
Cooperating Computer Music Languages

Brad Garton, Columbia University Computer Music Center (garton@columbia.edu)

Abstract: New interconnect protocols and technologies allow computer musicians to draw upon a range
of different computer-music programming environments. This paper/demonstration will show a new
working methodology for integrating several contemporary music languages (RTcmix, ChucK, Csound,
Max/MSP).

Let me begin this paper by telling what it isn't.
My proposal for the 2007 Spark Festival of
Electronic Music and Art was intended as more
of a demonstration of a recent working method-
ology for 'doing' computer music that I have
found congenial ("Hey! Look everybody! This is
fun!") than a descriptive paper. A fixed text
can't quite communicate a demo directly, so I've
had to think about what I can write. I should
also confess that this isn't a technical paper; it
doesn't describe new software or hardware, it
doesn't present a bold new signal-processing
algorithm, it doesn't discuss new transform-
ational techniques as imbedded in a language
design, none of that stuff.

Instead, I plan to discuss a set of computer music
software applications that are already widely-
used, and describe some off-the-shelf techniques
for allowing these tools to communicate with
each other. For many contemporary computer
musicians, this won't be earth-shattering news.
Nevertheless, I would also like to use this paper
as an excuse to exhort users and developers of
music tools to keep in mind the expanded range
of possibilities that relatively transparent and
direct communication of audio/control data can
provide.

The Olden Days
I recall an advertisement from the late 1980's
featuring a vision of the ultimate music-
technology utopia that depicted a MIDI cable
plugged directly into a hapless computer-
musician's brain, the implication being that ideas
could flow "transparently" from conception to
realization. Contrary to this fantasy, however,
was the realization by many of us working in
music software development that the design of
our tools had a profound effect on the creative
process. The conduit between ideation and
instantiation was anything but "transparent".

Just one example to show what I mean: Suppose
I am creating a new software synthesis applica-
tion, and I decide to have the user specify the
pitch parameter as a direct frequency (Hz). I can
almost guarantee that the music produced with
this application will have noticeable features and
an aesthetic very different from music produced
using a western equal-tempered pitch specifi-
cation system. Of course, given the universal
Turing machine nature of present-day com-
puters, it should be possible to emulate different
tools, holding up the possibility of transparency
through correct design decisions. In the simple
pitch-specification example the designer could
have allowed for multiple pitch formats, or the
user could have found some kind of appropriate
conversion utility, but the point is that the
structure of the tool used can exert a powerful
influence on the creative imagination. It is
impossible to capture all potential approaches
through judicious design decisions.

In the earlier days of digital music, this effect
was quite evident. Because of the difficulties
associated with the then-young field of computer
music, composers using music technology would
often adopt only one or two applications for
producing pieces. Redesigning software for an
idiosyncratic compositional approach required
effort far in excess of the expected results. Few
people wanted to do this.

At past festivals and conferences devoted to the
presentation of digitally-created music, it was
almost trivial to hear which application was used
for a specific work. Pieces often were centered
around a single signal-processing or synthesis
technique: the "LPC" works of Paul Lansky, the
"FM" pieces of John Chowning, the "granular"
music of Barry Truax. Interconnection between
different synthesis languages was possible, but
the lack of common basic standards made this

operation cumbersome at best. Even soundfile
formats were often incompatible between
different computer music environments.

Happy Days
Technology has advanced, and the state of the
computer music field has changed. Today there
exists a much greater range of different
approaches for producing digital music, and
recent developments have made it much easier to
interconnect these diverse applications. Music
software packages can now be linked in two
main ways:

– connection through audio. Soundfile formats
have become reasonably stable (wav, aiff, aifc,
etc.) and software libraries for reading and
writing various formats are readily available. A
soundfile created by one application can be
processed through another without much effort.
More intriguing, though, is the direct connection
of digital audio between software packages using
interapplication communications protocols such
as JACK, Soundflower, ReWire or the direct
imbedding of one application within another
using a plugin architecture such as VST, AU, or
LADSPA.

