“‘chords’ and to create pitches at different points along the spectrum using
this algorithm. I could say to Elthar “‘produce a low-pitched sound using
the birds soundfile as input’” and “‘make a low pitch from the rain record-
ing”> and Elthar would produce two files equivalent in the sense that they
both contained low pitches created with the comb-filter algorithm, but
derived from different sources. As with all of the parameter specifications, I

could be as specific as I wanted when instructing Elthar to use this
algorithm, for example, *“process the birds through the comb filter using a
pitch of 149Hz.”” In keeping with my collaborative approach, however, I
generally let Elthar choose specific parameters within learned ranges.

Similarly, I used Elthar’s various room-simulation algorithms to put
groups of sounds within the same acoustical space—placing two vastly dif-
ferent soundfiles in the acoustic environment of a simulated cave has the
effect of unifying them to a certain degree: both of the sounds appear to be
cocxisting in the same place. The other signal-processing algorithms also
imparted their particular sound to a greater or lesser extent to the processed
soundfiles.

More subtle than these obvious sonic signal-processing relations is the
fact that Elthar, using the analogy mechanism for creating new entries in
the knowledge base, could affect different soundfiles in similar ways. I was
able to establish sonic relationships between different sounds by telling
Elthar that certain soundfiles were “‘like” other sounds. By doing this, I
would essentially be telling Elthar ““use the same set of presuppositions
about how to generate signal-processing parameters for these soundfiles.”
This meant that Elthar would choose similar processing methods when
asked to modify the analogized soundfiles. If I had told Elthar that the
thunder soundfile was similar to the booming soundfile and then issued a
series of ““echo the thunder sound™ and ““echo the booming sound’” com-
mands, Elthar would tend to choose similar echo values for all the files pro-
duced because of the probabilistic way that parameter values are chosen.
This led to the creation of entire subgroups of soundfiles that were similar
to each other in that they had all been processed using related combinations
of signal-processing parameter values.

Not all of Elthar’s signal-processing scripts had this homogenizing
effect, however. Some tended to amplify small differences, especially the
scripts that recursively applied a signal-processing algorithm to a soundfile.
One particular script would process an input soundfile using the flange
algorithm, and then process the output of that operation through the
flange algorithm, and then flange the output of that operation, eventually
finishing after seven or eight iterations of this procedure. If the original
sound source contained a periodic signal that aligned with the flange sweep
rates, the result of this processing script would be a tremendously amplified
and distorted version of that periodic signal. If the original sound source
contained a periodic signal that didn’t align with the flange sweep rates,
then that signal would tend to smear into the flange rates. Techniques such
as this are powerful tools for emphasizing or coloring subtle differences
between sounds.

After several months of research, I had generated nearly two hours of

sound in the form of discrete soundfiles, ranging in length from thirty sec-
onds to several minutes. My next task was to arrange these soundfiles into a
coherent musical form. To do this, I used the Elthar program as a sonic
word processor; Elthar’s ability to mix and juxtapose different chunks of
sound is comparable to the way paragraphs and sentences of text can be
shifted with word-processing software. (The ease with which this operation
can be done on the computer creates another compositional prejudice.
Computer programs for audio mixing tend to encourage a view of music as
a series of sound events or fragments that can be combined to create a
piece.)

The mode of working that I first adopted with the Elthar interface was
biased towards producing progressions of soundfiles—one group of sound-
files would be processed to produce another group, the members of which
would then be processed to produce a third group, and so on. This pro-
gression from relatively simple signal-processed sounds to sounds with
heavy amounts of signal-processing gave There’s No Place like Home its linear
momentum. The fact that all the sounds were derived from three original
sound sources endowed the entire piece with an aural unity. The music
begins with almost completelv unprocessed sounds. Through the actions of
the various signal-processing techniques, sonic features begin to evolve
from the original sounds. These features become more and more distinct as
the processing is repeatedly applied, eventually culminating in a section in
which heavily processed and highly differentiated sounds are densely
layered. This dense section is then gradually thinned by introducing sounds
(derived from the dense sounds) that have been homogenized by other
signal-processing scripts. These sounds then yield to natural sounds again
with some heavily processed sounds lingering in the background, recalling
the sonic features produced by the signal-processing algorithms.