– connection through data. To a certain extent,
this capability has existed generally since the
advent of the MIDI protocol in the mid-1980's.
MIDI has been abundantly criticized for
shortcomings in its design. New music network
protocols such as OSC and (again) the direct
imbedding of applications now allow a much
richer range of data to be exchanged.

I now want to describe a scenario to demonstrate
how this interconnectedness can work. Using
the "scrub" capability of Michael Klingbeil's
wonderful SPEAR audio analysis/resynthesis
program, I can generate a variety of interesting
sounds. I would like to process these sounds
through a filter instrument I built using Perry
Cook and Ge Wang's ChucK language, but I
want to control the pitches of my filter
instrument using a notated score. To complicate
matters further, I like the idea of triggering a
random sequence of notes every 7.8 seconds
using a script in RTcmix, a music language I
helped to write. Finally, I plan to process

everything through a few commercial reverb-
eration/echo plugins, and track the output several
times using Digital Performer to create a final
piece.

How can I accomplish this? Obviously one way
would be to do the whole operation in stages –
write the soundfile with SPEAR, process it
through ChucK (after generating appropriate
control data from a musical notation program),
combine everything at a later point... but this
would diminish my ability to do something
critically important to the result: my "scrubbing"
gestures need to be tightly-coupled to the sound
at the end of the chain. In other words, I want to
hear what I'm doing.

Modern technology to the rescue! Through
various audio-distributing schemes and software
imbeddings, I am able to get all elements of the
chain working together. Using Soundflower, I
can route the audio output of SPEAR to the
[chuck~] object which imbeds the ChucK
language inside Max/MSP. I can control my
ChucK instrument using the Max/MSP java
interpreter ([mxj]) running Nick Didkovsky's
music notation package JMSL. My RTcmix
scripts can be triggered using the Max/MSP
imbedded [rtcmix~] object, with the audio
output from RTcmix and ChucK sent from
Max/MSP to Digital Performer via ReWire.
Digital Perfomer has a number of terrific
reverberation and echo plugins, and can easily
handle the mixing and tracking of the resulting
sounds.

The Future
I could have complicated the above scenario
further by adding a connection to some
SuperCollider action via the CNMAT
[OpenSoundControl]-family of Max/MSP
objects, or incorporating an additional java
component by using Phil Burke's JSyn synthesis
system. The complications from these arise
through the necessary re-routing of the audio
outputs if I want to produce a single, coherent
result. OSC would also require additional data
coding and network set-up. Even though these
complications are fairly minimal, the contrast
with a fully-imbedded language (like the
[csound~] object or an additional VST/AU
plugin) leads me to encourage developers to

make interconnectability as simple and
transparent as possible. I also have to admit a
bias towards imbedding in that it allows a very
high degree of 'cooperation' between different
environments without much need for data
translation or reformatting.

Ultimately I would like to see music software
that is almost completely interchangeable; one
environment acting as the host or being
imbedded inside another with ease. Indeed, this
situation has a corollary in contemporary web-
usage. Users are almost completely unaware

when they visit different web pages if they are
running javascript, java, a flash animation – how
many have even heard of FTP?

I would love to see music software also offer this
degree of interoperability. I want to urge
computer musicians to explore the capabilities
available through multiple music environments.
Although it can't transcend the creative bias that
attends any musical tool, it can at least present a
diverse set of options for consideration.

References
Here is a list of some of the software and applications discussed:

ChucK – http://chuck.cs.princeton.edu/
[chuck~] – http://music.columbia.edu/~brad/chuck~/
[csound~] – http://www.davixology.com/csound~.html/
Digital Performer – http://www.motu.com/products/software/dp/
JACK – http://jackaudio.org/
JMSL – http://www.algomusic.com/jmsl/
JSyn – http://www.softsynth.com/jsyn/
Max/MSP – http://cycling74.com/products/maxmsp/
Open Sound Control (OSC) – http://www.cnmat.berkeley.edu/OpenSoundControl/
ReWire – http://www.propellerheads.se/technologies/rewire/
RTcmix/[rtcmix~] – http://rtcmix.org/
Soundflower – http://cycling74.com/downloads/soundflower/
SPEAR – http://klingbeil.com/spear/
SuperCollider – http://www.audiosynth.com/