The combination of this variety of soundfiles into There’s No Place like
Home created a time-dependent, highly constrained presentation of a
sequence of sounds intended to give a listener a unified musical experience.
The attempt to create clear musical continuity had the effect of blurring
rather than highlighting some of the individual characteristics of the sound-
files produced by Elthar. I consequently decided to try two musical experi-
ments in alternative ways to present Elthar’s sounds, the goal being to pro-
ject qualities of musical individuality inherent in the different soundfiles,
and to give listeners a different slice of Elthar’s sound world. The first
experiment involved a museum or art-gallery mode of listening, the idea
being that in a museum or gallery, observers are able to apprehend what is
being presented in a nonlinear fashion. Objects on display in a gallery may
be visited at leisure, in any particular time-ordering or sequence. Even
repetitive (or circular) viewing is possible—often invited—as visitors choose
their path through the gallery. To realize this idea, I set up a room with five

different displays. Four of the displays presented information (verbally and
graphically) about how I constructed the Elthar sounds, the fifth display
consisted of an audio mixer with instructions for operating it. At each dis-
play was a set of headphones so that observers could hear the sounds being
discussed or (in the case of the fifth display) hear the sounds being mixed
through the audio mixer.

Another motivation for this style of presentation was to communicate a
sense of my population-researcher working method. Each of the four main
displays dealt with a particular population group of Elthar’s sounds. The
information presented concerned the different population experiments I
did to create the sounds. The fifth display gave participants a chance to pro-
duce their own version of an Elthar piece—representative sounds from vari-
ous Elthar populations were played simultaneously through the different
input channels of the audio mixer.

Presenting the sounds in this format produced interesting results. My
“‘scientific’ view of Elthar’s music was communicated in an easy, informal
manner. The “‘evolutionary”” relationships between the sounds were made
explicit through the grouping of different generations at each display (and
because these relationships were discussed in the written information avail-
able at the displays). Because each soundfile was discussed and played sepa-
rately at the displays, listeners could gain an appreciation for the individual
sounds. By taking the sounds ““out of time,’” I allowed the audience to
form their own connections between different soundfiles and to spend as
much time as desired with a particular set of sounds. Even the simple fact of
hearing the music through headphones presented a different perspective.
(Some of Elthar’s sounds are most apparent only through headphones. An
example: Elthar could process sounds using an algorithm designed to simu-
late the acoustics of different-sized rooms. On several occasions, Elthar
chose rooms with very odd sizes [perhaps a room 250 feet long and one
foot wide]. The full effect of a sound processed in this manner can only be
heard through headphones.)

One of the most interesting results from this experiment had to do with
the perception of where the music came from. In There’s No Place like
Home, the music is heard as sounds resulting from the processing of natural
sounds. In this gallery presentation, the emphasis was more on the process
of processing, rather than the results of the processing. The music arose
from hearing the actions of the signal-processing techniques themselves.
The difference might be stated like this: in the piece, the music was created
by using signal-processing algorithms; in the gallery presentation, the music
was the signal-processing algorithms. This seeming contradiction with my
stated intention to highlight the individuality of the Elthar sounds can be
explained by considering that the actions of the signal-processing
algorithms can best be heard through the processing of a large variety of

sounds (as presented in the gallery room). Also, the separate presentation
of each soundfile made the transformations wrought by the signal-process-
ing techniques much clearer.

The second experiment I performed directly engaged the idea of
“‘environments”” in music. I decided to try reintroducing the Elthar sounds
back into the original physical environment where they were recorded. I
placed a number of speakers around the area where the three source record-
ings were made. I then made a series of tapes containing Elthar’s sounds—
cach tape was very sparse (the sounds were widely separated in time). This
was done because the tapes were played back simultaneously, and I did not
want a dense presentation of the music. Such a presentation would have
been counter to the character of the original environment.

The overall effect was quite interesting. Freed from the responsibility of
defining a sonic landscape, the sounds took on a much different character.
Rather than acting as aural windows onto some other world, the sounds
were actually part of the world surrounding the listener. The sounds
became more vivid, almost as if they were objects (or at least caused by
some existing objects) in the environment. Hearing the sounds in this fash-
ion allowed some of their ““natural® differences to become prominent. It
was much easier to discern the variety of soundfiles generated by Elthar
because they could exist as independent entities. By not being grouped into
a piece, the sounds were able to gain a sense of individuality—even more so
than with the museum/gallery experiment—due to the perceived physical
independence of each sound in the environment.

I was also struck by the effect that the sounds had on the physical
environment itself. Although in some sense the sounds were alien to the
original environment, they had connections to it by virtue of being derived
from recordings made in the original environment. Hearing these not-
quite-part-of-this-world sounds tended to focus listening upon all sounds
occurring in the environment, casting a different light on the normal
sounds present. Even a simple ““is this sound real or synthetic?** decision
implies a closer inspection of the natural environmental sounds. I suspect
that a large part of the vividness of Elthar’s sounds was due to this height-
ened listening. This aspect of the experience also had lasting effects through
the renewed appreciation of the normal environmental sounds.

RETROSPECT

The experiments done with the Elthar sounds were interesting not only for
the musical experiences they presented, but also for an approach to com-
position they represented. In essence, by thinking about how I would pre-
sent the sounds, I had extended the idea of composition to include compos-
ing the form of the presentation. It is obvious that the performance

environment of a piece plays a large part in the perception of the music.
Most composers implicitly or explicitly take this into account when com-
posing. Music is usually written for some (real or imagined) particular set-
ting, most often a concert hall or some sort of performance space. How-
ever, active design of the output format of a piece gives composers the
ability to shape an important aspect of the musical experience.

A major goal of the Elthar project was to explore the musical effects of a
working interface. The effects were indeed dramatic; the population-
scientist mode of interaction that developed with Elthar changed my entire
approach to creating sounds. This fruitful Elthar interaction resulted
mainly from two features of the Elthar program—the analogy mechanism
and the script-defining ability. The Elthar program is complex enough that
future work with the program is almost certain to define new kinds of
interactions. The population-scientist mode is only one possible approach.
What is particularly interesting about the program is the ability to modify it
to cause variations in the interface. A simple change, such as having Elthar
negate all the parameter probabilities to produce sounds unlike anything
done before, would be trivial. More extended possibilities suggest them-
selves. Elthar could be configured to apply musical knowledge learned in
one domain to another, or the program could apply signal-processing con-
cepts to the building of harmonic materials for a piece. With a suitable con-
nection (probably MIDI) to the outside world, Elthar could act as a real-
time system, modifying the sounds produced in response to user input.
The unique aspect of a real-time Elthar system (as opposed to other real-
time systems) is the ability to learn about what it is doing as it performs and
the ability to make future decisions based on this acquired knowledge.

This concept represents another extension of the idea of composing, an
extension that appears most exciting. As I work more with music realized
using computers, I have found that the choice of an interface is a major
compositional decision. By being involved with the actual design of the
interface, I can realize musical ideas that are intimately connected to the
methods of production. Designing the interface becomes part of my com-
positional activity.

NOTES

1. Octave.pitch-class notation is a way to numerically specify pitches of the
western equal-tempered scale. The number to the left of the decimal
point represents the octave (octave 8 is middle C), and the digits to the
right represent the number of semitones above the C of that Octave.

Example: 8.05 = five semitones above the C of octave 8, or the F above
middle C.

BIBLIOGRAPHY

Koenig, Gottfried Michael. 1982. ““The Aesthetic Integration of Com-
puter-composed Scores.’” In Proceedings of the International Computer
Music Conference, 1982. San Francisco, California: Computer Music
Association.

Laske, Otto. 1980. ¢“Subscore Manipulation as a Tool for Compositional and
Sonic Design.”” In Proceedings of the 1980 International Computer Music
Conference. San Francisco, California: Computer Music Association.

Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchéll, eds.
1983. Machine Learning: An Artificial Intelligence Approach. Vol. 1. Palo
Alto, California: Tioga Publishing Company.

Minsky, Marvin. 1975. ““A Framework for Representing Knowledge.”” In

The Psychology of Computer Vision, edited by P. H. Winston. New York:
McGraw-Hill.
Roads, Curtis. 1977. <“Composing Grammars.”’ In Proceedings of the 1977

International Computer Music Conference. San Francisco, California:
Computer Music Association.

Schank, Roger C., and Robert P. Abelson. 1977. Scripts, Plans, Goals, and
Understanding: An Inquiry into Human Knowledge Structures. The
Artificial Intelligence Series. Hillsdale, New Jersey: Lawrence Erlbaum
Associates.

